1
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025; 81:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Lee H. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. J Mol Graph Model 2018; 87:48-55. [PMID: 30502671 DOI: 10.1016/j.jmgm.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/26/2022]
Abstract
Tenebrio molitor antifreeze protein (TmAFP) was simulated with growing ice surfaces such as primary prism, secondary prism, basal, and pyramidal planes. The ice-binding site of TmAFP, which is full of threonine (Thr), binds to the primary-prism plane but does not bind to other ice planes, in agreement with experiments showing the fast adsorption of TmAFP to the primary-prism plane. To mimic the ice-binding site of shorthorn sculpin AFP (ssAFP; type I) that predominantly consists of alanine (Ala) and has the binding affinity to the secondary-prism plane, the ice-binding site of TmAFP was mutated by replacing a few Thr residues with Ala residues, showing that mutated TmAFP binds to the secondary-prism plane, similar to the ice-binding affinity of ssAFP. Ala residues are located at the cavity of ice, while Thr residues form hydrogen bonds with water molecules. When the mutated TmAFP is further modified by removing Thr, it does not bind to the secondary-prism plane. These findings indicate that simulations can successfully capture the experimentally observed binding affinity of AFP to specific ice planes, to an extent dependent on hydrophobicity of the ice-binding site. In particular, the addition of hydrophobic residues influences the ice-binding affinity of TmAFP, while a certain amount of hydrophilic residue is still required for hydrogen-bond interactions, which supports experimental observations regarding the key roles of hydrophobic and hydrophilic interactions on the AFP-ice binding.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do, 16890, South Korea.
| |
Collapse
|
3
|
Mochizuki K, Molinero V. Antifreeze Glycoproteins Bind Reversibly to Ice via Hydrophobic Groups. J Am Chem Soc 2018; 140:4803-4811. [PMID: 29392937 DOI: 10.1021/jacs.7b13630] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antifreeze molecules allow organisms to survive in subzero environments. Antifreeze glycoproteins (AFGPs), produced by polar fish, are the most potent inhibitors of ice recrystallization. To date, the molecular mechanism by which AFGPs bind to ice has not yet been elucidated. Mutation experiments cannot resolve whether the binding occurs through the peptide, the saccharides, or both. Here, we use molecular simulations to determine the mechanism and driving forces for binding of AFGP8 to ice, its selectivity for the primary prismatic plane, and the molecular origin of its exceptional ice recrystallization activity. Consistent with experiments, AFGP8 in simulations preferentially adopts the PPII helix secondary structure in solution. We show that the segregation of hydrophilic and hydrophobic groups in the PPII helix is vital for ice binding. Binding occurs through adsorption of methyl groups of the peptide and disaccharides to ice, driven by the entropy of dehydration of the hydrophobic groups as they nest in the cavities at the ice surface. The selectivity to the primary prismatic plane originates in the deeper cavities it has compared to the basal plane. We estimate the free energy of binding of AFGP8 and the longer AFGPs4-6, and find them to be consistent with the reversible binding demonstrated in experiments. The simulations reveal that AFGP8 binds to ice through a myriad of conformations that it uses to diffuse through the ice surface and find ice steps, to which it strongly adsorbs. We interpret that the existence of multiple, weak binding sites is the key for the exceptional ice recrystallization inhibition activity of AFGPs.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States.,Institute for Fiber Engineering , Shinshu University , Ueda , Nagano 386-8567 , Japan
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|
4
|
Voets IK. From ice-binding proteins to bio-inspired antifreeze materials. SOFT MATTER 2017; 13:4808-4823. [PMID: 28657626 PMCID: PMC5708349 DOI: 10.1039/c6sm02867e] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/16/2017] [Indexed: 05/07/2023]
Abstract
Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.
