1
|
Sun J, Chen X, Ruan Y, Xu J, Xu H. MEF2A promoter methylation negatively regulates mRNA transcription and affects myoblast physiological function in cattle. Genomics 2025; 117:111016. [PMID: 40024578 DOI: 10.1016/j.ygeno.2025.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the regulatory effects of methylation in the promoter region of the bovine MEF2A gene on its transcription levels and the impact on bovine myoblasts. Transcription levels and promoter methylation status of MEF2A in the same tissues of calves and adult cattle were assessed using qRT-PCR and BSP methods. The results indicated that MEF2A expression levels in calves were significantly lower than those in adult cattle (P < 0.05), while the methylation rate of MEF2A was significantly higher in calves (P < 0.05), suggesting a correlation between high methylation levels and reduced gene expression. Subsequently, MEF2A overexpression and interference vectors were transfected into bovine myoblasts to examine the effects of altered MEF2A expression on its promoter methylation status. The findings revealed that MEF2A overexpression significantly reduced the methylation rate (P < 0.01), whereas MEF2A interference increased the methylation rate (P < 0.01), aligning with the expression trends of DNMT1. Furthermore, bovine myoblasts were treated with varying concentrations of the methylation inhibitor 5-Aza-dC to evaluate changes in MEF2A promoter methylation and mRNA levels. The effects on cell cycle progression, apoptosis, and other growth parameters were assessed using flow cytometry, ELISA, and qRT-PCR. Results showed that a concentration of 1 μM 5-Aza-dC effectively reduced MEF2A promoter methylation and significantly upregulated MEF2A expression, leading to accelerated cell cycle progression and increased secretion levels of GH and INS, all differences being statistically significant (P < 0.01). Additionally, 1 μM of 5-Aza-dC promoted apoptosis, with qRT-PCR results for relevant genes supporting this finding. In conclusion, methylation of the MEF2A promoter negatively regulates its mRNA transcription levels, thereby impacting the growth and development of Guanling cattle myoblasts. These results provide valuable insights for the genetic improvement of cattle through marker-assisted selection.
Collapse
Affiliation(s)
- Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Steiman S, Miyake T, McDermott JC. FoxP1 Represses MEF2A in Striated Muscle. Mol Cell Biol 2024; 44:57-71. [PMID: 38483114 PMCID: PMC10950271 DOI: 10.1080/10985549.2024.2323959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024] Open
Abstract
Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Sydney Steiman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - John C. McDermott
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Li Y, Zhou T, Zhuang J, Dai Y, Zhang X, Bai S, Zhao B, Tang X, Wu X, Chen Y. Effects of feeding restriction on skeletal muscle development and functional analysis of TNNI1 in New Zealand white rabbits. Anim Biotechnol 2023; 34:4435-4447. [PMID: 36520026 DOI: 10.1080/10495398.2022.2155662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While restricting nutrition can improve diseases related to the digestive tract, excessive restriction of food intake can also lead to malnutrition and delayed physical growth. Therefore, this brings the demand to study the effect and potential mechanism of restricted feeding on skeletal muscle development in rabbits. This study utilized hematoxylin-eosin (HE) staining to detect muscle fiber area which depicted significant reduction in skeletal muscle fiber upon 30% feed restriction (p < 0.05). The control group and 30% feed restricted group showed 615 deferentially expressed genes (DEGs). Through the GO and KEGG functional enrichment analysis demonstrated 28 DEGs related to muscle development. KEGG analysis showed enrichment of pathways including PI3K/Akt signaling pathway, MAPK signaling pathway, and Hedgehog signaling pathway. Further, the full length of troponin I1, slow skeletal type (TNNI1) was cloned. We studied the expression of skeletal muscle differentiation-related genes such as MyoD, Myf5 gene and Desmin. Specifically, the TNNI1 gene overexpression and knockdown studies were conducted. The over-expression of TNNI1 significantly enhanced the expression of the skeletal muscle development-related genes. Contrastingly, the silencing of TNNI1 gene reduced the expression significantly. These findings showed that TNNI1 may be a regulator for regulating the expression of muscle development-related genes.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Junyi Zhuang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xianwei Tang
