1
|
Tan L, Zhang Y, Liu P, Wu Y, Huang Z, Hu Z, Liu Z, Wang Y, Zheng Y. System metabolic engineering modification of Saccharomyces cerevisiae to increase SAM production. BIORESOUR BIOPROCESS 2025; 12:19. [PMID: 40072693 PMCID: PMC11904041 DOI: 10.1186/s40643-025-00858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
S-adenosyl-L-methionine (SAM) is an important compound with significant pharmaceutical and nutraceutical applications. Currently, microbial fermentation is dominant in SAM production, which remains challenging due to its complex biosynthetic pathway and insufficient precursor availability. In this study, a multimodule engineering strategy based on CRISPR/Cas9 was established to improve the SAM productivity of Saccharomyces cerevisiae. This strategy consists of (1) improving the growth of S. cerevisiae by overexpressing the hxk2 gene; (2) enhancing the metabolic flux toward SAM synthesis by upregulating the expression of the aat1, met17, and sam2 genes and weakening the synthesis pathway of L-threonine; (3) elevating precursor ATP synthesis by introducing the vgb gene; (4) blocking the SAM degradation pathway by knocking out the sah1 and spe2 genes. The SAM titer of the resulting mutant AU18 reached 1.87 g/L, representing an increase of 227.67% compared to the parental strain. With optimal medium, SAM titer of mutant AU18 reached 2.46 g/L in flask shake fermentation. The SAM titer of mutant AU18 further reached 13.96 g/L after 96 h incubation with a continuous L-Met feeding strategy in a 5 L fermenter. Therefore, with comprehensive optimization of both synthesis and degradation pathways of SAM, a multimodule strategy was established, which significantly elevated the SAM production of S. cerevisiae. This laid a foundation for the construction of hyperproducer for SAM and other valuable amino acids or chemicals.
Collapse
Affiliation(s)
- Liangzhuang Tan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuehan Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ping Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yihang Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zuoyu Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanshan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
2
|
Zhang X, Zheng Y, Zhou C, Cao J, Pan D, Cai Z, Wu Z, Xia Q. Comparative physiological and transcriptomic analysis of sono-biochemical control over post-acidification of Lactobacillus delbrueckii subsp. bulgaricus. Food Microbiol 2024; 122:104563. [PMID: 38839237 DOI: 10.1016/j.fm.2024.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China
| | - Jinxuan Cao
- School of Food and Health, China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China
| | - Zhendong Cai
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Tehlivets O, Almer G, Brunner MS, Lechleitner M, Sommer G, Kolb D, Leitinger G, Diwoky C, Wolinski H, Habisch H, Opriessnig P, Bogoni F, Pernitsch D, Kavertseva M, Bourgeois B, Kukilo J, Tehlivets YG, Schwarz AN, Züllig T, Bubalo V, Schauer S, Groselj-Strele A, Hoefler G, Rechberger GN, Herrmann M, Eller K, Rosenkranz AR, Madl T, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G. Homocysteine contributes to atherogenic transformation of the aorta in rabbits in the absence of hypercholesterolemia. Biomed Pharmacother 2024; 178:117244. [PMID: 39116783 DOI: 10.1016/j.biopha.2024.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Francesca Bogoni
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Dominique Pernitsch
- Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Maria Kavertseva
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Benjamin Bourgeois
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Jelena Kukilo
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Yuriy G Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Medical University of Graz, Graz, Austria
| | | | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome. Front Pharmacol 2024; 15:1410479. [PMID: 38919254 PMCID: PMC11196770 DOI: 10.3389/fphar.2024.1410479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
5
|
Obaseki E, Adebayo D, Bandyopadhyay S, Hariri H. Lipid droplets and fatty acid-induced lipotoxicity: in a nutshell. FEBS Lett 2024; 598:1207-1214. [PMID: 38281809 PMCID: PMC11126361 DOI: 10.1002/1873-3468.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Collapse
Affiliation(s)
- Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| |
Collapse
|
6
|
Wu C, Duan X, Wang X, Wang L. Advances in the role of epigenetics in homocysteine-related diseases. Epigenomics 2023; 15:769-795. [PMID: 37718931 DOI: 10.2217/epi-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Homocysteine has a wide range of biological effects. However, the specific molecular mechanism of its pathogenicity is still unclear. The diseases induced by hyperhomocysteinemia (HHcy) are called homocysteine-related diseases. Clinical treatment of HHcy is mainly through folic acid and B-complex vitamins, which are not effective in reducing the associated end point events. Epigenetics is the alteration of heritable genes caused by DNA methylation, histone modification, noncoding RNAs and chromatin remodeling without altering the DNA sequence. In recent years the role of epigenetics in homocysteine-associated diseases has been gradually discovered. This article summarizes the latest evidence on the role of epigenetics in HHcy, providing new directions for its prevention and treatment.