Collapse
Affiliation(s)
- I K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands. and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands and Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Post Office Box 513, 5600 MD Eindhoven, The Netherlands
| |
Collapse
|
5
|
Qihong Z, Jie L, Xiao X, Qian X, Wei G, Jichen X. PicW orthologs from spruce with differential freezing tolerance expressed in Escherichia coli. Int J Biol Macromol 2017; 101:595-602. [PMID: 28315763 DOI: 10.1016/j.ijbiomac.2017.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
Spruce can grow at an extra low temperature (LT), and is inferred with important antifreezing gene resources. The research here identified 4 different spruce varieties, named as PicW1, PicW2, PicM and PicK. Sequence alignment showed base-substitution and deficiency mutations among them with sequence identity between 97.61% and 99.25%. Each gene was transferred into E. coli, where protein was induced by IPTG (isopropyl-β-d-thiogalactoside). Strains cultured at -5°C showed the lethal dose 50% (LD-50) between 53h and 57h for the transgenic strains, but 35h for the control. Strains cultivated at -20°C showed the LD-50 between 38h and 44h for the transgenic strains, but 25h for the control. Further, the soluble gene proteins were extracted and purified for Differential Scanning Calorimeter (DSC) test, which showed characteristic thermal hysteresis (TH) value of 0.77°C (PicW1), 0.78°C (PicW2), 0.72°C (PicM), and 0.86°C (PicK) respectively, significantly higher than the value of 0.05°C of the control (BSA). Summarily, four homologous proteins showed good antifreeze property with the range from high to low as PicK>PicW2>PicW1>PicM. It suggested that they can be used as resources for genetic engineering of plant cold tolerance.
Collapse
Affiliation(s)
- Zhao Qihong
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| | - Liu Jie
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| | - Xu Xiao
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xu Qian
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Gao Wei
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xu Jichen
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| |
Collapse
|
6
|
Haleva L, Celik Y, Bar-Dolev M, Pertaya-Braun N, Kaner A, Davies PL, Braslavsky I. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins. Biophys J 2016; 111:1143-1150. [PMID: 27653473 PMCID: PMC5034346 DOI: 10.1016/j.bpj.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 06/27/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
Ice-binding proteins (IBPs) bind to ice crystals and control their structure, enlargement, and melting, thereby helping their host organisms to avoid injuries associated with ice growth. IBPs are useful in applications where ice growth control is necessary, such as cryopreservation, food storage, and anti-icing. The study of an IBP's mechanism of action is limited by the technological difficulties of in situ observations of molecules at the dynamic interface between ice and water. We describe herein a new, to our knowledge, apparatus designed to generate a controlled temperature gradient in a microfluidic chip, called a microfluidic cold finger (MCF). This device allows growth of a stable ice crystal that can be easily manipulated with or without IBPs in solution. Using the MCF, we show that the fluorescence signal of IBPs conjugated to green fluorescent protein is reduced upon freezing and recovers at melting. This finding strengthens the evidence for irreversible binding of IBPs to their ligand, ice. We also used the MCF to demonstrate the basal-plane affinity of several IBPs, including a recently described IBP from Rhagium inquisitor. Use of the MCF device, along with a temperature-controlled setup, provides a relatively simple and robust technique that can be widely used for further analysis of materials at the ice/water interface.
Collapse
Affiliation(s)
- Lotem Haleva
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yeliz Celik
- Department of Physics and Astronomy, Ohio University, Athens, Ohio; Department of Physics and Physical Sciences, Marshall University, Huntington, West Virginia
| | - Maya Bar-Dolev
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Avigail Kaner
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Ido Braslavsky
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Department of Physics and Astronomy, Ohio University, Athens, Ohio.
| |
Collapse
|
7
|
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar Drugs 2013; 11:2013-41. [PMID: 23752356 PMCID: PMC3721219 DOI: 10.3390/md11062013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
Antifreeze proteins (AFPs) and glycoproteins (AFGPs), collectively called AF(G)Ps, constitute a diverse class of proteins found in various Arctic and Antarctic fish, as well as in amphibians, plants, and insects. These compounds possess the ability to inhibit the formation of ice and are therefore essential to the survival of many marine teleost fishes that routinely encounter sub-zero temperatures. Owing to this property, AF(G)Ps have potential applications in many areas such as storage of cells or tissues at low temperature, ice slurries for refrigeration systems, and food storage. In contrast to AFGPs, which are composed of repeated tripeptide units (Ala-Ala-Thr)n with minor sequence variations, AFPs possess very different primary, secondary, and tertiary structures. The isolation and purification of AFGPs is laborious, costly, and often results in mixtures, making characterization difficult. Recent structural investigations into the mechanism by which linear and cyclic AFGPs inhibit ice crystallization have led to significant progress toward the synthesis and assessment of several synthetic mimics of AFGPs. This review article will summarize synthetic AFGP mimics as well as current challenges in designing compounds capable of mimicking AFGPs. It will also cover our recent efforts in exploring whether peptoid mimics can serve as structural and functional mimics of native AFGPs.
