1
|
Zhang A, Friedman LJ, Gelles J, Bell SP. Changing protein-DNA interactions promote ORC binding site exchange during replication origin licensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545300. [PMID: 37398123 PMCID: PMC10312730 DOI: 10.1101/2023.06.16.545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer (sm-FRET) to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally-controlled DNA sliding of helicase-loading intermediates, and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely-oriented Mcm2-7 helicases to ensure bidirectional DNA replication. Significance Statement Bidirectional DNA replication, in which two replication forks travel in opposite directions from each origin of replication, is required for complete genome duplication. To prepare for this event, two copies of the Mcm2-7 replicative helicase are loaded at each origin in opposite orientations. Using single-molecule assays, we studied the sequence of changing protein-DNA interactions involved in this process. These stepwise changes gradually reduce the DNA-binding strength of ORC, the primary DNA binding protein involved in this event. This reduced affinity promotes ORC dissociation and rebinding in the opposite orientation on the DNA, facilitating the sequential assembly of two Mcm2-7 molecules in opposite orientations. Our findings identify a coordinated series of events that drive proper DNA replication initiation.
Collapse
Affiliation(s)
- Annie Zhang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Amin A, Wu R, Khan MA, Cheung MH, Liang Y, Liu C, Zhu G, Yu ZL, Liang C. An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing. Life Sci Alliance 2023; 6:e202201594. [PMID: 36599624 PMCID: PMC9813392 DOI: 10.26508/lsa.202201594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.
Collapse
Affiliation(s)
- Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanting Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
| |
Collapse
|
3
|
In silico reconstitution of DNA replication. Lessons from single-molecule imaging and cryo-tomography applied to single-particle cryo-EM. Curr Opin Struct Biol 2022; 72:279-286. [PMID: 35026552 PMCID: PMC8869182 DOI: 10.1016/j.sbi.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
DNA replication has been reconstituted in vitro with yeast proteins, and the minimal system requires the coordinated assembly of 16 distinct replication factors, consisting of 42 polypeptides. To understand the molecular interplay between these factors at the single residue level, new structural biology tools are being developed. Inspired by advances in single-molecule fluorescence imaging and cryo-tomography, novel single-particle cryo-EM experiments have been used to characterise the structural mechanism for the loading of the replicative helicase. Here, we discuss how in silico reconstitution of single-particle cryo-EM data can help describe dynamic systems that are difficult to approach with conventional three-dimensional classification tools.
Collapse
|
4
|
ReconSil: An electron microscopy toolbox to study helicase function at an origin of replication. Methods Enzymol 2022; 672:203-231. [DOI: 10.1016/bs.mie.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Gupta S, Friedman LJ, Gelles J, Bell SP. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 2021; 10:74282. [PMID: 34882090 PMCID: PMC8828053 DOI: 10.7554/elife.74282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Replication origins are licensed by loading two Mcm2‑7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2‑7 during helicase loading. In the large majority of events, we observed a single ORC molecule recruiting both Mcm2‑7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between first and second helicase recruitment, a rapid change in interactions between ORC and the first Mcm2-7 occurs. Within seconds, ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2‑7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
6
|
Cui K, Chen JH, Zou YF, Zhang SY, Wu B, Jing K, Li LW, Xia L, Sun C, Dong YL. Hub biomarkers for the diagnosis and treatment of glioblastoma based on microarray technology. Technol Cancer Res Treat 2021; 20:1533033821990368. [PMID: 34018447 PMCID: PMC8142016 DOI: 10.1177/1533033821990368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common clinical intracranial malignancy worldwide, and the most common supratentorial tumor in adults. GBM mainly causes damage to the brain tissue, which can be fatal. This research explored potential gene targets for the diagnosis and treatment of GBM using bioinformatic technology. METHODS Public data from patients with GBM and controls were downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus 2R (GEO2R). Construction of the protein-protein interaction network and the identification of a significant module were performed. Subsequently, hub genes were identified, and their expression was examined and compared by real-time quantitative (RT-q)PCR between patients with GBM and controls. RESULTS GSE122498 (GPL570 platform), GSE104291 (GPL570 platform), GSE78703_DMSO (GPL15207 platform), and GSE78703_LXR (GPL15207 platform) datasets were obtained from the GEO. A total of 130 DEGs and 10 hub genes were identified by GEPIA and GEO2R between patients with GBM and controls. Of these, strong connections were identified in correlation analysis between CCNB1, CDC6, KIF23, and KIF20A. RT-qPCR showed that all 4 of these genes were expressed at significantly higher levels in patients with GBM compared with controls. CONCLUSIONS The hub genes CCNB1, CDC6, KIF23, and KIF20A are potential biomarkers for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Kai Cui
