1
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Kane E, Beasley S, Schafer J, Bohl J, Lee Y, Rich K, Bosia E, Spratt D. Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family. Biosci Rep 2022; 42:BSR20221036. [PMID: 36111624 PMCID: PMC9547173 DOI: 10.1042/bsr20221036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
There are 28 unique human members of the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligase family. Each member of the HECT E3 ubiquitin ligases contains a conserved bilobal HECT domain of approximately 350 residues found near their C-termini that is responsible for their respective ubiquitylation activities. Recent studies have begun to elucidate specific roles that each HECT E3 ubiquitin ligase has in various cancers, age-induced neurodegeneration, and neurological disorders. New structural models have been recently released for some of the HECT E3 ubiquitin ligases, but many HECT domain structures have yet to be examined due to chronic insolubility and/or protein folding issues. Building on these recently published structural studies coupled with our in-house experiments discussed in the present study, we suggest that the addition of ∼50 conserved residues preceding the N-terminal to the current UniProt defined boundaries of the HECT domain are required for isolating soluble, stable, and active HECT domains. We show using in silico bioinformatic analyses coupled with secondary structural prediction software that this predicted N-terminal α-helix found in all 28 human HECT E3 ubiquitin ligases forms an obligate amphipathic α-helix that binds to a hydrophobic pocket found within the HECT N-terminal lobe. The present study brings forth the proposal to redefine the residue boundaries of the HECT domain to include this N-terminal extension that will likely be critical for future biochemical, structural, and therapeutic studies on the HECT E3 ubiquitin ligase family.
Collapse
Affiliation(s)
- Emma I. Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Steven A. Beasley
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Johanna M. Schafer
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Justine E. Bohl
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Young Sun Lee
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Kayla J. Rich
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Elizabeth F. Bosia
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| |
Collapse
|
3
|
Joshi R, Pohl P, Strachotova D, Herman P, Obsil T, Obsilova V. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys J 2022; 121:1299-1311. [PMID: 35189105 PMCID: PMC9034186 DOI: 10.1016/j.bpj.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
Collapse
|
4
|
Xie S, Xia L, Song Y, Liu H, Wang ZW, Zhu X. Insights Into the Biological Role of NEDD4L E3 Ubiquitin Ligase in Human Cancers. Front Oncol 2021; 11:774648. [PMID: 34869021 PMCID: PMC8634104 DOI: 10.3389/fonc.2021.774648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is an E3 ubiquitin ligase that has been reported to participate in multiple cellular procedures by regulating of substrate ubiquitination and subsequent protein degradation. A great amount of evidence has demonstrated that NEDD4L mainly functions as a tumor suppressor in most cancer types, while it also acts as an oncogene in a few cancers. In this review, we summarize the potential role of NEDD4L in carcinogenesis and the related underlying molecular mechanism to improve our understanding of its functions in the tumorigenesis of human malignancies. Developing clinical drugs targeting NEDD4L could be a potential therapeutic strategy for cancer therapy in the future.
Collapse
Affiliation(s)
- Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hejing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Jiang H, Thomas SN, Chen Z, Chiang CY, Cole PA. Comparative analysis of the catalytic regulation of NEDD4-1 and WWP2 ubiquitin ligases. J Biol Chem 2019; 294:17421-17436. [PMID: 31578285 DOI: 10.1074/jbc.ra119.009211] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
NEDD4-1 E3 ubiquitin protein ligase (NEDD4-1) and WW domain-containing E3 ubiquitin ligase (WWP2) are HECT family ubiquitin E3 ligases. They catalyze Lys ubiquitination of themselves and other proteins and are important in cell growth and differentiation. Regulation of NEDD4-1 and WWP2 catalytic activities is important for controlling cellular protein homeostasis, and their dysregulation may lead to cancer and other diseases. Previous work has implicated noncatalytic regions, including the C2 domain and/or WW domain linkers in NEDD4-1 and WWP2, in contributing to autoinhibition of the catalytic HECT domains by intramolecular interactions. Here, we explored the molecular mechanisms of these NEDD4-1 and WWP2 regulatory regions and their interplay with allosteric binding proteins such as Nedd4 family-interacting protein (NDFIP1), engineered ubiquitin variants, and linker phosphomimics. We found that in addition to influencing catalytic activities, the WW domain linker regions in NEDD4-1 and WWP2 can impact product distribution, including the degree of polyubiquitination and Lys-48 versus Lys-63 linkages. We show that allosteric activation by NDFIP1 or engineered ubiquitin variants is largely mediated by relief of WW domain linker autoinhibition. WWP2-mediated ubiquitination of WW domain-binding protein 2 (WBP2), phosphatase and tensin homolog (PTEN), and p62 proteins by WWP2 suggests that substrate ubiquitination can also be influenced by WW linker autoinhibition, although to differing extents. Overall, our results provide a deeper understanding of the intricate and multifaceted set of regulatory mechanisms in the control of NEDD4-1-related ubiquitin ligases.
