1
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
2
|
Sugue MF, Burdur AN, Ringel MT, Dräger G, Brüser T. PvdM of fluorescent pseudomonads is required for the oxidation of ferribactin by PvdP in periplasmic pyoverdine maturation. J Biol Chem 2022; 298:102201. [PMID: 35764171 PMCID: PMC9305348 DOI: 10.1016/j.jbc.2022.102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent pseudomonads such as Pseudomonas aeruginosa or Pseudomonas fluorescens produce pyoverdine siderophores that ensure iron-supply in iron-limited environments. After its synthesis in the cytoplasm, the nonfluorescent pyoverdine precursor ferribactin is exported into the periplasm, where the enzymes PvdQ, PvdP, PvdO, PvdN, and PtaA are responsible for fluorophore maturation and tailoring steps. While the roles of all these enzymes are clear, little is known about the role of PvdM, a human renal dipeptidase–related protein that is predicted to be periplasmic and that is essential for pyoverdine biogenesis. Here, we reveal the subcellular localization and functional role of PvdM. Using the model organism P. fluorescens, we show that PvdM is anchored to the periplasmic side of the cytoplasmic membrane, where it is indispensable for the activity of the tyrosinase PvdP. While PvdM does not share the metallopeptidase function of renal dipeptidase, it still has the corresponding peptide-binding site. The substrate of PvdP, deacylated ferribactin, is secreted by a ΔpvdM mutant strain, indicating that PvdM prevents loss of this periplasmic biosynthesis intermediate into the medium by ensuring the efficient transfer of ferribactin to PvdP in vivo. We propose that PvdM belongs to a new dipeptidase-related protein subfamily with inactivated Zn2+ coordination sites, members of which are usually genetically linked to TonB-dependent uptake systems and often associated with periplasmic FAD-dependent oxidoreductases related to d-amino acid oxidases. We suggest that these proteins are necessary for selective binding, exposure, or transfer of specific d- and l-amino acid–containing peptides and other periplasmic biomolecules in manifold pathways.
Collapse
Affiliation(s)
| | - Ali Nazmi Burdur
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Michael T Ringel
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany.
| |
Collapse
|
3
|
Vogel JGT, Wibowo JP, Fan H, Setroikromo R, Wang K, Dömling A, Dekker FJ, Quax WJ. Discovery of chromene compounds as inhibitors of PvdQ acylase of Pseudomonas aeruginosa. Microbes Infect 2022; 24:105017. [PMID: 35709935 DOI: 10.1016/j.micinf.2022.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
The acquisition of iron is a crucial mechanism for the survival of pathogenic bacteria such as Pseudomonas aeruginosa in eukaryotic hosts. The key iron chelator in this organism is the siderophore pyoverdine, which was shown to be crucial for iron homeostasis. Pyoverdine is a non-ribosomal peptide with several maturation steps in the cytoplasm and others in the periplasmatic space. A key enzyme for its maturation is the acylase PvdQ. The inhibition of PvdQ stops the maturation of pyoverdine causing a significant imbalance in the iron homeostasis and hence can negatively influence the survival of P. aeruginosa. In this work, we successfully synthesized chromene-derived inhibitory molecules targeting PvdQ in a low micromolar range. In silico modeling as well as kinetic evaluations of the inhibitors suggest a competitive inhibition of the PvdQ function. Further, we evaluated the inhibitor in vivo on P. aeruginosa cells and report a dose-dependent reduction of pyoverdine formation. The compound also showed a protecting effect in a Galleria mellonella infection model.
Collapse
Affiliation(s)
- Jan G T Vogel
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Joko P Wibowo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands; Faculty of Pharmacy, University of Muhammadiyah Banjarmasin, Jl. Gubernur Syarkawi, Barito Kuala, 70582, Indonesia
| | - Hillina Fan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Kan Wang
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, the Netherlands.
