1
|
Tyibilika V, Setati ME, Bloem A, Divol B, Camarasa C. Exploring fermentative metabolic response to varying exogenous supplies of redox cofactor precursors in selected wine yeast species. FEMS Yeast Res 2024; 24:foae029. [PMID: 39375837 PMCID: PMC11503943 DOI: 10.1093/femsyr/foae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024] Open
Abstract
The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.
Collapse
Affiliation(s)
- Viwe Tyibilika
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Audrey Bloem
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Carole Camarasa
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
2
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
3
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Groth B, Huang CC, Lin SJ. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD + metabolism in the budding yeast Saccharomyces cerevisiae. J Biol Chem 2022; 298:102410. [PMID: 36007612 PMCID: PMC9486569 DOI: 10.1016/j.jbc.2022.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
NAD+ is a cellular redox cofactor involved in many essential processes. The regulation of NAD+ metabolism and the signaling networks reciprocally interacting with NAD+-producing metabolic pathways are not yet fully understood. The NAD+-dependent histone deacetylase (HDAC) Hst1 has been shown to inhibit de novo NAD+ synthesis by repressing biosynthesis of nicotinic acid (BNA) gene expression. Here, we alternatively identify HDAC Rpd3 as a positive regulator of de novo NAD+ metabolism in the budding yeast Saccharomyces cerevisiae. We reveal that deletion of RPD3 causes marked decreases in the production of de novo pathway metabolites, in direct contrast to deletion of HST1. We determined the BNA expression profiles of rpd3Δ and hst1Δ cells to be similarly opposed, suggesting the two HDACs may regulate the BNA genes in an antagonistic fashion. Our chromatin immunoprecipitation analysis revealed that Rpd3 and Hst1 mutually influence each other’s binding distribution at the BNA2 promoter. We demonstrate Hst1 to be the main deacetylase active at the BNA2 promoter, with hst1Δ cells displaying increased acetylation of the N-terminal tail lysine residues of histone H4, H4K5, and H4K12. Conversely, we show that deletion of RPD3 reduces the acetylation of these residues in an Hst1-dependent manner. This suggests that Rpd3 may function to oppose spreading of Hst1-dependent heterochromatin and represents a unique form of antagonism between HDACs in regulating gene expression. Moreover, we found that Rpd3 and Hst1 also coregulate additional targets involved in other branches of NAD+ metabolism. These findings help elucidate the complex interconnections involved in effecting the regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
5
|
Odoh CK, Guo X, Arnone JT, Wang X, Zhao ZK. The role of NAD and NAD precursors on longevity and lifespan modulation in the budding yeast, Saccharomyces cerevisiae. Biogerontology 2022; 23:169-199. [PMID: 35260986 PMCID: PMC8904166 DOI: 10.1007/s10522-022-09958-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Molecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms. Besides being a molecule essential in all living cells, our understanding of the mechanism of NAD metabolism and its regulation remain incomplete owing to its omnipresent nature. Here we discuss recent advances and techniques in the study of chronological lifespan (CLS) and replicative lifespan (RLS) in the model unicellular organism Saccharomyces cerevisiae. We then follow with the mechanism and biology of NAD precursors and their roles in aging and longevity. Finally, we review potential biotechnological applications through engineering of microbial lifespan, and laid perspective on the promising candidature of alternative redox compounds for extending lifespan.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojia Guo
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - James T Arnone
- Department of Biology, William Paterson University, Wayne, NJ, 07470, USA
| | - Xueying Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| | - Zongbao K Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
| |
Collapse
|
6
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
7
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Jung TY, Ryu JE, Jang MM, Lee SY, Jin GR, Kim CW, Lee CY, Kim H, Kim E, Park S, Lee S, Lee C, Kim W, Kim T, Lee SY, Ju BG, Kim HS. Naa20, the catalytic subunit of NatB complex, contributes to hepatocellular carcinoma by regulating the LKB1-AMPK-mTOR axis. Exp Mol Med 2020; 52:1831-1844. [PMID: 33219302 PMCID: PMC8080711 DOI: 10.1038/s12276-020-00525-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
