1
|
Haacke N, Wang H, Yan S, Barovic M, Li X, Nagai K, Botezatu A, Hatzioannou A, Gercken B, Trimaglio G, Shah AU, Wang J, Ye L, Jaykar MT, Rauner M, Wielockx B, Chung KJ, Netea MG, Kalafati L, Hajishengallis G, Chavakis T. Innate immune training of osteoclastogenesis promotes inflammatory bone loss in mice. Dev Cell 2025:S1534-5807(25)00063-2. [PMID: 40020679 PMCID: PMC7617534 DOI: 10.1016/j.devcel.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
We previously demonstrated that long-term trained immunity (TRIM) involves adaptations that imprint innate immune memory in long-lived myelopoiesis precursors and their progeny, monocytes/macrophages and neutrophils, which thereby acquire enhanced responsiveness to future challenges. Here, we show that a distinct component of myeloid biology, osteoclastogenesis, can also undergo innate immune training. Indeed, β-glucan-induced TRIM was associated with an increased osteoclastogenesis bias in the bone marrow and an expansion of monocytes/osteoclast progenitors in the periphery, resulting in aggravated severity of experimental periodontitis and arthritis. In the setting of trained inflammatory osteoclastogenesis, we observed transcriptomic rewiring in synovial myeloid cells of arthritic mice, featuring prominent upregulation of the transcription factor melanogenesis-associated transcription factor (MITF). Adoptive transfer of splenic monocytes from β-glucan-trained mice to naive recipients exacerbated arthritis in the latter in a strictly MITF-dependent manner. Our findings establish trained osteoclastogenesis as a maladaptive component of TRIM and potentially provide therapeutic targets in inflammatory bone loss disorders.
Collapse
Affiliation(s)
- Nora Haacke
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Yan
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Adelina Botezatu
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Giulia Trimaglio
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Anisha U Shah
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mangesh T Jaykar
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
2
|
Herianto S, Subramani B, Chen BR, Chen CS. Recent advances in liposome development for studying protein-lipid interactions. Crit Rev Biotechnol 2024; 44:1-14. [PMID: 36170980 DOI: 10.1080/07388551.2022.2111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Boopathi Subramani
- Institute of Food Science and Technology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Ruei Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
4
|
Mima J. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering. Biophys Rev 2021; 13:531-539. [PMID: 34471437 DOI: 10.1007/s12551-021-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed "effectors," to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
5
|
Fujibayashi K, Mima J. The Small GTPase Arf6 Functions as a Membrane Tether in a Chemically-Defined Reconstitution System. Front Cell Dev Biol 2021; 9:628910. [PMID: 33585484 PMCID: PMC7876375 DOI: 10.3389/fcell.2021.628910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Arf-family small GTPases are essential protein components for membrane trafficking in all eukaryotic endomembrane systems, particularly during the formation of membrane-bound, coat protein complex-coated transport carriers. In addition to their roles in the transport carrier formation, a number of Arf-family GTPases have been reported to physically associate with coiled-coil tethering proteins and multisubunit tethering complexes, which are responsible for membrane tethering, a process of the initial contact between transport carriers and their target subcellular compartments. Nevertheless, whether and how indeed Arf GTPases are involved in the tethering process remain unclear. Here, using a chemically-defined reconstitution approach with purified proteins of two representative Arf isoforms in humans (Arf1, Arf6) and synthetic liposomes for model membranes, we discovered that Arf6 can function as a bona fide membrane tether, directly and physically linking two distinct lipid bilayers even in the absence of any other tethering factors, whereas Arf1 retained little potency to trigger membrane tethering under the current experimental conditions. Arf6-mediated membrane tethering reactions require trans-assembly of membrane-anchored Arf6 proteins and can be reversibly controlled by the membrane attachment and detachment cycle of Arf6. The intrinsic membrane tethering activity of Arf6 was further found to be significantly inhibited by the presence of membrane-anchored Arf1, suggesting that the tethering-competent Arf6-Arf6 assembly in trans can be prevented by the heterotypic Arf1-Arf6 association in a cis configuration. Taken together, these findings lead us to postulate that self-assemblies of Arf-family small GTPases on lipid bilayers contribute to driving and regulating the tethering events of intracellular membrane trafficking.
Collapse
Affiliation(s)
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Ueda S, Tamura N, Mima J. Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions. Front Cell Dev Biol 2020; 8:577342. [PMID: 33102484 PMCID: PMC7554592 DOI: 10.3389/fcell.2020.577342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5- to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers.
Collapse
Affiliation(s)
- Sanae Ueda
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Naoki Tamura
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Overeem AW, Li Q, Qiu Y, Cartón‐García F, Leng C, Klappe K, Dronkers J, Hsiao N, Wang J, Arango D, van Ijzendoorn SC. A Molecular Mechanism Underlying Genotype-Specific Intrahepatic Cholestasis Resulting From MYO5B Mutations. Hepatology 2020; 72:213-229. [PMID: 31750554 PMCID: PMC7496772 DOI: 10.1002/hep.31002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Progressive familial intrahepatic cholestasis (PFIC) 6 has been associated with missense but not biallelic nonsense or frameshift mutations in MYO5B, encoding the motor protein myosin Vb (myoVb). This genotype-phenotype correlation and the mechanism through which MYO5B mutations give rise to PFIC are not understood. The aim of this study was to determine whether the loss of myoVb or expression of patient-specific myoVb mutants can be causally related to defects in canalicular protein localization and, if so, through which mechanism. APPROACH AND RESULTS We demonstrate that the cholestasis-associated substitution of the proline at amino acid position 600 in the myoVb protein to a leucine (P660L) caused the intracellular accumulation of bile canalicular proteins in vesicular compartments. Remarkably, the knockout of MYO5B in vitro and in vivo produced no canalicular localization defects. In contrast, the expression of myoVb mutants consisting of only the tail domain phenocopied the effects of the Myo5b-P660L mutation. Using additional myoVb and rab11a mutants, we demonstrate that motor domain-deficient myoVb inhibited the formation of specialized apical recycling endosomes and that its disrupting effect on the localization of canalicular proteins was dependent on its interaction with active rab11a and occurred at the trans-Golgi Network/recycling endosome interface. CONCLUSIONS Our results reveal a mechanism through which MYO5B motor domain mutations can cause the mislocalization of canalicular proteins in hepatocytes which, unexpectedly, does not involve myoVb loss-of-function but, as we propose, a rab11a-mediated gain-of-toxic function. The results explain why biallelic MYO5B mutations that affect the motor domain but not those that eliminate myoVb expression are associated with PFIC6.
