1
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Starr CR, Gorbatyuk MS. Posttranslational modifications of proteins in diseased retina. Front Cell Neurosci 2023; 17:1150220. [PMID: 37066080 PMCID: PMC10097899 DOI: 10.3389/fncel.2023.1150220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Posttranslational modifications (PTMs) are known to constitute a key step in protein biosynthesis and in the regulation of protein functions. Recent breakthroughs in protein purification strategies and current proteome technologies make it possible to identify the proteomics of healthy and diseased retinas. Despite these advantages, the research field identifying sets of posttranslationally modified proteins (PTMomes) related to diseased retinas is significantly lagging, despite knowledge of the major retina PTMome being critical to drug development. In this review, we highlight current updates regarding the PTMomes in three retinal degenerative diseases-namely, diabetic retinopathy (DR), glaucoma, and retinitis pigmentosa (RP). A literature search reveals the necessity to expedite investigations into essential PTMomes in the diseased retina and validate their physiological roles. This knowledge would accelerate the development of treatments for retinal degenerative disorders and the prevention of blindness in affected populations.
Collapse
Affiliation(s)
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Tanimoto Y, Yoshimura Y, Hayashi F, Morigaki K. Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers. J Phys Chem B 2023; 127:520-527. [PMID: 36598865 DOI: 10.1021/acs.jpcb.2c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane.
Collapse
Affiliation(s)
- Yasushi Tanimoto
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan.,Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi, Osaka558-8585, Japan
| | - Yu Yoshimura
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan.,Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe657-8501, Japan
| |
Collapse
|
4
|
Myers B, Sechrest ER, Hamner G, Motipally SI, Murphy J, Kolandaivelu S. R17C Mutation in Photoreceptor Disc-Specific Protein, PRCD, Results in Additional Lipidation Altering Protein Stability and Subcellular Localization. Int J Mol Sci 2022; 23:ijms231810802. [PMID: 36142714 PMCID: PMC9503786 DOI: 10.3390/ijms231810802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a photoreceptor outer segment (OS) disc-specific protein essential for maintaining OS structures while contributing to rhodopsin packaging densities and distribution in disc membranes. Previously, we showed PRCD undergoing palmitoylation at the sole cysteine (Cys2), where a mutation linked with retinitis pigmentosa (RP) in humans and dogs demonstrates the importance of palmitoylation for protein stability and trafficking to the OS. We demonstrate a mutation, in the polybasic region (PBR) of PRCD (Arg17Cys) linked with RP where an additional lipidation is observed through acyl-RAC. Immunolocalization of transiently expressed R17C in hRPE1 cells depicts similar characteristics to wild-type PRCD; however, a double mutant lacking endogenous palmitoylation at Cys2Tyr with Arg17Cys is comparable to the C2Y protein as both aggregate, mislocalized to the subcellular compartments within the cytoplasm. Subretinal injection of PRCD mutant constructs followed by electroporation in murine retina exhibit mislocalization in the inner segment. Despite being additionally lipidated and demonstrating strong membrane association, the mutation in the PBR affects protein stability and localization to the OS. Acylation within the PBR alone neither compensates for protein stability nor trafficking, revealing defects in the PBR likely lead to dysregulation of PRCD protein associated with blinding diseases.
Collapse
Affiliation(s)
- Boyden Myers
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Emily R. Sechrest
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Gabrielle Hamner
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Sree I. Motipally
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Neurosciences, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry and Molecular Medicine, One Medical Center Drive, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
5
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Azizi SA, Lan T, Delalande C, Kathayat RS, Banales Mejia F, Qin A, Brookes N, Sandoval PJ, Dickinson BC. Development of an Acrylamide-Based Inhibitor of Protein S-Acylation. ACS Chem Biol 2021; 16:1546-1556. [PMID: 34309372 DOI: 10.1021/acschembio.1c00405] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein S-acylation is a dynamic lipid post-translational modification that can modulate the localization and activity of target proteins. In humans, the installation of the lipid onto target proteins is catalyzed by a family of 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). DHHCs are increasingly recognized as critical players in cellular signaling events and in human disease. However, progress elucidating the functions and mechanisms of DHHC "writers" has been hampered by a lack of chemical tools to perturb their activity in live cells. Herein, we report the synthesis and characterization of cyano-myracrylamide (CMA), a broad-spectrum DHHC family inhibitor with similar potency to 2-bromopalmitate (2BP), the most commonly used DHHC inhibitor in the field. Possessing an acrylamide warhead instead of 2BP's α-halo fatty acid, CMA inhibits DHHC family proteins in cellulo while demonstrating decreased toxicity and avoiding inhibition of the S-acylation eraser enzymes, two of the major weaknesses of 2BP. Our studies show that CMA engages with DHHC family proteins in cells, inhibits protein S-acylation, and disrupts DHHC-regulated cellular events. CMA represents an improved chemical scaffold for untangling the complexities of DHHC-mediated cell signaling by protein S-acylation.