N-α-acetyltransferase 20 (Naa20), which is a catalytic subunit of the N-terminal acetyltransferase B (NatB) complex, has recently been reported to be implicated in hepatocellular carcinoma (HCC) progression and autophagy, but the underlying mechanism remains unclear. Here, we report that based on bioinformatic analysis of Gene Expression Omnibus and The Cancer Genome Atlas data sets, Naa20 expression is much higher in HCC tumors than in normal tissues, promoting oncogenic properties in HCC cells. Mechanistically, Naa20 inhibits the activity of AMP-activated protein kinase (AMPK) to promote the mammalian target of rapamycin signaling pathway, which contributes to cell proliferation, as well as autophagy, through its N-terminal acetyltransferase (NAT) activity. We further show that liver kinase B1 (LKB1), a major regulator of AMPK activity, can be N-terminally acetylated by NatB in vitro, but also probably by NatB and/or other members of the NAT family in vivo, which may have a negative effect on AMPK activity through downregulation of LKB1 phosphorylation at S428. Indeed, p-LKB1 (S428) and p-AMPK levels are enhanced in Naa20-deficient cells, as well as in cells expressing the nonacetylated LKB1-MPE mutant; moreover, importantly, LKB1 deficiency reverses the molecular and cellular events driven by Naa20 knockdown. Taken together, our findings suggest that N-terminal acetylation of LKB1 by Naa20 may inhibit the LKB1-AMPK signaling pathway, which contributes to tumorigenesis and autophagy in HCC.
Collapse
Affiliation(s)
- Taek-Yeol Jung
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea.,Department of Life Science, College of Natural Science, Sogang University, Seoul, 04107, South Korea
| | - Jae-Eun Ryu
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Mi-Mi Jang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Soh-Yeon Lee
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Gyu-Rin Jin
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Chan-Woo Kim
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea.,Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Chae-Young Lee
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyelee Kim
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - EungHan Kim
- Department of Biochemistry, College of Natural Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Sera Park
- KaiPharm, Seoul, 03759, Republic of Korea
| | - Seonjeong Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea.,Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, South Korea
| | - Wankyu Kim
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea.,KaiPharm, Seoul, 03759, Republic of Korea
| | - TaeSoo Kim
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
| | - Soo-Young Lee
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
| | - Bong-Gun Ju
- Department of Life Science, College of Natural Science, Sogang University, Seoul, 04107, South Korea
| | - Hyun-Seok Kim
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea. .,Department of Bioinspired Science, Ewha Womans University, Seoul, 03760, South Korea. .,The Fluorescence Core Imaging Center, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
9
|
Wu S, Zhao P, Li Q, Tian P. Intensifying niacin-based biosynthesis of NAD + to enhance 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 2020; 43:223-234. [PMID: 32996029 DOI: 10.1007/s10529-020-03011-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Glycerol-based biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae involves two reactions: glycerol conversion to 3-hydroxypropionaldehyde (3-HPA) by glycerol dehydratase, and 3-HPA conversion to 3-HP by aldehyde dehydrogenase (ALDH). The ALDH catalysis consumes a lot of cofactor nicotinamide adenine dinucleotide (NAD+), which constrains 3-HP production. RESULTS Here we report that intensifying niacin-based biosynthesis of NAD+ can substantially enhance 3-HP production. We constructed tac promoter-driven NAD+ synthesis pathway in K. pneumoniae. The strain only overexpressing nicotinate phosphoribosyltransferase (PncB) showed 14.24% increase in the production of NAD+ relative to the stain harboring an empty vector. When PncB was coexpressed with PuuC (one of native ALDHs), the recombinant strain exhibited increased ALDH activity but slightly reduced 3-HP production due to plasmid burden. When 30 mg niacin l-1 (a substrate for biosynthesis of NAD+) was added into shake flask, the strain produced 0.55 g 3-HP l-1, which was 2.75 times that of the control. In a 5-L bioreactor, replenishment of niacin led to 36.43% increase of 3-HP production. CONCLUSIONS These results indicated that intensifying niacin-based biosynthesis of NAD+ boosts 3-HP production.