- Jiangsu Pizhou Orient Breeding Co., Ltd, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
4
|
Wei D, Wang J, Jiupan Z, Khan R, Abbas Raza SH, Yaping S, Chao J, Ayari-Akkari A, Ahmed DAEM. Roles of MEF2A and HOXA5 in the transcriptional regulation of the bovine FoxO1 gene. Anim Biotechnol 2023; 34:4367-4379. [PMID: 36449378 DOI: 10.1080/10495398.2022.2150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Forkhead box factor 1 (FoxO1) gene plays a vital role in the growth and development of skeletal muscle. In the present study, expression analysis of the bovine FoxO1 gene exhibited the highest expression in longissimus dorsi muscle followed by its expression in adipose tissue. Moreover, high mRNA expression of FoxO1 gene was found in differentiated bovine myoblasts and adipocytes at day 6 of induced differentiation (p < 0.05). The regulatory pattern of the bovine FoxO1 gene was investigated through screening and dual-luciferase activity of the 1.7 kb 5'UTR (untranslated region) within pGL3-basic vector and a core promoter region was explored at (-285/-27) upstream of the transcription start site. The transcription factors (TFs) MEF2A and HOXA5 within the core promoter region (-285/-27) were found as the regulatory cis-acting element. The siRNA interference of the TFs, chromatin immunoprecipitation (ChIP) assay, and site-directed mutation validated that MEF2A and HOXA5 binding occurs in the region -285/-27 bp and performs an essential role in the transcriptional regulation of bovine FoxO1 gene. These findings explored the regulatory network mechanism of the FoxO1 gene in skeletal muscle development and adipogenesis for the bovine breed improvement program.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jin Wang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhang Jiupan
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Rajwali Khan
- Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | | | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dalia Abd El Moneim Ahmed
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Sun J, Ruan Y, Xu J, Shi P, Xu H. Effect of Bovine MEF2A Gene Expression on Proliferation and Apoptosis of Myoblast Cells. Genes (Basel) 2023; 14:1498. [PMID: 37510401 PMCID: PMC10379155 DOI: 10.3390/genes14071498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Myocyte enhancer factor 2A (MEF2A) is a member of the myocyte enhancer factor 2 family. MEF2A is widely distributed in various tissues and organs and participates in various physiological processes. This study aimed to investigate the effect of MEF2A expression on the proliferation and apoptosis of bovine myoblasts. CCK8, ELISA, cell cycle, and apoptosis analyses were conducted to assess cell status. In addition, the mRNA expression levels of genes associated with bovine myoblast proliferation and apoptosis were evaluated using RT-qPCR. The results showed that the upregulation of MEF2A mRNA promoted the proliferation rate of myoblasts, shortened the cycle process, and increased the anti-apoptotic rate. Furthermore, the RT-qPCR results showed that the upregulation of MEF2A mRNA significantly increased the cell proliferation factors MyoD1 and IGF1, cell cycle factors CDK2 and CCNA2, and the apoptotic factors Bcl2 and BAD (p < 0.01). These results show that the MEF2A gene can positively regulate myoblast proliferation and anti-apoptosis, providing a basis for the analysis of the regulatory mechanism of the MEF2A gene on bovine growth and development.
Collapse
Affiliation(s)
- Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Oliveros W, Delfosse K, Lato DF, Kiriakopulos K, Mokhtaridoost M, Said A, McMurray BJ, Browning JW, Mattioli K, Meng G, Ellis J, Mital S, Melé M, Maass PG. Systematic characterization of regulatory variants of blood pressure genes. CELL GENOMICS 2023; 3:100330. [PMID: 37492106 PMCID: PMC10363820 DOI: 10.1016/j.xgen.2023.100330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 07/27/2023]
Abstract
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and cardiomyocytes by massively parallel reporter assays. High densities of regulatory variants at BP loci (i.e., ULK4, MAP4, CFDP1, PDE5A) indicate that multiple variants drive genetic association. Regulatory variants are enriched in repeats, alter cardiovascular-related transcription factor motifs, and spatially converge with genes controlling specific cardiovascular pathways. Using heuristic scoring, we define likely causal variants, and CRISPR prime editing finally determines causal variants for KCNK9, SFXN2, and PCGF6, which are candidates for developing high BP. Our systems-level approach provides a catalog of functionally relevant variants and their genomic architecture in two trait-relevant cell lines for a better understanding of BP gene regulation.