Collapse
Affiliation(s)
- Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tong Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Clémence Delalande
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Fernando Banales Mejia
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alice Qin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Noah Brookes
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Perla Jasmine Sandoval
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
8
|
Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, Sanders CR, Kenworthy AK. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem 2021; 296:100652. [PMID: 33839158 PMCID: PMC8113881 DOI: 10.1016/j.jbc.2021.100652] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by β-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-β (Aβ) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - James M Hutchison
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Park PSH. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Arch 2021; 473:1361-1376. [PMID: 33591421 DOI: 10.1007/s00424-021-02522-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Rhodopsin is the light receptor in rod photoreceptor cells that initiates scotopic vision. Studies on the light receptor span well over a century, yet questions about the organization of rhodopsin within the photoreceptor cell membrane still persist and a consensus view on the topic is still elusive. Rhodopsin has been intensely studied for quite some time, and there is a wealth of information to draw from to formulate an organizational picture of the receptor in native membranes. Early experimental evidence in apparent support for a monomeric arrangement of rhodopsin in rod photoreceptor cell membranes is contrasted and reconciled with more recent visual evidence in support of a supramolecular organization of rhodopsin. What is known so far about the determinants of forming a supramolecular structure and possible functional roles for such an organization are also discussed. Many details are still missing on the structural and functional properties of the supramolecular organization of rhodopsin in rod photoreceptor cell membranes. The emerging picture presented here can serve as a springboard towards a more in-depth understanding of the topic.
Collapse
Affiliation(s)
- Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Perdomo D, Bubis J. Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts. Biochimie 2020; 177:1-12. [PMID: 32758687 DOI: 10.1016/j.biochi.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
Lipid rafts are localized liquid-ordered regions of the plasma membrane that contain high levels of cholesterol and glycosphingolipids, and are resistant to extraction with nonionic detergents. Retinal photoreceptor cells contain detergent-resistant membrane microdomains (DRM), which were isolated here from bovine rod outer segments (ROS) under dark and light conditions. Rhodopsin (R) was present in both DRM and detergent soluble fractions (DSF), and detergent-insoluble ROS rafts were enriched in caveolin 1 (Cav-1) and c-Src. In the dark, arrestin and its 44-kDa truncated form (p44) were present mainly in DSF; however, p44 was translocated to DRM under illumination. Similarly, transducin (T) was mainly present in DSF in the dark, but it was recruited toward the DRM fraction following photolysis. DRM were also prepared in the absence or presence of Mg-ATP, guanosine 5'-3-O-(thio)triphosphate (GTPγS), or both. Although GTPγS released T into DSF in the light, GTPγS-activated T was retained in DRM when Mg2+ and ATP were added. Moreover, T was always tyrosine-phosphorylated under light conditions, which suggested that T phosphorylation prevents its GTPγS-induced release from DRM. In addition, treatment with the tyrosine kinase inhibitor genistein prevented the segregation of T to the rafts. In contrast, no localization difference was seen in the presence of Mg-ATP for Cav-1, c-Src, R and both forms of arrestin. Interestingly, immunoprecipitation assays followed by Western blot analyses under light conditions showed the formation of multimeric complexes containing R, T, c-Src, p44 and Cav-1 in DRM, where T and c-Src were tyrosine-phosphorylated.
Collapse
Affiliation(s)
- Deisy Perdomo
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela.
| | - José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Valle de Sartenejas, Baruta, Caracas, Venezuela.
| |
Collapse
|
12
|
Valdez-Lopez JC, Petr ST, Donohue MP, Bailey RJ, Gebreeziabher M, Cameron EG, Wolf JB, Szalai VA, Robinson PR. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction. Biophys J 2020; 119:389-401. [PMID: 32621866 PMCID: PMC7376183 DOI: 10.1016/j.bpj.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and β-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.