Collapse
Affiliation(s)
- Shimin Wu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
10
|
Wang S, Han J, Xia J, Hu Y, Shi L, Ren A, Zhu J, Zhao M. Overexpression of nicotinamide mononucleotide adenylyltransferase (nmnat) increases the growth rate, Ca 2+ concentration and cellulase production in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:7079-7091. [PMID: 32632475 DOI: 10.1007/s00253-020-10763-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Identifying new and economical means to utilize diverse lignocellulosic biomass is an urgent task. Ganoderma lucidum is a well-known edible and medicinal basidiomycete with an excellent ability to degrade a wide range of cellulosic biomass, and its nutrient use efficiency is closely related to the activity of extracellular cellulase. Intracellular nicotinamide adenine dinucleotide (NAD+) biosynthesis is controlled in response to nutritional status, and NAD+ is an essential metabolite involved in diverse cellular processes. Nicotinamide mononucleotide adenylyltransferase (NMNAT) is a common enzyme in three NAD+ synthesis pathways. In this study, a homologous gene of nmnat was cloned from G. lucidum and two G. lucidum overexpression strains, OE::nmnat4 and OE::nmnat19, were constructed using an Agrobacterium tumefaciens-mediated transformation method. The G. lucidum nmnat overexpression strains showed obviously increased colony growth on different carbon sources, and intracellular Ca2+ concentrations in the G. lucidum OE::nmnat4 and OE::nmnat19 strains were increased by 2.04- and 2.30-fold, respectively, compared with those in the wild-type (WT) strains. In the G. lucidum OE::nmnat4 and OE::nmnat19 strains, endo-β-glucanase (CMCase) activity increased by approximately 2.8- and 3-fold, while β-glucosidase (pNPGase) activity increased by approximately 1.9- and 2.1-fold, respectively, compared with the activity in the WT strains. Furthermore, overexpression of NAD+ synthesis pathways was found to elicit cellulase production by increasing the intracellular Ca2+ concentration. In summary, this study is the first to demonstrate that increased intracellular NAD+ contents through overexpression of the nmnat gene of NAD+ synthesis pathways may increase cellulase production by increasing intracellular Ca2+ concentrations in G. lucidum. KEY POINTS: • The concentration of NAD+influences cellulase production in G. lucidum. • The concentration of NAD+influences the intracellular Ca2+concentration in G. lucidum. • The concentration of NAD+influences cellulase production by eliciting a change in intracellular Ca2+in G. lucidum.
Collapse
Affiliation(s)
- Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jiale Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Croft T, Venkatakrishnan P, James Theoga Raj C, Groth B, Cater T, Salemi MR, Phinney B, Lin SJ. N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD + biosynthetic enzymes in Saccharomyces cerevisiae. J Biol Chem 2020; 295:7362-7375. [PMID: 32299909 PMCID: PMC7247314 DOI: 10.1074/jbc.ra119.011667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Trevor Croft
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Christol James Theoga Raj
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Michelle R Salemi
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Brett Phinney
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616.
| |
Collapse
|
12
|
Croft T, Venkatakrishnan P, Lin SJ. NAD + Metabolism and Regulation: Lessons From Yeast. Biomolecules 2020; 10:E330. [PMID: 32092906 PMCID: PMC7072712 DOI: 10.3390/biom10020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite involved in various cellular processes. The cellular NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human. NAD+ metabolism is an emerging therapeutic target for several human disorders including diabetes, cancer, and neuron degeneration. Factors regulating NAD+ homeostasis have remained incompletely understood due to the dynamic nature and complexity of NAD+ metabolism. Recent studies using the genetically tractable budding yeast Saccharomyces cerevisiae have identified novel NAD+ homeostasis factors. These findings help provide a molecular basis for how may NAD+ and NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function. Here we summarize major NAD+ biosynthesis pathways, selected cellular processes that closely connect with and contribute to NAD+ homeostasis, and regulation of NAD+ metabolism by nutrient-sensing signaling pathways. We also extend the discussions to include possible implications of NAD+ homeostasis factors in human disorders. Understanding the cross-regulation and interconnections of NAD+ precursors and associated cellular pathways will help elucidate the mechanisms of the complex regulation of NAD+ homeostasis. These studies may also contribute to the development of effective NAD+-based therapeutic strategies specific for different types of NAD+ deficiency related disorders.