Collapse
Affiliation(s)
- Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stefani N Thomas
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Zan Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Claire Y Chiang
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 .,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
6
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Ries LK, Sander B, Deol KK, Letzelter MA, Strieter ER, Lorenz S. Analysis of ubiquitin recognition by the HECT ligase E6AP provides insight into its linkage specificity. J Biol Chem 2019; 294:6113-6129. [PMID: 30737286 PMCID: PMC6463701 DOI: 10.1074/jbc.ra118.007014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Deregulation of the HECT-type ubiquitin ligase E6AP (UBE3A) is implicated in human papilloma virus-induced cervical tumorigenesis and several neurodevelopmental disorders. Yet the structural underpinnings of activity and specificity in this crucial ligase are incompletely understood. Here, we unravel the determinants of ubiquitin recognition by the catalytic domain of E6AP and assign them to particular steps in the catalytic cycle. We identify a functionally critical interface that is specifically required during the initial formation of a thioester-linked intermediate between the C terminus of ubiquitin and the ligase-active site. This interface resembles the one utilized by NEDD4-type enzymes, indicating that it is widely conserved across HECT ligases, independent of their linkage specificities. Moreover, we uncover surface regions in ubiquitin and E6AP, both in the N- and C-terminal portions of the catalytic domain, that are important for the subsequent reaction step of isopeptide bond formation between two ubiquitin molecules. We decipher key elements of linkage specificity, including the C-terminal tail of E6AP and a hydrophilic surface region of ubiquitin in proximity to the acceptor site Lys-48. Intriguingly, mutation of Glu-51, a single residue within this region, permits formation of alternative chain types, thus pointing to a key role of ubiquitin in conferring linkage specificity to E6AP. We speculate that substrate-assisted catalysis, as described previously for certain RING-associated ubiquitin-conjugating enzymes, constitutes a common principle during linkage-specific ubiquitin chain assembly by diverse classes of ubiquitination enzymes, including HECT ligases.
Collapse
Affiliation(s)
- Lena K Ries
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Bodo Sander
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Kirandeep K Deol
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Marie-Annick Letzelter
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Eric Robert Strieter
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003; Departments of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - Sonja Lorenz
- From the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
8
|
Chen D, Gehringer M, Lorenz S. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chembiochem 2018; 19:2123-2135. [PMID: 30088849 PMCID: PMC6471174 DOI: 10.1002/cbic.201800321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin system regulates countless physiological and disease-associated processes and has emerged as an attractive entryway for therapeutic efforts. With over 600 members in the human proteome, ubiquitin ligases are the most diverse class of ubiquitylation enzymes and pivotal in encoding specificity in ubiquitin signaling. Although considerable progress has been made in the identification of small molecules targeting RING ligases, relatively little is known about the "druggability" of HECT (homologous to E6AP C terminus) ligases, many of which are critically implicated in human pathologies. A major obstacle to optimizing the few available ligands is our incomplete understanding of their inhibitory mechanisms and the structural basis of catalysis in HECT ligases. Here, we survey recent approaches to manipulate the activities of HECT ligases with small molecules to showcase the particular challenges and opportunities these enzymes hold as therapeutic targets.