Collapse
Affiliation(s)
- Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Kate Delfosse
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniella F. Lato
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Katerina Kiriakopulos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Milad Mokhtaridoost
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Abdelrahman Said
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brandon J. McMurray
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jared W.L. Browning
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guoliang Meng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Ellis
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Philipp G. Maass
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
DiLorenzo MP, Grosse-Wortmann L. Myocardial Fibrosis in Congenital Heart Disease and the Role of MRI. Radiol Cardiothorac Imaging 2023; 5:e220255. [PMID: 37404787 PMCID: PMC10316299 DOI: 10.1148/ryct.220255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
Progress in the field of congenital heart surgery over the last century can only be described as revolutionary. Recent improvements in patient outcomes have been achieved through refinements in perioperative care. In the current and future eras, the preservation and restoration of myocardial health, beginning with the monitoring of tissue remodeling, will be central to improving cardiac outcomes. Visualization and quantification of fibrotic myocardial remodeling is one of the greatest assets that cardiac MRI brings to the field of cardiology, and its clinical use within the field of congenital heart disease (CHD) has been an area of particular interest in the last few decades. This review summarizes the physical underpinnings of myocardial tissue characterization in CHD, with an emphasis on T1 parametric mapping and late gadolinium enhancement. It describes methods and suggestions for obtaining images, extracting quantitative and qualitative data, and interpreting the results for children and adults with CHD. The tissue characterization observed in different lesions is used to examine the causes and pathomechanisms of fibrotic remodeling in this population. Similarly, the clinical consequences of elevated imaging biomarkers of fibrosis on patient health and outcomes are explored. Keywords: Pediatrics, MR Imaging, Cardiac, Heart, Congenital, Tissue Characterization, Congenital Heart Disease, Cardiac MRI, Parametric Mapping, Fibrosis, Late Gadolinium Enhancement © RSNA, 2023.
Collapse
|
8
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
9
|
Liu B, Pang L, Ji Y, Fang L, Tian CW, Chen J, Chen C, Zhong Y, Ou WC, Xiong Y, Liu SM. MEF2A Is the Trigger of Resveratrol Exerting Protection on Vascular Endothelial Cell. Front Cardiovasc Med 2022; 8:775392. [PMID: 35047575 PMCID: PMC8762055 DOI: 10.3389/fcvm.2021.775392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Both resveratrol and myocyte enhancer factor 2A (MEF2A) may protect vascular endothelial cell (VEC) through activating the expression of SIRT1. However, the relationship between resveratrol and MEF2A is unclear. We aimed to investigate the deeper mechanism of resveratrol in protecting vascular endothelial cells and whether MEF2A plays a key role in the protective function of resveratrol. Human umbilical vein endothelial cell (HUVEC) was used for in vitro study, and small interfere RNA was used for silencing MEF2A. Silencing MEF2A in the vascular endothelium (VE) of ApoE−/− mice was performed by tail injection with adeno associated virus expressing si-mef2a-shRNA. The results showed that treatment of HUVEC with resveratrol significantly up-regulated MEF2A, and prevented H2O2-induced but not siRNA-induced down-regulation of MEF2A. Under various experimental conditions, the expression of SIRT1 changed with the level of MEF2A. Resveratrol could rescue from cell apoptosis, reduction of cell proliferation and viability induced by H2O2, but could not prevent against that caused by silencing MEF2A with siRNA. Silencing MEF2A in VE of apoE−/− mice decreased the expression of SIRT1, increased the plasma LDL-c, and abrogated the function of resveratrol on reducing triglyceride. Impaired integrity of VE and aggravated atherosclerotic lesion were observed in MEF2A silenced mice through immunofluorescence and oil red O staining, respectively. In conclusion, resveratrol enhances MEF2A expression, and the upregulation of MEF2A is required for the endothelial protective benefits of resveratrol in vitro via activating SIRT1. Our work has also explored the in vivo relevance of this signaling pathway in experimental models of atherosclerosis and lipid dysregulation, setting the stage for more comprehensive phenotyping in vivo and further defining the molecular mechanisms.