Collapse
Affiliation(s)
- Chengyan Wu
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xulei Duan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuehui Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Libo Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Kong L, Zhao H, Wang F, Zhang R, Yao X, Zuo R, Li J, Xu J, Qian Y, Kang Q, Fan C. Endocrine modulation of brain-skeleton axis driven by neural stem cell-derived perilipin 5 in the lipid metabolism homeostasis for bone regeneration. Mol Ther 2023; 31:1293-1312. [PMID: 36760127 PMCID: PMC10188646 DOI: 10.1016/j.ymthe.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Factors released from the nervous system always play crucial roles in modulating bone metabolism and regeneration. How the brain-driven endocrine axes maintain bone homeostasis, especially under metabolic disorders, remains obscure. Here, we found that neural stem cells (NSCs) residing in the subventricular zone participated in lipid metabolism homeostasis of regenerative bone through exosomal perilipin 5 (PLIN5). Fluorescence-labeled exosomes tracing and histological detection identified that NSC-derived exosomes (NSC-Exo) could travel from the lateral ventricle into bone injury sites. Homocysteine (Hcy) led to osteogenic and angiogenic impairment, whereas the NSC-Exo were confirmed to restore it. Mecobalamin, a clinically used neurotrophic drug, further enhanced the protective effects of NSC-Exo through increased PLIN5 expression. Mechanistically, NSC-derived PLIN5 reversed excessive Hcy-induced lipid metabolic imbalance and aberrant lipid droplet accumulation through lipophagy-dependent intracellular lipolysis. Intracerebroventricular administration of mecobalamin and/or AAV-shPlin5 confirmed the effects of PLIN5-driven endocrine modulations on new bone formation and vascular reconstruction in hyperhomocysteinemic and high-fat diet models. This study uncovered a novel brain-skeleton axis that NSCs in the mammalian brain modulated bone regeneration through PLIN5-driven lipid metabolism modulation, providing evidence for lipid- or bone-targeted medicine development.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haoyu Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rui Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
8
|
Shi L, Zhou J, Dong J, Gao F, Zhao W. Association of low-level blood lead with plasma homocysteine in US children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01526-7. [PMID: 37029846 DOI: 10.1007/s10653-023-01526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Although research in adults has revealed a positive relationship between blood lead levels (BLLs) and homocysteine (Hcy) levels in adults, few studies have investigated this relationship in children and adolescents. We evaluated the relationship between lowlevel blood lead and Hcy levels in US children and adolescents. A total of 8,313 children and adolescents aged 8-19 participated in this study via the National Health and Nutrition Examination Survey 1999-2006. Multivariable linear regression analyses were performed to examine the association between continuous BLLs and Hcy levels. The dose-dependent relationship between continuous BLLs and Hcy levels was analyzed using smooth curve fitting. The average age of participants was 14.1 ± 3.3 years (50.3% male). The mean values of BLLs and Hcy levels were 1.45 μg/dL and 5.77 μmol/L, respectively. In a multivariable adjusted model, an increase in 1.0 μg/dL of BLLs was associated with an elevation of 0.06 μmol/L in Hcy levels (β = 0.06, 95%CI:0.02-0.10, P = 0.001). A linear relationship between BLLs and Hcy levels was discovered using smooth curve fitting (P non-linearity = 0.464). The relationship between low-level blood lead and Hcy levels was stronger on participants with lower serum folate levels (P for interaction = 0.002). Low BLLs were positively associated with plasma Hcy levels in children and adolescents, which varies depending on the levels of folate, vitamin B, and dietary supplements involved in Hcy metabolism.