| |
Collapse
|
4
|
Hoffmann L, Sugue MF, Brüser T. A tunable anthranilate-inducible gene expression system for Pseudomonas species. Appl Microbiol Biotechnol 2020; 105:247-258. [PMID: 33270152 PMCID: PMC7778614 DOI: 10.1007/s00253-020-11034-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Abstract Pseudomonads are among the most common bacteria in soils, limnic ecosystems, and human, animal, or plant host environments, including intensively studied species such as Pseudomonas aeruginosa, P. putida, or P. fluorescens. Various gene expression systems are established for some species, but there is still a need for a simple system that is suitable for a wide range of pseudomonads and that can be used for physiological applications, i.e., with a tuning capacity at lower expression levels. Here, we report the establishment of the anthranilate-dependent PantA promoter for tunable gene expression in pseudomonads. During studies on P. fluorescens, we constructed an anthranilate-inducible AntR/PantA-based expression system, named pUCP20-ANT, and used GFP as reporter to analyze gene expression. This system was compared with the rhamnose-inducible RhaSR/PrhaB-based expression system in an otherwise identical vector background. While the rhamnose-inducible system did not respond to lower inducer concentrations and always reached high levels over time when induced, expression levels of the pUCP20-ANT system could be adjusted to a range of distinct lower or higher levels by variation of anthranilate concentrations in the medium. Importantly, the anthranilate-inducible expression system worked also in strains of P. aeruginosa and P. putida and therefore will be most likely useful for physiological and biotechnological purposes in a wide range of pseudomonads. Key points • We established an anthranilate-inducible gene expression system for pseudomonads. • This system permits tuning of gene expression in a wide range of pseudomonads. • It will be very useful for physiological and biotechnological applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-11034-8.
Collapse
Affiliation(s)
- Lena Hoffmann
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Michael-Frederick Sugue
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
5
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
6
|
Li L, Yuan L, Shi Y, Xie X, Chai A, Wang Q, Li B. Comparative genomic analysis of Pseudomonas amygdali pv. lachrymans NM002: Insights into its potential virulence genes and putative invasion determinants. Genomics 2018; 111:1493-1503. [PMID: 30336277 DOI: 10.1016/j.ygeno.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 12/01/2022]
Abstract
Pseudomonas amygdali pv. lachrymans is currently of important plant pathogenic bacteria that causes cucumber angular leaf spot worldwide. The pathogen has been studied for its roles in pathogenicity and plant inheritance resistance. To further delineate traits critical to virulence, invasion and survival in the phyllosphere, we reported the first complete genome of P. amygdali pv. lachrymans NM002. Analysis of the whole genome in comparison with three closely-related representative pathovars of P. syringae identified the conservation of virulence genes, including flagella and chemotaxis, quorum-sensing systems, two-component systems, and lipopolysaccharide and antiphagocytosis. It also revealed differences of invasion determinants, such as type III effectors, phytotoxin (coronatine, syringomycin and phaseolotoxin) and cell wall-degrading enzyme, which may contribute to infectivity. The aim of this study was to derive genomic information that would reveal the probable molecular mechanisms underlying the virulence, infectivity and provide a better understanding of the pathogenesis of the P. syringae pathovars.
Collapse
Affiliation(s)
- Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Ringel MT, Brüser T. The biosynthesis of pyoverdines. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:424-437. [PMID: 30386787 PMCID: PMC6206403 DOI: 10.15698/mic2018.10.649] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
Abstract
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Collapse
Affiliation(s)
- Michael T. Ringel
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
8
|
Ringel MT, Dräger G, Brüser T. PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. J Biol Chem 2017; 293:2330-2341. [PMID: 29208656 DOI: 10.1074/jbc.ra117.000121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/30/2017] [Indexed: 02/04/2023] Open
Abstract
Pyoverdines are important siderophores that guarantee iron supply to important pathogenic and non-pathogenic pseudomonads in host habitats. A key characteristic of all pyoverdines is the fluorescent dihydroxyquinoline group that contributes two ligands to the iron complexes. Pyoverdines are derived from the non-ribosomally synthesized peptide ferribactin, and their fluorophore is generated by periplasmic oxidation and cyclization reactions of d-tyrosine and l-diaminobutyric acid. The formation of the fluorophore is known to be driven by the periplasmic tyrosinase PvdP. Here we report that the putative periplasmic oxidoreductase PvdO of Pseudomonas fluorescens A506 is required for the final oxidation of dihydropyoverdine to pyoverdine, which completes the fluorophore. The pvdO deletion mutant accumulates dihydropyoverdine, and this phenotype is fully complemented by recombinant PvdO. The autoxidation of dihydropyoverdine at alkaline pH and the presence of high copper concentrations can mask this phenotype. Mutagenesis of conserved residues with potential catalytic function identified Glu-260 as an essential residue whose mutation abolished function without affecting stability or transport. Glu-260 of PvdO is at the exact position of the active-site cysteine in the structurally related formylglycine-generating enzyme. Evolution thus used the same protein fold for two distinct functionalities. As purified PvdO was inactive, additional factors are required for catalysis.
Collapse
Affiliation(s)
- Michael T Ringel
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| | - Gerald Dräger
- the Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany and
| |
Collapse
|