Collapse
Affiliation(s)
- Benrong Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lihua Pang
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Ji
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Fang
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao Wei Tian
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of General Practice, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Chen
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Changnong Chen
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun Zhong
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen-Chao Ou
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujuan Xiong
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi Ming Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liu B, Ou WC, Fang L, Tian CW, Xiong Y. Myocyte Enhancer Factor 2A Plays a Central Role in the Regulatory Networks of Cellular Physiopathology. Aging Dis 2022; 14:331-349. [PMID: 37008050 PMCID: PMC10017154 DOI: 10.14336/ad.2022.0825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Cell regulatory networks are the determinants of cellular homeostasis. Any alteration to these networks results in the disturbance of cellular homeostasis and induces cells towards different fates. Myocyte enhancer factor 2A (MEF2A) is one of four members of the MEF2 family of transcription factors (MEF2A-D). MEF2A is highly expressed in all tissues and is involved in many cell regulatory networks including growth, differentiation, survival and death. It is also necessary for heart development, myogenesis, neuronal development and differentiation. In addition, many other important functions of MEF2A have been reported. Recent studies have shown that MEF2A can regulate different, and sometimes even mutually exclusive cellular events. How MEF2A regulates opposing cellular life processes is an interesting topic and worthy of further exploration. Here, we reviewed almost all MEF2A research papers published in English and summarized them into three main sections: 1) the association of genetic variants in MEF2A with cardiovascular disease, 2) the physiopathological functions of MEF2A, and 3) the regulation of MEF2A activity and its regulatory targets. In summary, multiple regulatory patterns for MEF2A activity and a variety of co-factors cause its transcriptional activity to switch to different target genes, thereby regulating opposing cell life processes. The association of MEF2A with numerous signaling molecules establishes a central role for MEF2A in the regulatory network of cellular physiopathology.
Collapse
Affiliation(s)
- Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| | - Wen-Chao Ou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Lei Fang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Chao-Wei Tian
- General Practice, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yujuan Xiong
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Correspondence should be addressed to: Dr. Benrong Liu, the Second Affiliated Hospital, Guangzhou Medical University, Guangdong, China. E-mail: ; or Yujuan Xiong, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China. .
| |
Collapse
|
11
|
Luo H, Zhang Y, Deng Y, Li L, Sheng Z, Yu Y, Lin Y, Chen X, Feng P. Nxhl Controls Angiogenesis by Targeting VE-PTP Through Interaction With Nucleolin. Front Cell Dev Biol 2021; 9:728821. [PMID: 34733844 PMCID: PMC8558974 DOI: 10.3389/fcell.2021.728821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Precise regulation of angiogenesis is required for organ development, wound repair, and tumor progression. Here, we identified a novel gene, nxhl (New XingHuo light), that is conserved in vertebrates and that plays a crucial role in vascular integrity and angiogenesis. Bioinformatic analysis uncovered its essential roles in development based on co-expression with several key developmental genes. Knockdown of nxhl in zebrafish causes global and pericardial edema, loss of blood circulation, and vascular defects characterized by both reduced vascularization in intersegmental vessels and decreased sprouting in the caudal vein plexus. The nxhl gene also affects human endothelial cell behavior in vitro. We found that nxhl functions in part by targeting VE-PTP through interaction with NCL (nucleolin). Loss of ptprb (a VE-PTP ortholo) in zebrafish resulted in defects similar to nxhl knockdown. Moreover, nxhl deficiency attenuates tumor invasion and proteins (including VE-PTP and NCL) associated with angiogenesis and EMT. These findings illustrate that nxhl can regulate angiogenesis via a novel nxhl-NCL-VE-PTP axis, providing a new therapeutic target for modulating vascular formation and function, especially for cancer treatment.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yanfei Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoan Sheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanling Yu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
12
|
Abstract
Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew T Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA. .,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Yuan Y, Deng Q, Wei X, Liu Y, Lan Q, Jiang Y, Yu Y, Guo P, Xu J, Yu C, Han L, Cheng M, Wu P, Zhang X, Lai Y, Volpe G, Esteban MA, Yang H, Liu C, Liu L. The Chromatin Accessibility Landscape of Adult Rat. Front Genet 2021; 12:651604. [PMID: 34108989 PMCID: PMC8181391 DOI: 10.3389/fgene.2021.651604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yue Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Xiaoyu Wei
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Yu Jiang
- First Hospital, Jilin University, Changchun, China
| | - Yeya Yu
- BGI-Shenzhen, Shenzhen, China.,BGI College, Zhengzhou University, Zhengzhou, China
| | - Pengcheng Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiangshan Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miguel A Esteban
- BGI-Shenzhen, Shenzhen, China.,First Hospital, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China.,Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
14
|
Zhang C, Li J, Li H, Wang G, Wang Q, Zhang X, Li B, Xu H. lncRNA MIR155HG Accelerates the Progression of Sepsis via Upregulating MEF2A by Sponging miR-194-5p. DNA Cell Biol 2021; 40:811-820. [PMID: 34030477 DOI: 10.1089/dna.2021.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNA MIR155HG exerts important effects in the progression of multiple diseases. This study investigated the functions of MIR155HG in sepsis development. Blood samples were collected from 28 patients with sepsis and 28 without sepsis. The murine cardiac muscle cell line (HL-1) and macrophage cell line (RAW 264.7) treated with lipopolysaccharide (LPS) were used as the in vitro sepsis models. The levels of MIR155HG, miR-194-5p, and MEF2A were determined using real-time-quantitative polymerase chain reaction. Cell counting kit-8 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays were used to assess cell viability and apoptosis, respectively. The association between miR-194-5p and MIR155HG or MEF2A was confirmed using a dual-luciferase reporter assay. The levels of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). In this study, we demonstrated that MIR155HG expression was significantly increased in sepsis blood samples, RAW 264.7, and HL-1 cells treated with LPS. Silencing of MIR155HG promoted cell viability and obstructed cell apoptosis and inflammation of RAW 264.7 and HL-1 cells treated with LPS. MiR-194-5p depletion abrogated cell viability promotion and suppressive effect on cell apoptosis and inflammation caused by MIR155HG knockdown. In addition, MIR155HG upregulated MEF2A through interaction with miR-194-5p. Finally, rescue assays indicated that MEF2A overexpression abolished the inhibitory effect on sepsis progression induced by MIR155HG deletion. In conclusion, MIR155HG promotes sepsis progression in an in vitro sepsis model by modulating the miR-194-5p/MEF2A axis. This discovery provides a promising biomarker for sepsis therapy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hongjing Li
- Department of Pneumoconiosis, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Guiling Wang
- Department of Rehabilitation, Huai'an Hongze District Hospital of Traditional Chinese Medicine, Huai'an, P.R. China
| | - Qingqing Wang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Xin Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Baiteng Li
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Haixu Xu
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| |
Collapse
|
15
|
Identification of Novel Targets of RBM5 in the Healthy and Injured Brain. Neuroscience 2020; 440:299-315. [PMID: 32335213 DOI: 10.1016/j.neuroscience.2020.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022]
Abstract
The tumor suppressor RNA-binding motif 5 (RBM5) regulates the expression levels and cassette exon-definition (i.e. splicing) of a select set of mRNAs in a tissue-specific manner. Most RBM5-regulated targets were identified in oncological investigations and frequently involve genes which mediate apoptotic cell death. Little is known about the role of RBM5 in the brain. Also, it is unclear if a brain injury may be required to detect RBM5 mediated effects on pro-apoptotic genes due to their low expression levels in the healthy adult CNS at baseline. Conditional/floxed (brain-specific) gene deleter mice were generated to elucidate CNS-specific RBM5 mRNA targets. Male/female mice were subjected to a severe controlled cortical impact (CCI) traumatic brain injury (TBI) in order to increase the background expression of pro-death mRNAs and facilitate testing of the hypothesis that RBM5 inhibition decreases post-injury upregulation of caspases/FAS in the CNS. As expected, a CCI increased caspases/FAS mRNA in the injured cortex. RBM5 KO did not affect their levels or splicing. Surprisingly, KO increased the mRNA levels of novel targets including casein kinase 2 alpha prime interacting protein (Csnka2ip/CKT2) - a gene not thought to be expressed in the brain, contrary to findings here. Twenty-two unique splicing events were also detected in KOs including increased block-inclusion of cassette exons 20-22 in regulating synaptic membrane exocytosis 2 (Rims2). In conclusion, here we used genome-wide transcriptomic analysis on healthy and injured RBM5 KO mouse brain tissue to elucidate the first known gene targets of this enigmatic RBP in this CNS.