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Jin-Hui Chen
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, People's Republic of China
| | - Yang-Fan Zou
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Shu-Yuan Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Bing Wu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Kai Jing
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Li-Weng Li
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Liang Xia
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Caixing Sun
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Ya-Lan Dong
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| |
Collapse
|
7
|
Sánchez H, McCluskey K, van Laar T, van Veen E, Asscher FM, Solano B, Diffley JFX, Dekker NH. DNA replication origins retain mobile licensing proteins. Nat Commun 2021; 12:1908. [PMID: 33772005 PMCID: PMC7998030 DOI: 10.1038/s41467-021-22216-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase. Although the outline of replisome assembly is understood, little is known about the dynamics of individual proteins on DNA and how these contribute to proper complex formation. Here we show, using single-molecule optical trapping and confocal microscopy, that yeast ORC is a mobile protein that diffuses rapidly along DNA. Origin recognition halts this search process. Recruitment of MCM molecules in an ORC- and Cdc6-dependent fashion results in slow-moving ORC-MCM intermediates and MCMs that rapidly scan the DNA. Following ATP hydrolysis, salt-stable loading of MCM single and double hexamers was seen, both of which exhibit salt-dependent mobility. Our results demonstrate that effective helicase loading relies on an interplay between protein diffusion and origin recognition, and suggest that MCM is stably loaded onto DNA in multiple forms.
Collapse
Affiliation(s)
- Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Kaley McCluskey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Filip M Asscher
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
8
|
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong CKC, Yu Z, Liang C. An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Rep 2021; 30:3323-3338.e6. [PMID: 32160540 DOI: 10.1016/j.celrep.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 10/04/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.
Collapse
Affiliation(s)
- Aftab Amin
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - John F Scott
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chris Kong-Chu Wong
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; The First Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China; EnKang Pharmaceuticals Limited, Guangzhou, China.
| |
Collapse
|
9
|
Martin JC, Hoegel TJ, Lynch ML, Woloszynska A, Melendy T, Ohm JE. Exploiting Replication Stress as a Novel Therapeutic Intervention. Mol Cancer Res 2020; 19:192-206. [PMID: 33020173 DOI: 10.1158/1541-7786.mcr-20-0651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is an aggressive pediatric tumor of the bone and soft tissue. The current standard of care is radiation and chemotherapy, and patients generally lack targeted therapies. One of the defining molecular features of this tumor type is the presence of significantly elevated levels of replication stress as compared with both normal cells and many other types of cancers, but the source of this stress is poorly understood. Tumors that harbor elevated levels of replication stress rely on the replication stress and DNA damage response pathways to retain viability. Understanding the source of the replication stress in Ewing sarcoma may reveal novel therapeutic targets. Ewing sarcomagenesis is complex, and in this review, we discuss the current state of our knowledge regarding elevated replication stress and the DNA damage response in Ewing sarcoma, one contributor to the disease process. We will also describe how these pathways are being successfully targeted therapeutically in other tumor types, and discuss possible novel, evidence-based therapeutic interventions in Ewing sarcoma. We hope that this consolidation will spark investigations that uncover new therapeutic targets and lead to the development of better treatment options for patients with Ewing sarcoma. IMPLICATIONS: This review uncovers new therapeutic targets in Ewing sarcoma and highlights replication stress as an exploitable vulnerability across multiple cancers.