Collapse
Affiliation(s)
- Lingfei Shi
- Department of Geriatrics and Psychiatry, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jia Zhou
- Cancer Center, Gamma Knife Treatment Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jinjiang Dong
- Department of Neurosurgery, First People's Hospital of Chun'an City, Hangzhou, 311700, Zhejiang, China
| | - Faliang Gao
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Wenyan Zhao
- Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
9
|
Almer G, Opriessnig P, Wolinski H, Sommer G, Diwoky C, Lechleitner M, Kolb D, Bubalo V, Brunner MS, Schwarz AN, Leitinger G, Schoiswohl G, Marsche G, Niedrist T, Schauer S, Oswald W, Groselj-Strele A, Paar M, Cvirn G, Hoefler G, Rechberger GN, Herrmann M, Frank S, Holzapfel GA, Kratky D, Mangge H, Hörl G, Tehlivets O. Deficiency of B vitamins leads to cholesterol-independent atherogenic transformation of the aorta. Biomed Pharmacother 2022; 154:113640. [PMID: 36081286 PMCID: PMC7617128 DOI: 10.1016/j.biopha.2022.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022] Open
Abstract
Atherosclerosis, the leading cause of cardiovascular disease responsible for the majority of deaths worldwide, cannot be sufficiently explained by established risk factors, including hypercholesterolemia. Elevated plasma homocysteine is an independent risk factor for atherosclerosis and is strongly linked to cardiovascular mortality. However, the role of homocysteine in atherosclerosis is still insufficiently understood. Previous research in this area has been also hampered by the lack of reproducible in vivo models of atherosclerosis that resemble the human situation. Here, we have developed and applied an automated system for vessel wall injury that leads to more homogenous damage and more pronounced atherosclerotic plaque development, even at low balloon pressure. Our automated system helped to glean vital details of cholesterol-independent changes in the aortic wall of balloon-injured rabbits. We show that deficiency of B vitamins, which are required for homocysteine degradation, leads to atherogenic transformation of the aorta resulting in accumulation of macrophages and lipids, impairment of its biomechanical properties and disorganization of aortic collagen/elastin in the absence of hypercholesterolemia. A combination of B vitamin deficiency and hypercholesterolemia leads to thickening of the aorta, decreased aortic water diffusion, increased LDL-cholesterol and impaired vascular reactivity compared to any single condition. Our findings suggest that deficiency of B vitamins leads to atherogenic transformation of the aorta even in the absence of hypercholesterolemia and aggravates atherosclerosis development in its presence.
Collapse
Affiliation(s)
- Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Peter Opriessnig
- Division of General Neurology, Department of Neurology, Medical University of Graz, Graz, Austria; Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; Center for Medical Research, Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Vladimir Bubalo
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Markus S Brunner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Pharmacology, Medical University of Graz, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Wolfgang Oswald
- Department of Surgery, Clinical Division of Vascular Surgery, Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Center for Medical Research, Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Margret Paar
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Gerhard Cvirn
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria.
| | - Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. EMBO J 2022; 41:e109566. [PMID: 35762422 PMCID: PMC9340540 DOI: 10.15252/embj.2021109566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.