Collapse
|
16
|
Akerberg BN, Gu F, VanDusen NJ, Zhang X, Dong R, Li K, Zhang B, Zhou B, Sethi I, Ma Q, Wasson L, Wen T, Liu J, Dong K, Conlon FL, Zhou J, Yuan GC, Zhou P, Pu WT. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat Commun 2019; 10:4907. [PMID: 31659164 PMCID: PMC6817842 DOI: 10.1038/s41467-019-12812-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
Mapping the chromatin occupancy of transcription factors (TFs) is a key step in deciphering developmental transcriptional programs. Here we use biotinylated knockin alleles of seven key cardiac TFs (GATA4, NKX2-5, MEF2A, MEF2C, SRF, TBX5, TEAD1) to sensitively and reproducibly map their genome-wide occupancy in the fetal and adult mouse heart. These maps show that TF occupancy is dynamic between developmental stages and that multiple TFs often collaboratively occupy the same chromatin region through indirect cooperativity. Multi-TF regions exhibit features of functional regulatory elements, including evolutionary conservation, chromatin accessibility, and activity in transcriptional enhancer assays. H3K27ac, a feature of many enhancers, incompletely overlaps multi-TF regions, and multi-TF regions lacking H3K27ac retain conservation and enhancer activity. TEAD1 is a core component of the cardiac transcriptional network, co-occupying cardiac regulatory regions and controlling cardiomyocyte-specific gene functions. Our study provides a resource for deciphering the cardiac transcriptional regulatory network and gaining insights into the molecular mechanisms governing heart development.
Collapse
Affiliation(s)
- Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Fei Gu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Alibaba Cloud Intelligence Business Group, Alibaba Group, 311121, Hangzhou, China
| | - Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xiaoran Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rui Dong
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Kai Li
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Bing Zhang
- Xin Hua Hospital, Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bin Zhou
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, 200031, Shanghai, China
| | - Isha Sethi
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Lauren Wasson
- Biology Department, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Jinhua Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Kunzhe Dong
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Frank L Conlon
- Biology Department, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Wu Y, Zhang J, Wang M, Yang L, Wang Y, Hu T, Liu A, Cheng Q, Fu Z, Zhang P, Cao L. Proteomics analysis indicated the protein expression pattern related to the development of fetal conotruncal defects. J Cell Physiol 2019; 234:13544-13556. [PMID: 30635921 DOI: 10.1002/jcp.28033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Abnormal development of embryonic conus arteriosus could lead to conotruncal defects in fetal heart, and increase the incidence of fetal congenital heart disease. Tetralogy of Fallot (TOF) is one of the most common forms of congenital heart disease. It may be helpful for us to solve this clinical problem through exploring the molecular mechanisms of development in embryonic congenital heart disease. Proteomics has attracted much attention in understanding the development of human diseases during the past decades. However, there is still little information about the relationship between protein expression pattern and TOF. In this study, we aimed to explore the potential linkage of proteomics and TOF development. Briefly, 121 differentially expressed proteins were identified from a TOF group, compared with a control group. The expression levels of 34 of these proteins were significantly different (>1.5 absolute fold change, p < 0.05) between the two groups. Gene ontology (GO) and pathway analysis showed that these proteins were mainly associated with carbon metabolism, biosynthesis of antibodies, positive regulation of transcription from RNA polymerase II promoter, nucleus, ATP binding, and so on. The ingenuity pathway analysis (IPA) results indicated that 435 of upstream regulators were identified of these differentially expressed proteins, which might be involved in the development of TOF. Data of string analysis showed the protein-protein interaction network among the differentially expressed proteins and regulators, which are related to TOF. In conclusion, our study explored the protein expression pattern of TOF, which might provide new insights into understanding the mechanism of TOF development and afford potential targets for TOF diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Wu
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mei Wang
- Department of Pathology, Nanjing Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Yang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yongmei Wang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tao Hu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - An Liu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qing Cheng
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ziyi Fu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pingyang Zhang
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
18
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|