Collapse
Affiliation(s)
| | | | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA; (T.C.); (P.V.)
| |
Collapse
|
13
|
Wang L, Liu B, Liu Y, Sun Y, Liu W, Yu D, Zhao ZK. Escherichia coli Strain Designed for Characterizing in Vivo Functions of Nicotinamide Adenine Dinucleotide Analogues. Org Lett 2019; 21:3218-3222. [PMID: 30995052 DOI: 10.1021/acs.orglett.9b00935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An Escherichia coli strain was constructed for the efficient import of nicotinamide adenine dinucleotide (NAD) analogues into cells by limiting extracellular degradation while expressing an efficient NAD importer. In vivo functions of three NAD analogues were characterized. Nicotinamide hypoxanthine dinucleotide was identified as an inhibitor of NAD synthesis. Nicotinamide cytosine dinucleotide had excellent biocompatibility and was used for characterizing a growth-dependent degradation of in vivo nicotinamide cofactors.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Bin Liu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Yuxue Liu
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| | - Yue Sun
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Wujun Liu
- Institute of Cancer Stem Cell , Dalian Medical University , Dalian 116044 , China
| | - Dayu Yu
- School of Chemical Engineering , Northeast Electric Power University , Jilin 132012 , China
| | - Zongbao K Zhao
- Division of Biotechnology , Dalian Institute of Chemical Physics , CAS, Dalian 116023 , China
| |
Collapse
|
14
|
James Theoga Raj C, Lin SJ. Cross-talk in NAD + metabolism: insights from Saccharomyces cerevisiae. Curr Genet 2019; 65:1113-1119. [PMID: 30993413 DOI: 10.1007/s00294-019-00972-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
NAD+ (nicotinamide adenine dinucleotide) is an essential metabolite involved in a myriad of cellular processes. The NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human with some species-specific differences. Studying the regulation of NAD+ metabolism has been difficult due to the dynamic flexibility of NAD+ intermediates, the redundancy of biosynthesis pathways, and the complex interconnections among them. The budding yeast Saccharomyces cerevisiae provides an efficient genetic model for the isolation and study of factors that regulate specific NAD+ biosynthesis pathways. A recent study has uncovered a putative cross-regulation between the de novo NAD+ biosynthesis and copper homeostasis mediated by a copper-sensing transcription factor Mac1. Mac1 appears to work with the Hst1-Sum1-Rfm1 complex to repress the expression of de novo NAD+ biosynthesis genes. Here, we extend the discussions to include additional nutrient- and stress-sensing pathways that have been associated with the regulation of NAD+ homeostasis. NAD+ metabolism is an emerging therapeutic target for several human diseases. NAD+ preservation also helps ameliorate age-associated metabolic disorders. Recent findings in yeast contribute to the understanding of the molecular basis underlying the cross-regulation of NAD+ metabolism and other signaling pathways.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Aksnes H, Ree R, Arnesen T. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases. Mol Cell 2019; 73:1097-1114. [PMID: 30878283 DOI: 10.1016/j.molcel.2019.02.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co-translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific; for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie-restriction-induced longevity and pathological α-synuclein aggregation in Parkinson's disease. Combined, the NATs rise as multifunctional proteins, and N-terminal acetylation is gaining recognition as a major cellular regulator.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Rasmus Ree
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
16
|
Pinson B, Ceschin J, Saint-Marc C, Daignan-Fornier B. Dual control of NAD + synthesis by purine metabolites in yeast. eLife 2019; 8:43808. [PMID: 30860478 PMCID: PMC6430606 DOI: 10.7554/elife.43808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.
Collapse
Affiliation(s)
- Benoît Pinson
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Johanna Ceschin
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Christelle Saint-Marc
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | | |
Collapse
|
17
|
James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin SJ. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD + biosynthesis in budding yeast. J Biol Chem 2019; 294:5562-5575. [PMID: 30760525 DOI: 10.1074/jbc.ra118.006987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Trevor Croft
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Gagandeep Dhugga
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|