Collapse
Affiliation(s)
- Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hye Yeon Koh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hye-Eun Shim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hyun-Cheol Kim
- Division of Polar Climate Research, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hak Jun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-32-760-5550; Fax: +82-32-760-5598
| |
Collapse
|
8
|
Shah SHH, Kar RK, Asmawi AA, Rahman MBA, Murad AMA, Mahadi NM, Basri M, Rahman RNZA, Salleh AB, Chatterjee S, Tejo BA, Bhunia A. Solution structures, dynamics, and ice growth inhibitory activity of peptide fragments derived from an antarctic yeast protein. PLoS One 2012; 7:e49788. [PMID: 23209600 PMCID: PMC3509122 DOI: 10.1371/journal.pone.0049788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/12/2012] [Indexed: 12/04/2022] Open
Abstract
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
Collapse
Affiliation(s)
- Syed Hussinien H. Shah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Rajiv K. Kar
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Azren A. Asmawi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | | | | | - Nor M. Mahadi
- Malaysia Genome Institute, UKM Bangi, Selangor, Malaysia
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha A. Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu B. Salleh
- Malaysia Genome Institute, UKM Bangi, Selangor, Malaysia
| | | | - Bimo A. Tejo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I. New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 2012; 9:3249-59. [PMID: 22787007 PMCID: PMC3481565 DOI: 10.1098/rsif.2012.0388] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly defined facets, while hyperactive AFPs produce more varied crystal shapes. These different morphologies are generally considered to be growth shapes. In a series of bright light and fluorescent microscopy observations of ice crystals in solutions containing different AFPs, we show that crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping mechanisms of most moderate and hyperactive AFPs. This study provides key aspects associated with the identification of hyperactive AFPs.
Collapse
Affiliation(s)
- Maya Bar-Dolev
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
10
|
Hobbs RS, Shears MA, Graham LA, Davies PL, Fletcher GL. Isolation and characterization of type I antifreeze proteins from cunner, Tautogolabrus adspersus, order Perciformes. FEBS J 2011; 278:3699-710. [DOI: 10.1111/j.1742-4658.2011.08288.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Patel SN, Graether SP. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochem Cell Biol 2010; 88:223-9. [PMID: 20453925 DOI: 10.1139/o09-183] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antifreeze proteins (AFPs) protect cold-blooded organisms from the damage caused by freezing through their ability to inhibit ice growth. The type I AFP family, found in several fish species, contains proteins that have a high alanine content (>60% of the sequence) and structures that are almost all alpha-helical. We examine the structure of the type I AFP isoforms HPLC6 from winter flounder, shorthorn sculpin 3, and the winter flounder hyperactive type I AFP. The HPLC6 isoform structure consists of a single alpha-helix that is 37 residues long, whereas the shorthorn sculpin 3 isoform consists of two helical regions separated by a kink. The high-resolution structure of the hyperactive type I AFP has yet to be determined, but circular dichroism data and analytical ultracentrifugation suggest that the 195 residue protein is a side-by-side dimer of two alpha-helices. The alanine-rich ice-binding faces of HPLC6 and hyperactive type I AFP are discussed, and we propose that the ice-binding face of the shorthorn sculpin 3 AFP contains Ala14, Ala19, and Ala25. We also propose that the denaturation of hyperactive type I AFP at room temperature is explained by the stabilization of the dimerization interface through hydrogen bonds.
Collapse
Affiliation(s)
- Shruti N Patel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
12
|
Takamichi M, Nishimiya Y, Miura A, Tsuda S. Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 2009; 276:1471-9. [PMID: 19187223 DOI: 10.1111/j.1742-4658.2009.06887.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type III antifreeze protein is naturally expressed as a mixture of sulfopropyl-Sephadex (SP) and quaternary aminoethyl-Sephadex (QAE)-binding isoforms, whose sequence identity is approximately 55%. We studied the ice-binding properties of a SP isoform (nfeAFP6) and the differences from those of a QAE isoform (nfeAFP8); both of these isoforms have been identified from the Japanese fish Zoarces elongatus Kner. The two isoforms possessed ice-shaping ability, such as the creation of an ice bipyramid, but nfeAFP6 was unable to halt crystal growth and exhibited no thermal hysteresis activity. For example, the ice growth rate for nfeAFP6 was 1000-fold higher than that for nfeAFP8 when measured for 0.1 mm protein solution at 0.25 degrees C below the melting point. Nevertheless, nfeAFP6 exhibited full thermal hysteresis activity in the presence of only 1% nfeAFP8 (i.e. [nfeAFP8]/[nfeAFP6] = 0.01), the effectiveness of which was indistinguishable from that of nfeAFP8 alone. We also observed a burst of ice crystal growth from the tip of the ice bipyramid for both isoforms on lowering the temperature. These results suggest that the ice growth inhibitory activity of an antifreeze protein isoform lacking the active component is restored by the addition of a minute amount of the active isoform.