Collapse
Affiliation(s)
- Dan Chen
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| | - Matthias Gehringer
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical/Medicinal ChemistryUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| |
Collapse
|
9
|
Todaro DR, Augustus-Wallace AC, Klein JM, Haas AL. Oligomerization of the HECT ubiquitin ligase NEDD4-2/NEDD4L is essential for polyubiquitin chain assembly. J Biol Chem 2018; 293:18192-18206. [PMID: 30287686 DOI: 10.1074/jbc.ra118.003716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/19/2018] [Indexed: 01/09/2023] Open
Abstract
The NEDD4-2 (neural precursor cell-expressed developmentally down-regulated 4-2) HECT ligase catalyzes polyubiquitin chain assembly by an ordered two-step mechanism requiring two functionally distinct E2∼ubiquitin-binding sites, analogous to the trimeric E6AP/UBE3A HECT ligase. This conserved catalytic mechanism suggests that NEDD4-2, and presumably all HECT ligases, requires oligomerization to catalyze polyubiquitin chain assembly. To explore this hypothesis, we examined the catalytic mechanism of NEDD4-2 through the use of biochemically defined kinetic assays examining rates of 125I-labeled polyubiquitin chain assembly and biophysical techniques. The results from gel filtration chromatography and dynamic light-scattering analyses demonstrate for the first time that active NEDD4-2 is a trimer. Homology modeling to E6AP revealed that the predicted intersubunit interface has an absolutely conserved Phe-823, substitution of which destabilized the trimer and resulted in a ≥104-fold decrease in k cat for polyubiquitin chain assembly. The small-molecule Phe-823 mimic, N-acetylphenylalanyl-amide, acted as a noncompetitive inhibitor (Ki = 8 ± 1.2 mm) of polyubiquitin chain elongation by destabilizing the active trimer, suggesting a mechanism for therapeutically targeting HECT ligases. Additional kinetic experiments indicated that monomeric NEDD4-2 catalyzes only HECT∼ubiquitin thioester formation and monoubiquitination, whereas polyubiquitin chain assembly requires NEDD4-2 oligomerization. These results provide evidence that the previously identified sites 1 and 2 of NEDD4-2 function in trans to support chain elongation, explicating the requirement for oligomerization. Finally, we identified a conserved catalytic ensemble comprising Glu-646 and Arg-604 that supports HECT-ubiquitin thioester exchange and isopeptide bond formation at the active-site Cys-922 of NEDD4-2.
Collapse
Affiliation(s)
- Dustin R Todaro
- From the Department of Biochemistry and Molecular Biology and
| | | | | | - Arthur L Haas
- From the Department of Biochemistry and Molecular Biology and; the Stanley S. Scott Cancer Center, Louisiana State University School of Medicine, New Orleans, Louisiana 70112.
| |
Collapse
|
10
|
Yao W, Shan Z, Gu A, Fu M, Shi Z, Wen W. WW domain-mediated regulation and activation of E3 ubiquitin ligase Suppressor of Deltex. J Biol Chem 2018; 293:16697-16708. [PMID: 30213861 DOI: 10.1074/jbc.ra118.003781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif-containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip-Su(dx)-mediated Notch ubiquitination.
Collapse
Affiliation(s)
- Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Minjie Fu
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Zhifeng Shi
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200040, China and .,the Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Manning JA, Kumar S. Physiological Functions of Nedd4-2: Lessons from Knockout Mouse Models. Trends Biochem Sci 2018; 43:635-647. [PMID: 30056838 DOI: 10.1016/j.tibs.2018.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Protein modification by ubiquitination plays a key evolutionarily conserved role in regulating membrane proteins. Nedd4-2, a ubiquitin ligase, targets membrane proteins such as ion channels and transporters for ubiquitination. This Nedd4-2-mediated ubiquitination provides a crucial step in controlling the membrane availability of these proteins, thus affecting their signaling and physiological outcomes. In one well-studied example, Nedd4-2 fine-tunes the physiological function of the epithelial sodium channel (ENaC), thus modulating Na+ reabsorption by epithelia to maintain whole-body Na+ homeostasis. This review summarizes the key signaling pathways regulated by Nedd4-2 and the possible implications of such regulation in various pathologies.
Collapse
Affiliation(s)
- Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
12
|
Mund T, Pelham HR. Substrate clustering potently regulates the activity of WW-HECT domain-containing ubiquitin ligases. J Biol Chem 2018; 293:5200-5209. [PMID: 29463679 PMCID: PMC5892558 DOI: 10.1074/jbc.ra117.000934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Indexed: 11/28/2022] Open
Abstract
The Nedd4 family of HECT domain–containing E3 ligases ubiquitinate many transcription factors and signaling proteins, and their activity is tightly regulated. Normally, intramolecular interactions curb the catalytic activity of the HECT domain, but these can be broken by the binding of PY motifs, found on substrate molecules and adaptors, to the WW domains characteristic of this E3 ligase family. This raises the prospect of substrates automatically activating the ligases, frustrating the purpose of ligase regulation. Here we show that soluble protein substrates and adaptors such as α arrestins, even with multiple PY elements, cannot activate ligase activity efficiently. However, we found that polymerization or membrane tethering of these substrates dramatically increases the ligase activity both in vivo and in vitro. Aggregation of luciferase-containing substrates upon heat shock had a similar effect and could also expose cryptic PY elements in the substrates. We inferred that ligase activation critically requires a substantial array of clustered PY motifs and that the formation of such arrays on membranes or in polymeric aggregates may be an essential step in this mode of ligase regulation. We conclude that recruitment of α arrestins to membrane receptors and aggregation of unstable proteins after heat shock may be physiologically relevant mechanisms for triggering ubiquitination by Nedd4 family HECT domain–containing E3 ligases.
Collapse
Affiliation(s)
- Thomas Mund
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Hugh R Pelham
- From the Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|