Collapse
Affiliation(s)
- Juan C Valdez-Lopez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Stephen T Petr
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Matthew P Donohue
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland; Maryland NanoCenter, University of Maryland College Park, College Park, Maryland
| | - Robin J Bailey
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Meheret Gebreeziabher
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Evan G Cameron
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Julia B Wolf
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Veronika A Szalai
- Center for Nanoscale and Technology, National Institutes of Standards and Technology, Gaithersburg, Maryland
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
13
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
14
|
Kaneshige Y, Hayashi F, Morigaki K, Tanimoto Y, Yamashita H, Fujii M, Awazu A. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. PLoS One 2020; 15:e0226123. [PMID: 32032370 PMCID: PMC7006936 DOI: 10.1371/journal.pone.0226123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
The visual photopigment protein rhodopsin (Rh) is a typical G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disk membrane of rod-photoreceptor cells. Rh molecule has a tendency to form dimer, and the dimer tends to form rows, which is suggested to heighten phototransduction efficiency in single-photon regime. In addition, the dimerization confers Rh an affinity for lipid raft, i.e. raftophilicity. However, the mechanism by which Rh-dimer raftophilicity contributes to the organization of the higher order structure remains unknown. In this study, we performed coarse-grained molecular dynamics simulations of a disk membrane model containing unsaturated lipids, saturated lipids with cholesterol, and Rh-dimers. We described the Rh-dimers by two-dimensional particle populations where the palmitoyl moieties of each Rh exhibits raftophilicity. We simulated the structuring of Rh in a disk for two types of Rh-dimer, i.e., the most and second most stable Rh dimers, which exposes the raftophilic regions at the dimerization-interface (H1/H8 dimer) and two edges away from the interface (H4/H5 dimer), respectively. Our simulations revealed that only the H1/H8 dimer could form a row structure. A small number of raftophilic lipids recruited to and intercalated in a narrow space between H1/H8 dimers stabilize the side-by-side interaction between dimers in a row. Our results implicate that the nano-sized lipid raft domains act as a “glue” to organize the long row structures of Rh-dimers.
Collapse
Affiliation(s)
- Yukito Kaneshige
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Kenichi Morigaki
- Biosignal Research Center, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Yasushi Tanimoto
- Graduate School of Science, Kobe University, Rokkodaicho, Nada, Kobe, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
15
|
Roy K, Marin EP. Lipid Modifications in Cilia Biology. J Clin Med 2019; 8:jcm8070921. [PMID: 31252577 PMCID: PMC6678300 DOI: 10.3390/jcm8070921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are specialized cellular structures with distinctive roles in various signaling cascades. Ciliary proteins need to be trafficked to the cilium to function properly; however, it is not completely understood how these proteins are delivered to their final localization. In this review, we will focus on how different lipid modifications are important in ciliary protein trafficking and, consequently, regulation of signaling pathways. Lipid modifications can play a variety of roles, including tethering proteins to the membrane, aiding trafficking through facilitating interactions with transporter proteins, and regulating protein stability and abundance. Future studies focusing on the role of lipid modifications of ciliary proteins will help our understanding of how cilia maintain specific protein pools strictly connected to their functions.
Collapse
Affiliation(s)
- Kasturi Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA.
| | - Ethan P Marin
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA
| |
Collapse
|
16
|
Hayashi F, Saito N, Tanimoto Y, Okada K, Morigaki K, Seno K, Maekawa S. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Commun Biol 2019; 2:209. [PMID: 31240247 PMCID: PMC6570657 DOI: 10.1038/s42003-019-0459-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disc membrane. Recent studies have suggested that rhodopsin forms highly ordered rows of dimers responsible for single-photon detection by rod photoreceptors. Dimerization is also known to confer to rhodopsin a high affinity for ordered lipids (raftophilicity). However, the role of rhodopsin organization and its raftophilicity in phototransduction remains obscure, owing to the lack of direct observation of rhodopsin dynamics and distribution in native discs. Here, we explore the single-molecule and semi-multimolecule behaviour of rhodopsin in native discs. Rhodopsin forms transient meso-scale clusters, even in darkness, which are loosely confined to the disc centre. Cognate G protein transducin co-distributes with rhodopsin, and exhibits lateral translocation to the disc periphery upon activation. We demonstrate that rhodopsin offers inherently distributed and stochastic platforms for G protein signalling by self-organizing raftophilic clusters, which continually repeat generation/extinction in the disc membrane.