Collapse
Affiliation(s)
- Manabu Takamichi
- Functional Protein Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | | | | |
Collapse
|
13
|
Garner J, Jolliffe KA, Harding MM, Payne RJ. Synthesis of homogeneous antifreeze glycopeptides via a ligation–desulfurisation strategy. Chem Commun (Camb) 2009:6925-7. [DOI: 10.1039/b918021d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Damodaran S. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10918-10923. [PMID: 18044830 DOI: 10.1021/jf0724670] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.
Collapse
|
15
|
Garner J, Harding MM. Design and synthesis of alpha-helical peptides and mimetics. Org Biomol Chem 2007; 5:3577-85. [PMID: 17971985 DOI: 10.1039/b710425a] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alpha-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein-protein and protein-nucleic acid interactions. Strategies for the rational design and synthesis of alpha-helix mimetics have not matured as well as other secondary structure mimetics such as strands and turns. This perspective will focus on developments in the design, synthesis and applications of alpha-helices and mimetics, particularly in the last 5 years. Examples where synthetic compounds have delivered promising biological results will be highlighted as well as opportunities for the design of mimetics of the type I alpha-helical antifreeze proteins.
Collapse
Affiliation(s)
- James Garner
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
16
|
KONTOGIORGOS V, REGAND A, YADA R, GOFF H. ISOLATION AND CHARACTERIZATION OF ICE STRUCTURING PROTEINS FROM COLD-ACCLIMATED WINTER WHEAT GRASS EXTRACT FOR RECRYSTALLIZATION INHIBITION IN FROZEN FOODS. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00112.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Evans RP, Fletcher GL. Type I antifreeze proteins expressed in snailfish skin are identical to their plasma counterparts. FEBS J 2005; 272:5327-36. [PMID: 16218962 DOI: 10.1111/j.1742-4658.2005.04929.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type I antifreeze proteins (AFPs) are usually small, Ala-rich alpha-helical polypeptides found in right-eyed flounders and certain species of sculpin. These proteins are divided into two distinct subclasses, liver type and skin type, which are encoded by separate gene families. Blood plasma from Atlantic (Liparis atlanticus) and dusky (Liparis gibbus) snailfish contain type I AFPs that are significantly larger than all previously described type I AFPs. In this study, full-length cDNA clones that encode snailfish type I AFPs expressed in skin tissues were generated using a combination of library screening and PCR-based methods. The skin clones, which lack both signal and pro-sequences, produce proteins that are identical to circulating plasma AFPs. Although all fish examined consistently express antifreeze mRNA in skin tissue, there is extreme individual variation in liver expression - an unusual phenomenon that has never been reported previously. Furthermore, genomic Southern blot analysis revealed that snailfish AFPs are products of multigene families that consist of up to 10 gene copies per genome. The 113-residue snailfish AFPs do not contain any obvious amino acid repeats or continuous hydrophobic face which typify the structure of most other type I AFPs. These structural differences might have implications for their ice-crystal binding properties. These results are the first to demonstrate a dual liver/skin role of identical type I AFP expression which may represent an evolutionary intermediate prior to divergence into distinct gene families.
Collapse
Affiliation(s)
- Robert P Evans
- Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | |
Collapse
|
18
|
Kwan AHY, Fairley K, Anderberg PI, Liew CW, Harding MM, Mackay JP. Solution Structure of a Recombinant Type I Sculpin Antifreeze Protein,. Biochemistry 2005; 44:1980-8. [PMID: 15697223 DOI: 10.1021/bi047782j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have determined the solution structure of rSS3, a recombinant form of the type I shorthorn sculpin antifreeze protein (AFP), at 278 and 268 K. This AFP contains an unusual sequence of N-terminal residues, together with two of the 11-residue repeats that are characteristic of the type I winter flounder AFP. The solution conformation of the N-terminal region of the sculpin AFP has been assumed to be the critical factor that results in recognition of different ice planes by the sculpin and flounder AFPs. At 278 K, the two repeats units (residues 11-20 and 21-32) in rSS3 form a continuous alpha-helix, with the residues 30-33 in the second repeat somewhat less well defined. Within the N-terminal region, residues 2-6 are well defined and helical and linked to the main helix by a more flexible region comprising residues A7-T11. At 268 K the AFP is overall more helical but retains the apparent hinge region. The helical conformation of the two repeats units is almost identical to the corresponding repeats in the type I winter flounder AFP. We also show that while tetracetylated rSS3 has antifreeze activity comparable to the natural AFP, its overall structure is the same as that of the unacetylated peptide. These data provide some insight into the structural determinants of antifreeze activity and should assist in the development of models that explain the recognition of different ice interfaces by the sculpin and flounder type I AFPs.