Collapse
Affiliation(s)
- Aniruddha Das
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Pankaj Thapa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Ulises Santiago
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Nilesh Shanmugam
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Katarzyna Banasiak
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Hendrik Nolte
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Present address:
Max‐Planck‐Institute for Biology of AgeingCologneGermany
| | - Natalia A Szulc
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Marcus Krüger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Marcin Nowotny
- Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Carlos J Camacho
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Wojciech Pokrzywa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
11
|
Jiang S, Liu Y, Li Y, Lu C, Venners SA. Associations of Two Common Polymorphisms in MTHFR Gene with Blood Lipids and Therapeutic Efficacy of Simvastatin. Curr Pharm Des 2022; 28:2167-2176. [PMID: 35747958 DOI: 10.2174/1381612828666220623102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Cardio-cerebrovascular disease is an important public health challenge worldwide, and its complex etiology has not been elucidated fully. The study was to investigate the relationship between two common polymorphisms C677T and A1298C in the methylenetetrahydrofolate reductase (MTHFR) gene, baseline lipids and the lipid-lowering efficacy of simvastatin in a Chinese hyperlipidemic population. METHODS All participants were recruited from Anhui, China. By the extreme sampling method, we selected subjects with low response (n=108) and high response (n=106) based on their adjusted lipid-lowering response to simvastatin administrated for 8 consecutive weeks. Both MTHFR C677T and A1298C loci were genotyped by MALDI-TOF MS platform. Serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured at baseline and after 8 weeks of oral 20 mg/d tablet of simvastatin. RESULTS Patients with the 677TT genotype had significantly higher baseline TC, HDL-C, and change in HDL-C (ΔHDL-C) levels after treatment than those with 677CC+CT genotypes (β = 0.207, P = 0.045; β = 0.182, P = 0.026; and β = 0.16, P = 0.002, respectively). Patients with 1298AC+CC genotypes had significantly higher baseline LDL-C and change in LDL-C (ΔLDL-C) levels (β = 0.276, P =0.043; β = 0.359, P = 0.025, respectively) than those with 1298AA genotype. We found statistical interactions between the two SNPs in association with baseline HDL-C (P for interaction = 0.034), TC (P for interaction = 0.069), and TG (P for interaction = 0.034). Baseline TC (P = 0.027) and HDL-C (P = 0.046) and change in HDL-C (P = 0.019) were different among those with the MTHFR A-T haplotype compared with A-C. CONCLUSIONS Our major findings suggest that both MTHFR C677T and A1298C polymorphisms could be important genetic determinants of lipid traits and drug efficacy of simvastatin. This will contribute to a better understanding of strategies for personalized medication in Chinese patients with dyslipidemia.
Collapse
Affiliation(s)
- Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yu Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Yajie Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Cuiping Lu
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
13
|
Naik AA, Sivaramakrishnan V. Femoral Head Osteonecrosis is associated with thrombosis, fatty acid and cholesterol biosynthesis: A potential role for anti-thrombotics and statins as disease modifying agents. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
15
|
Zee BM, Poels KE, Yao CH, Kawabata KC, Wu G, Duy C, Jacobus WD, Senior E, Endress JE, Jambhekar A, Lovitch SB, Ma J, Dhall A, Harris IS, Blanco MA, Sykes DB, Licht JD, Weinstock DM, Melnick A, Haigis MC, Michor F, Shi Y. Combined epigenetic and metabolic treatments overcome differentiation blockade in acute myeloid leukemia. iScience 2021; 24:102651. [PMID: 34151238 PMCID: PMC8192696 DOI: 10.1016/j.isci.2021.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is the inability of self-renewing malignant cells to mature into a non-dividing terminally differentiated state. This differentiation block has been linked to dysregulation of multiple cellular processes, including transcriptional, chromatin, and metabolic regulation. The transcription factor HOXA9 and the histone demethylase LSD1 are examples of such regulators that promote differentiation blockade in AML. To identify metabolic targets that interact with LSD1 inhibition to promote myeloid maturation, we screened a small molecule library to identify druggable substrates. We found that differentiation caused by LSD1 inhibition is enhanced by combined perturbation of purine nucleotide salvage and de novo lipogenesis pathways, and identified multiple lines of evidence to support the specificity of these pathways and suggest a potential basis of how perturbation of these pathways may interact synergistically to promote myeloid differentiation. In sum, these findings suggest potential drug combination strategies in the treatment of AML.