Collapse
Affiliation(s)
- Fumio Hayashi
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Natsumi Saito
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Yasushi Tanimoto
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keisuke Okada
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Kenichi Morigaki
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keiji Seno
- Faculty of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
- International Mass Imaging Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Shohei Maekawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
17
|
Complex Structural PPT1 Variant Associated with Non-syndromic Canine Retinal Degeneration. G3-GENES GENOMES GENETICS 2019; 9:425-437. [PMID: 30541930 PMCID: PMC6385984 DOI: 10.1534/g3.118.200859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rod and cone photoreceptors are specialized retinal neurons that have a fundamental role in visual perception, capturing light and transducing it into a neuronal signal. Aberrant functioning of rod and/or cone photoreceptors can ultimately lead to progressive degeneration and eventually blindness. In man, many rod and rod-cone degenerative diseases are classified as forms of retinitis pigmentosa (RP). Dogs also have a comparable disease grouping termed progressive retinal atrophy (PRA). These diseases are generally due to single gene defects and follow Mendelian inheritance.We collected 51 DNA samples from Miniature Schnauzers affected by PRA (average age of diagnosis ∼3.9 ±1 years), as well as from 56 clinically normal controls of the same breed (average age ∼6.6 ±2.8 years). Pedigree analysis suggested monogenic autosomal recessive inheritance of PRA. GWAS and homozygosity mapping defined a critical interval in the first 4,796,806 bp of CFA15. Whole genome sequencing of two affected cases, a carrier and a control identified two candidate variants within the critical interval. One was an intronic SNV in HIVEP3, and the other was a complex structural variant consisting of the duplication of exon 5 of the PPT1 gene along with a conversion and insertion (named PPT1dci). PPT1dci was confirmed homozygous in a cohort of 22 cases, and 12 more cases were homozygous for the CFA15 haplotype. Additionally, the variant was found homozygous in 6 non-affected dogs of age higher than the average age of onset. The HIVEP3 variant was found heterozygous (n = 4) and homozygous wild-type (n = 1) in cases either homozygous for PPT1dci or for the mapped CFA15 haplotype. We detected the wildtype and three aberrant PPT1 transcripts in isolated white blood cell mRNA extracted from a PRA case homozygous for PPT1dci, and the aberrant transcripts involved inclusion of the duplicated exon 5 and novel exons following the activation of cryptic splice sites. No neurological signs were detected among the dogs homozygous for the PPT1dci variant. Therefore, we propose PPT1dci as causative for a non-syndromic form of PRA (PRAPPT1) that shows incomplete penetrance in Miniature Schnauzers, potentially related to the presence of the wild-type transcript. To our knowledge, this is the first case of isolated retinal degeneration associated with a PPT1 variant.
Collapse
|
18
|
Rajagopal N, Irudayanathan FJ, Nangia S. Palmitoylation of Claudin-5 Proteins Influences Their Lipid Domain Affinity and Tight Junction Assembly at the Blood–Brain Barrier Interface. J Phys Chem B 2019; 123:983-993. [DOI: 10.1021/acs.jpcb.8b09535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse 13244, United States
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse 13244, United States
| |
Collapse
|
19
|
Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2012-2017. [DOI: 10.1016/j.bbamem.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 12/19/2022]
|
20
|
Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine 2018; 109:72-75. [DOI: 10.1016/j.cyto.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 01/23/2023]
|
21
|
Chen B, Sun Y, Niu J, Jarugumilli GK, Wu X. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities. Cell Chem Biol 2018; 25:817-831. [PMID: 29861273 PMCID: PMC6054547 DOI: 10.1016/j.chembiol.2018.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Protein lipidation is an important co- or posttranslational modification in which lipid moieties are covalently attached to proteins. Lipidation markedly increases the hydrophobicity of proteins, resulting in changes to their conformation, stability, membrane association, localization, trafficking, and binding affinity to their co-factors. Various lipids and lipid metabolites serve as protein lipidation moieties. The intracellular concentrations of these lipids and their derivatives are tightly regulated by cellular metabolism. Therefore, protein lipidation links the output of cellular metabolism to the regulation of protein function. Importantly, deregulation of protein lipidation has been linked to various diseases, including neurological disorders, metabolic diseases, and cancers. In this review, we highlight recent progress in our understanding of protein lipidation, in particular, S-palmitoylation and lysine fatty acylation, and we describe the importance of these modifications for protein regulation, cell signaling, and diseases. We further highlight opportunities and new strategies for targeting protein lipidation for therapeutic applications.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Jixiao Niu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, 149, 13th St., Charlestown, MA 02129, USA.
| |
Collapse
|