Collapse
Affiliation(s)
- Jeffrey C Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tamara J Hoegel
- Department of Pediatric Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thomas Melendy
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
10
|
Miller TCR, Locke J, Greiwe JF, Diffley JFX, Costa A. Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature 2019; 575:704-710. [PMID: 31748745 PMCID: PMC6887548 DOI: 10.1038/s41586-019-1768-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022]
Abstract
In preparation for bidirectional replication, the origin recognition complex (ORC) loads two MCM helicases forming a head-to-head double hexamer (DH) around DNA1,2. How DH formation occurs is debated. Single-molecule experiments suggest a sequential mechanism whereby ORC-dependent loading of the first hexamer drives second hexamer recruitment3. In contrast, biochemical data show that two rings are loaded independently via the same ORC-mediated mechanism, at two inverted DNA sites4,5. We visualized MCM loading using time-resolved EM, to identify DH formation intermediates. We confirm that both hexamers are recruited via the same interaction between the MCM and ORC C-terminal domains, and identify the mechanism for coupled MCM loading. A first loaded hexamer locked around DNA is recognized by ORC, which unexpectedly engages the N-terminal homo-dimerization interface of MCM. In this configuration, ORC is poised to direct second hexamer recruitment in an inverted orientation, suitable for DH formation. Our data reconcile two apparently contrasting models.
Collapse
Affiliation(s)
- Thomas C R Miller
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - Julia F Greiwe
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Lou C, Zhao J, Shi R, Wang Q, Zhou W, Wang Y, Wang G, Huang L, Feng X, Zhou F. sefOri: selecting the best-engineered sequence features to predict DNA replication origins. Bioinformatics 2019; 36:49-55. [DOI: 10.1093/bioinformatics/btz506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractMotivationCell divisions start from replicating the double-stranded DNA, and the DNA replication process needs to be precisely regulated both spatially and temporally. The DNA is replicated starting from the DNA replication origins. A few successful prediction models were generated based on the assumption that the DNA replication origin regions have sequence level features like physicochemical properties significantly different from the other DNA regions.ResultsThis study proposed a feature selection procedure to further refine the classification model of the DNA replication origins. The experimental data demonstrated that as large as 26% improvement in the prediction accuracy may be achieved on the yeast Saccharomyces cerevisiae. Moreover, the prediction accuracies of the DNA replication origins were improved for all the four yeast genomes investigated in this study.Availability and implementationThe software sefOri version 1.0 was available at http://www.healthinformaticslab.org/supp/resources.php. An online server was also provided for the convenience of the users, and its web link may be found in the above-mentioned web page.Supplementary informationSupplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chenwei Lou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Jian Zhao
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Ruoyao Shi
- BioKnow Health Informatics Lab, College of Life Sciences, Jilin University, Changchun 130012, China
| | - Qian Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Wenyang Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Yubo Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130012, China
| | - Lan Huang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Xin Feng
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Rios-Morales RY, Chan SH, Bell SP. Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS One 2019; 14:e0214426. [PMID: 30913274 PMCID: PMC6435160 DOI: 10.1371/journal.pone.0214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
The committed step in DNA replication initiation is the activation of the Mcm2-7 replicative DNA helicase. Two activators, Cdc45 and GINS, associate with Mcm2-7 at origins of replication to form the CMG complex, which is the active eukaryotic replicative helicase. These activators function during both replication initiation and elongation, however, it remains unclear whether Cdc45 performs the same function(s) during both events. Here, we describe the genetic and biochemical characterization of seven Cdc45 mutations. Three of these mutations are temperature-sensitive lethal mutations in CDC45. Intriguingly, these mutants are defective for DNA replication initiation but not elongation. Consistent with an initiation defect, all three temperature-sensitive mutants are defective for CMG formation. Two of the lethal mutants are located within the RecJ-like domain of Cdc45 confirming the importance of this region for Cdc45 function. The remaining two lethal mutations localize to an intrinsically disordered region (IDR) of Cdc45 that is found in all eukaryotes. Despite the lethality of these IDR substitution mutants, Cdc45 lacking the IDR retains full function. Together, our data provide insights into the functional importance of Cdc45 domains and suggest that the requirements for Cdc45 function during DNA replication initiation are distinct from those involved in replication elongation.