Collapse
Affiliation(s)
- Barry M. Zee
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Kamrine E. Poels
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cong-Hui Yao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kimihito C. Kawabata
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Cihangir Duy
- Cancer Signaling and Epigenetics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - William D. Jacobus
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth Senior
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Ashwini Jambhekar
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Scott B. Lovitch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jiexian Ma
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Abhinav Dhall
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| | - Isaac S. Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - M. Andres Blanco
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan D. Licht
- Division of Hematology and Oncology, University of Florida Health Care Center, Gainesville, FL 32610, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Biology Program, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ari Melnick
- Division of Hematology-Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ludwig Center at Harvard, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, OX3 7DQ, UK
| |
Collapse
|
16
|
Zhao Y, Zhang J. Clinical implication of homocysteine in premature acute coronary syndrome female patients: Its distribution and association with clinical characteristics and major adverse cardiovascular events risk. Medicine (Baltimore) 2021; 100:e25677. [PMID: 33950947 PMCID: PMC8104217 DOI: 10.1097/md.0000000000025677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Homocysteine (Hcy) is a risk factor for the presence of atherosclerotic vascular disease and hypercoagulability states, which is associated with increased risk of cardiovascular events in cardiovascular disease patients. Whereas the role of Hcy in premature acute coronary syndrome (ACS) female patients is still obscure. Hence, we aimed to explore the relationship of Hcy with clinical features, and more importantly, to probe its predictive value for major adverse cardiovascular events (MACE) risk in premature ACS female patients.By retrospectively reviewing the medical charts of 1441 premature ACS female patients, we collected patients' Hcy level (at diagnosis) and other clinical data. According to the follow-up records, the accumulating MACE occurrence was calculated.Hcy presented with a skewed distribution with median value 11.3 μmol/L (range: 4.4-64.0 μmol/L, inter quartile: 9.2-14.1 μmol/L). Hcy was associated with older age, heavy body mass index, dysregulated liver/renal/cardiac indexes, hypertension history, and old myocardial infarction history. The 1-year, 3-year, 5-year MACE incidence was 2.9%, 10.7%, and 12.6%, respectively. Interestingly, Hcy was increased in 1-year MACE patients compared with 1-year non-MACE patients, in 3-year MACE patients compared with 3-year non-MACE patients, in 5-year MACE patients compared with 5-year non-MACE patients, and it had a good value for predicting 1-year/3-year/5-year MACE risk. Furthermore, Hcy was also correlated with increased accumulating MACE occurrence.Hcy associates with increased age and body mass index, dysregulated liver, renal, and cardiac indexes; more interestingly, it predicts increased MACE risk in premature ACS female patients.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Department of Cardiology, Tianjin Medical University, Tianjin
| | - Jun Zhang
- Department of Cardiology, Cangzhou Teaching Hospital of Tinjin Medical University, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
17
|
Zhao J, Li Z, Hou C, Sun F, Dong J, Chu X, Guo Y. Gender differences in risk factors for high plasma homocysteine levels based on a retrospective checkup cohort using a generalized estimating equation analysis. Lipids Health Dis 2021; 20:31. [PMID: 33845846 PMCID: PMC8042914 DOI: 10.1186/s12944-021-01459-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Hyperhomocysteinemia (HHcy) is associated with various health problems, but less is known about the gender differences in risk factors for high plasma homocysteine (Hcy) levels. Methods In this study, a retrospective study was carried out on 14,911 participants (7838 males and 7073 females) aged 16–102 years who underwent routine checkups between January 2012 and December 2017 in the Health Management Department of Xuanwu Hospital, China. Anthropometric measurements, including body mass index (BMI) and waist-to-hip ratio, were collected. Fasting blood samples were collected to measure the biochemical indexes. The outcome variable was Hcy level, and a generalized estimating equation (GEE) analysis was used to identify the associations of interest based on gender. Results Males exhibited increased Hcy levels (16.37 ± 9.66 vs 11.22 ± 4.76 μmol/L) and prevalence of HHcy (37.0% vs 11.3%) compared with females. Hcy levels and HHcy prevalence increased with age in both genders, except for the 16- to 29-year-old group. GEE analysis indicated that irrespective of gender, aspartate aminotransferase, creatinine, uric acid, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels were positively correlated with Hcy levels, and alanine aminotransferase, total cholesterol and glucose were negatively correlated with Hcy levels. However, age, BMI and triglycerides (TGs) were positively correlated with Hcy levels exclusively in females. Conclusions Gender differences in risk factors for high plasma Hcy levels were noted. Although common correlational factors existed in both genders, age, BMI and TGs were independent risk factors for Hcy levels specifically in females.