Collapse
Affiliation(s)
- Arend W. Overeem
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Yi‐Ling Qiu
- The Center for Pediatric Liver DiseasesChildren’s Hospital of Fudan UniversityShanghaiChina,Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Fernando Cartón‐García
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d’Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
| | - Changsen Leng
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Just Dronkers
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Nai‐Hua Hsiao
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Jian‐She Wang
- The Center for Pediatric Liver DiseasesChildren’s Hospital of Fudan UniversityShanghaiChina,Department of PediatricsJinshan Hospital of Fudan UniversityShanghaiChina
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d’Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
| | - Sven C.D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and SystemsSection Molecular Cell BiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
8
|
Taniguchi S, Toyoshima M, Takamatsu T, Mima J. Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. Protein Sci 2020; 29:1387-1400. [PMID: 31960529 DOI: 10.1002/pro.3828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
In macroautophagy, de novo formation of the double membrane-bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8-family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8-mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE-16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE-16 retained the capacities to trigger efficient membrane tethering at the protein-to-lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8-mediated membrane-tethering reactions require trans-assembly between the membrane-anchored forms of LC3B and GATE-16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B- and GATE-16-mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE-16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE-16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature-sensitive trans-assembly of human Atg8-family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.
Collapse
Affiliation(s)
- Saki Taniguchi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Tomoyo Takamatsu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
9
|
Myosin Va and spermine synthase: partners in exosome transport. Biosci Rep 2019; 39:BSR20190326. [PMID: 30967493 PMCID: PMC6488853 DOI: 10.1042/bsr20190326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
A recent paper in Bioscience Reports (BSR20182189) describes the discovery of an
interaction between the motor protein myosin Va and the metabolic enzyme
spermine synthase. Myosin Va is a molecular motor which plays a key role in
vesicle transport. Mutations in the gene which encodes this protein are
associated with Griscelli syndrome type 1 and the ‘dilute’
phenotype in animals. Spermine synthase catalyzes the conversion of spermidine
to spermine. This largely cytoplasmic enzyme can also be localized to the
soluble fraction in exosomes. Mutations in the spermine synthase gene are
associated with Snyder Robinson mental retardation syndrome. The interaction
between the two proteins was detected using the yeast two hybrid method and
verified by microscale thermophoresis of recombinant proteins. Knockdown of the
MYO5A gene reduced the expression of mRNA coding for
spermine synthase. The amount of this transcript was also reduced in cells
derived from a patient with Griscelli syndrome type 1. This suggests that, in
addition to a direct physical interaction between the two proteins, myosin Va
also modulates the transcription of the spermine synthase gene. The mechanism
for this modulation is currently unknown. These findings have implications for
Griscelli syndrome type 1 and Snyder Robinson mental retardation syndrome. They
also suggest that interactions between myosin Va and soluble exosome proteins
such as spermine synthase may be important in the mechanism of exosome
transport.
Collapse
|
10
|
Segawa K, Tamura N, Mima J. Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering. J Biol Chem 2019; 294:7722-7739. [PMID: 30910814 DOI: 10.1074/jbc.ra119.007947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane tethering is a highly regulated event occurring during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, using a chemically defined reconstitution system, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, -3a, -4a, -5a, -6a, -7a, -9a, -11a, -27a, and -33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g. Rab/lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab/lipid ratio of 1:3,000. Comprehensive reconstitution experiments further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a in particular synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. In conclusion, our findings establish that, in the physiological context, homotypic and heterotypic trans-assemblies of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.
Collapse
Affiliation(s)
- Kazuya Segawa
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Tamura
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Mima J. Reconstitution of membrane tethering mediated by Rab-family small GTPases. Biophys Rev 2017; 10:543-549. [PMID: 29204879 DOI: 10.1007/s12551-017-0358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Membrane tethering is one of the most critical steps to determine the spatiotemporal specificity of membrane trafficking, which is the process to selectively transport proteins, lipids, and other biological molecules to the appropriate locations in eukaryotic cells, such as subcellular organelles, the plasma membrane, and the extracellular space. Based on genetic, cell biological, biochemical, and structural studies, Rab-family small GTPases and a number of Rab-interacting proteins (termed Rab effectors), including coiled-coil tethering proteins and multisubunit tethering complexes, have been proposed to be key protein components for membrane tethering. Nevertheless, indeed whether and how Rab GTPases and their specific Rab effectors directly act upon and catalyze membrane tethering still remains enigmatic. By chemically defined reconstitution of membrane tethering from purified Rab-family GTPase proteins and synthetic liposomal membranes, recent studies have revealed the intrinsic potency of Rab-family GTPases to physically and specifically tether two distinct lipid bilayers of liposomal membranes. Experimental evidence from these reconstitution studies support the novel working model in which Rab-family small GTPases act as a bona fide membrane tether for mediating membrane tethering events in eukaryotic membrane trafficking.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|