Collapse
Affiliation(s)
- Ramon Y. Rios-Morales
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sze Ham Chan
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Stephen P. Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Candelli T, Gros J, Libri D. Pervasive transcription fine-tunes replication origin activity. eLife 2018; 7:40802. [PMID: 30556807 PMCID: PMC6314782 DOI: 10.7554/elife.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Gros
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Ban X, Yan J, Yu S, Lu Z, Chang X, Jia C, Gao C, Shao H, Wu Y, Mao X, Zhang Y, Li Y, Chen J. High minichromosome maintenance protein 7 proliferation indices: a powerful predictor of progression in pancreatic neuroendocrine neoplasms without distant metastasis at the time of surgery. Hum Pathol 2018; 85:101-111. [PMID: 30447299 DOI: 10.1016/j.humpath.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) have an unpredictable clinical course that varies from indolent to highly malignant. No immunohistochemical markers are available for reliable prediction of the biological behavior of early stage PanNENs. Minichromosome maintenance protein 7 (MCM7) is a putative powerful marker of cell proliferation. Whether the expression of MCM7 is related to the risk of PanNENs progression remains unclear. We assessed the clinical behavior of 156 PanNENs with respect to stage, grade, Ki-67 index, MCM7 index, and other pathologic features. A high MCM7 index was significantly associated with larger tumor size (P < .001), nonfunctioning tumor (P < .001), increased grade (P < .0001), and later TNM stage (P < .001). In multivariate analysis, G2/G3 (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.62; P < .001), stage III/IV (HR, 2.11; 95% CI, 1.31-3.41; P < .001), and MCM7 labeling index >5% (HR, 3.81; 95% CI, 1.30-11.17; P = .02) were independent negative prognostic factors related to the risk of tumor progression in stage I-IV disease. MCM7 labeling index >5% was associated with an increased risk of progression in stages I-V, I-III, and I-II. Our study confirms that MCM7 is a valuable marker for assessing the progression of PanNENs, especially in patients with early stage disease and without distant metastasis.
Collapse
Affiliation(s)
- Xinchao Ban
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Jie Yan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Cen Gao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Huilin Shao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yan Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yue Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yuan Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
15
|
Aze A, Maiorano D. Recent advances in understanding DNA replication: cell type-specific adaptation of the DNA replication program. F1000Res 2018; 7. [PMID: 30228862 PMCID: PMC6117848 DOI: 10.12688/f1000research.15408.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
DNA replication is an essential process occurring prior to cell division. Cell division coupled to proliferation ensures the growth and renewal of a large variety of specialized cell types generated during embryonic development. Changes in the DNA replication program occur during development. Embryonic undifferentiated cells show a high replication rate and fast proliferation, whereas more differentiated cells are characterized by reduced DNA synthesis and a low proliferation rate. Hence, the DNA replication program must adapt to the specific features of cells committed to different fates. Recent findings on DNA synthesis regulation in different cell types open new perspectives for developing efficient and more adapted therapies to treat various diseases such as genetic diseases and cancer. This review will put the emphasis on recent progress made in this field.
Collapse
Affiliation(s)
- Antoine Aze
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| | - Domenico Maiorano
- Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, 34396 Cedex 5, France
| |
Collapse
|