Collapse
Affiliation(s)
- Jing Zhao
- Health Management Department, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhihua Li
- Information Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chengbei Hou
- Department of Evidence-based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Sun
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jing Dong
- Health Management Department, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xi Chu
- Health Management Department, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
18
|
Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein Analysis of Pollen Tubes after the Treatments of Membrane Trafficking Inhibitors Gains Insights on Molecular Mechanism Underlying Pollen Tube Polar Growth. Protein J 2021; 40:205-222. [PMID: 33751342 PMCID: PMC8019430 DOI: 10.1007/s10930-021-09972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/03/2022]
Abstract
Pollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identify Nicotiana tabacum Differentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC-ESI-MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Rita Vignani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Wei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Di Minno A, Anesi A, Chiesa M, Cirillo F, Colombo GI, Orsini RC, Capasso F, Morisco F, Fiorelli S, Eligini S, Cavalca V, Tremoli E, Porro B, Di Minno MND. Plasma phospholipid dysregulation in patients with cystathionine-β synthase deficiency. Nutr Metab Cardiovasc Dis 2020; 30:2286-2295. [PMID: 32912785 DOI: 10.1016/j.numecd.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Patients with cystathionine β-synthase deficiency (CBSD) exhibit high circulating levels of homocysteine and enhanced lipid peroxidation. We have characterized the plasma lipidome in CBSD patients and related lipid abnormalities with reactions underlying enhanced homocysteine levels. METHODS AND RESULTS Using an ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry method, plasma lipids were determined with an untargeted lipidomics approach in 11 CBSD patients and 11 matched healthy subjects (CTRL). Compared to CTRL, CBSD patients had a higher medium and long-chain polyunsaturated fatty acids (PUFA) content in phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) species (p < 0.02), and depletion of phosphatidylcholine (PC; p = 0.02) and of lysophosphatidylcholine (LPC; p = 0.003) species containing docosahexaenoic acid (DHA), suggesting impaired phosphatidylethanolamine-N-methyltransferase (PEMT) activity. PEMT converts PE into PC using methyl group by S-adenosylmethionine (SAM) thus converted in S-adenosylhomocysteine (SAH). Whole blood SAM and SAH concentrations by liquid chromatography tandem mass spectrometry were 1.4-fold (p = 0.015) and 5.3-fold (p = 0.003) higher in CBSD patients than in CTRL. A positive correlation between SAM/SAH and PC/PE ratios (r = 0.520; p = 0.019) was found. CONCLUSIONS A novel biochemical abnormality in CBSD patients consisting in depletion of PC and LPC species containing DHA and accumulation of PUFA in PE and LPE species is revealed by this lipidomic approach. Changes in plasma SAM and SAH concentrations are associated with such phospholipid dysregulation. Given the key role of DHA in thrombosis prevention, depletion of PC species containing DHA in CBSD patients provides a new direction to understand the poor cardiovascular outcome of patients with homocystinuria.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Andrea Anesi
- Fondazione Edmund Mach Research and Innovation Centre, Food Quality and Nutrition Department, S. Michele all' Adige, Trento, Italy
| | | | - Ferdinando Cirillo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | - Roberta C Orsini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Capasso
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Filomena Morisco
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | | | | | | | | | | | - Matteo N D Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| |
Collapse
|
20
|
Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation. Behav Neurol 2020; 2020:8438602. [PMID: 32963633 PMCID: PMC7495165 DOI: 10.1155/2020/8438602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
21
|
Saint-Marc C, Ceschin J, Almyre C, Pinson B, Daignan-Fornier B. Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae. Curr Genet 2020; 66:1163-1177. [PMID: 32780163 DOI: 10.1007/s00294-020-01101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.
Collapse
Affiliation(s)
- Christelle Saint-Marc
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Johanna Ceschin
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Claire Almyre
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Benoît Pinson
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Bertrand Daignan-Fornier
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France. .,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France.