Collapse
Affiliation(s)
- Ann H-Y Kwan
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Strom CS, Liu XY, Jia Z. Ice Surface Reconstruction as Antifreeze Protein-Induced Morphological Modification Mechanism. J Am Chem Soc 2004; 127:428-40. [PMID: 15631494 DOI: 10.1021/ja047652y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal growth process by which fish antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) modify the ice morphology is analyzed in the AFP-ice system. A newly identified AFP-induced surface reconstruction mechanism enables one-dimensional helical and irregular globular ice binding surfaces to stabilize secondary, kinetically less stable ice surfaces with variable face indices. Not only are the relative growth rates controlled by the IBS engagement but also the secondary face indices themselves become adjusted in the process of maximizing the AFP-substrate interaction, through attaining the best structural match. The theoretical formulation leads to comprehensive agreement with experiment.
Collapse
Affiliation(s)
- Christina S Strom
- Biophysics and Micro/nanostructures Laboratory, Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | | | | |
Collapse
|
20
|
Harding MM, Anderberg PI, Haymet ADJ. 'Antifreeze' glycoproteins from polar fish. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1381-92. [PMID: 12653993 DOI: 10.1046/j.1432-1033.2003.03488.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antifreeze glycoproteins (AFGPs) constitute the major fraction of protein in the blood serum of Antarctic notothenioids and Arctic cod. Each AFGP consists of a varying number of repeating units of (Ala-Ala-Thr)n, with minor sequence variations, and the disaccharide beta-D-galactosyl-(1-->3)-alpha-N-acetyl-D-galactosamine joined as a glycoside to the hydroxyl oxygen of the Thr residues. These compounds allow the fish to survive in subzero ice-laden polar oceans by kinetically depressing the temperature at which ice grows in a noncolligative manner. In contrast to the more widely studied antifreeze proteins, little is known about the mechanism of ice growth inhibition by AFGPs, and there is no definitive model that explains their properties. This review summarizes the structural and physical properties of AFGPs and advances in the last decade that now provide opportunities for further research in this field. High field NMR spectroscopy and molecular dynamics studies have shown that AFGPs are largely unstructured in aqueous solution. While standard carbohydrate degradation studies confirm the requirement of some of the sugar hydroxyls for antifreeze activity, the importance of following structural elements has not been established: (a) the number of hydroxyls required, (b) the stereochemistry of the sugar hydroxyls (i.e. the requirement of galactose as the sugar), (c) the acetamido group on the first galactose sugar, (d) the stereochemistry of the beta-glycosidic linkage between the two sugars and the alpha-glycosidic linkage to Thr, (e) the requirement of a disaccharide for activity, and (f) the Ala and Thr residues in the polypeptide backbone. The recent successful synthesis of small AFGPs using solution methods and solid-phase chemistry provides the opportunity to perform key structure-activity studies that would clarify the important residues and functional groups required for activity. Genetic studies have shown that the AFGPs present in the two geographically and phylogenetically distinct Antarctic notothenioids and Arctic cod have evolved independently, in a rare example of convergent molecular evolution. The AFGPs exhibit concentration dependent thermal hysteresis with maximum hysteresis (1.2 degrees C at 40 mg x mL-1) observed with the higher molecular mass glycoproteins. The ability to modify the rate and shape of crystal growth and protect cellular membranes during lipid-phase transitions have resulted in identification of a number of potential applications of AFGPs as food additives, and in the cryopreservation and hypothermal storage of cells and tissues.
Collapse
Affiliation(s)
- Margaret M Harding
- School of Chemistry, The University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
21
|
Heneghan A, Haymet A. Liquid-to-crystal heterogeneous nucleation: bubble accelerated nucleation of pure supercooled water. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(02)01835-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Bryk T, Haymet ADJ. Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces. J Chem Phys 2002. [DOI: 10.1063/1.1519538] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|