| |
Collapse
|
22
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
23
|
Bunbury F, Helliwell KE, Mehrshahi P, Davey MP, Salmon DL, Holzer A, Smirnoff N, Smith AG. Responses of a Newly Evolved Auxotroph of Chlamydomonas to B 12 Deprivation. PLANT PHYSIOLOGY 2020; 183:167-178. [PMID: 32079734 PMCID: PMC7210614 DOI: 10.1104/pp.19.01375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non-B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Katherine E Helliwell
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth EX4 4PY, United Kingdom
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Deborah L Salmon
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Andre Holzer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| | - Nicholas Smirnoff
- School of Biosciences, University of Exeter, Exeter, PL1 2PB, United Kingdom
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
24
|
Rajakumar S, Abhishek A, Selvam GS, Nachiappan V. Effect of cadmium on essential metals and their impact on lipid metabolism in Saccharomyces cerevisiae. Cell Stress Chaperones 2020; 25:19-33. [PMID: 31823289 PMCID: PMC6985397 DOI: 10.1007/s12192-019-01058-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that induces irregularity in numerous lipid metabolic pathways. Saccharomyces cerevisiae, a model to study lipid metabolism, has been used to establish the molecular basis of cellular responses to Cd toxicity in relation to essential minerals and lipid homeostasis. Multiple pathways sense these environmental stresses and trigger the mineral imbalances specifically calcium (Ca) and zinc (Zn). This review is aimed to elucidate the role of Cd toxicity in yeast, in three different perspectives: (1) elucidate stress response and its adaptation to Cd, (2) understand the physiological role of a macromolecule such as lipids, and (3) study the stress rescue mechanism. Here, we explored the impact of Cd interference on the essential minerals such as Zn and Ca and their influence on endoplasmic reticulum stress and lipid metabolism. Cd toxicity contributes to lipid droplet synthesis by activating OLE1 that is essential to alleviate lipotoxicity. In this review, we expanded our current findings about the effect of Cd on lipid metabolism of budding yeast.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Pediatrics, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| | - Albert Abhishek
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| |
Collapse
|
25
|
Abstract
The combination of next generation sequencing (NGS) and automated liquid handling platforms has led to a revolution in single-cell genomic studies. However, many molecules that are critical to understanding the functional roles of cells in a complex tissue or organs, are not directly encoded in the genome, and therefore cannot be profiled with NGS. Lipids, for example, play a critical role in many metabolic processes but cannot be detected by sequencing. Recent developments in quantitative imaging, particularly coherent Raman scattering (CRS) techniques, have produced a suite of tools for studying lipid content in single cells. This article reviews CRS imaging and computational image processing techniques for non-destructive profiling of dynamic changes in lipid composition and spatial distribution at the single-cell level. As quantitative CRS imaging progresses synergistically with microfluidic and microscopic platforms for single-cell genomic analysis, we anticipate that these techniques will bring researchers closer towards combined lipidomic and genomic analysis.
Collapse
Affiliation(s)
- Anushka Gupta
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, Berkeley Graduate Division, Berkeley, California, USA.
| | | | | |
Collapse
|
26
|
Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J, Song Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis 2018; 17:191. [PMID: 30115070 PMCID: PMC6097444 DOI: 10.1186/s12944-018-0837-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The associations of the 5,10-methylenetetrahydrofolate reductase gene (MTHFR) rs1801133 polymorphism with coronary artery disease (CAD) and plasma lipid levels have been widely investigated, but the results were inconsistent and inconclusive. This meta-analysis aimed to clarify the relationships of the rs1801133 polymorphism with CAD and plasma lipid levels. METHODS By searching in PubMed, Google Scholar, Web of Science, Cochrane Library, Wanfang, VIP and CNKI databases, 123 studies (87,020 subjects) and 65 studies (85,554 subjects) were identified for the CAD association analysis and the lipid association analysis, respectively. Odds ratio (OR) and standardized mean difference (SMD) were used to determine the effects of the rs1801133 polymorphism on CAD risk and lipid levels, respectively. RESULTS The variant T allele of the rs1801133 polymorphism was associated with increased risk of CAD under allelic model [OR = 1.11, 95% confidence interval (CI) = 1.06-1.17, P < 0.01], additive model (OR = 1.25, 95% CI = 1.14-1.37, P < 0.01), dominant model (OR = 1.11, 95% CI = 1.04-1.17, P < 0.01), and recessive model (OR = 1.22, 95% CI = 1.12-1.32, P < 0.01). The T carriers had higher levels of total cholesterol (TC) (SMD = 0.04, 95% CI = 0.01-0.07, P = 0.02) and low-density lipoprotein cholesterol (LDL-C) (SMD = 0.07, 95% CI = 0.01-0.12, P = 0.01) than the non-carriers. CONCLUSIONS The meta-analysis suggested that the T allele of the rs1801133 polymorphism is a risk factor for CAD, which is possibly and partly mediated by abnormal lipid levels.
Collapse
Affiliation(s)
- Zhi Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Zhan Lu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Irfan Muhammad
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Yun Chen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Qiuhong Chen
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jiaojiao Zhang
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Yongyan Song
- Department of Medical Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|