1
|
Pangestu R, Kahar P, Ogino C, Kondo A. Comparative responses of flocculating and nonflocculating yeasts to cell density and chemical stress in lactic acid fermentation. Yeast 2024; 41:192-206. [PMID: 38081785 DOI: 10.1002/yea.3917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 04/09/2024] Open
Abstract
While flocculation has demonstrated its efficacy in enhancing yeast robustness and ethanol production, its potential application for lactic acid fermentation remains largely unexplored. Our study examined the differences between flocculating and nonflocculating Saccharomyces cerevisiae strains in terms of their metabolic dynamics when incorporating an exogenous lactic acid pathway, across varying cell densities and in the presence of lignocellulose-derived byproducts. Comparative gene expression profiles revealed that cultivating a nonflocculant strain at higher cell density yielded a substantial upregulation of genes associated with glycolysis, energy metabolism, and other key pathways, resulting in elevated levels of fermentation products. Meanwhile, the flocculating strain displayed an inherent ability to sustain high glycolytic activity regardless of the cell density. Moreover, our investigation revealed a significant reduction in glycolytic activity under chemical stress, potentially attributable to diminished ATP supply during the energy investment phase. Conversely, the formation of flocs in the flocculating strain conferred protection against toxic chemicals present in the medium, fostering more stable lactic acid production levels. Additionally, the distinct flocculation traits observed between the two examined strains may be attributed to variations in the nucleotide sequences of the flocculin genes and their regulators. This study uncovers the potential of flocculation for enhanced lactic acid production in yeast, offering insights into metabolic mechanisms and potential gene targets for strain improvement.
Collapse
Affiliation(s)
- Radityo Pangestu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
- National Research and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation (STIN), Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Buechel ER, Pinkett HW. Activity of the pleiotropic drug resistance transcription factors Pdr1p and Pdr3p is modulated by binding site flanking sequences. FEBS Lett 2024; 598:169-186. [PMID: 37873734 PMCID: PMC10843404 DOI: 10.1002/1873-3468.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleiotropic drug resistance (PDR) in Saccharomyces cerevisiae via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3p can differentially regulate PDR.
Collapse
Affiliation(s)
- Evan R. Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
Buechel ER, Pinkett HW. Unraveling the Half and Full Site Sequence Specificity of the Saccharomyces cerevisiae Pdr1p and Pdr3p Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553033. [PMID: 37609128 PMCID: PMC10441396 DOI: 10.1101/2023.08.11.553033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleotropic drug resistance (PDR) in Saccharomyces cerevisiae , via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3 can differentially regulate PDR.
Collapse
|
4
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Vanacloig-Pedros E, Lozano-Pérez C, Alarcón B, Pascual-Ahuir A, Proft M. Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. J Biol Chem 2019; 294:12933-12946. [PMID: 31296662 DOI: 10.1074/jbc.ra119.009291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
Pleiotropic drug resistance arises by the enhanced extrusion of bioactive molecules and is present in a wide range of organisms, ranging from fungi to human cells. A key feature of this adaptation is the sensitive detection of intracellular xenobiotics by transcriptional activators, activating expression of multiple drug exporters. Here, we investigated the selectivity and sensitivity of the budding yeast (Saccharomyces cerevisiae) multidrug response to better understand how differential drug recognition leads to specific activation of drug exporter genes and to drug resistance. Applying live-cell luciferase reporters, we demonstrate that the SNQ2, PDR5, PDR15, and YOR1 transporter genes respond to different mycotoxins, menadione, and hydrogen peroxide in a distinguishable manner and with characteristic amplitudes, dynamics, and sensitivities. These responses correlated with differential sensitivities of the respective transporter mutants to the specific xenobiotics. We further establish a binary vector system, enabling quantitative determination of xenobiotic-transcription factor (TF) interactions in real time. Applying this system we found that the TFs Pdr1, Pdr3, Yrr1, Stb5, and Pdr8 have largely different drug recognition patterns. We noted that Pdr1 is the most promiscuous activator, whereas Yrr1 and Stb5 are selective for ochratoxin A and hydrogen peroxide, respectively. We also show that Pdr1 is rapidly degraded after xenobiotic exposure, which leads to a desensitization of the Pdr1-specific response upon repeated activation. The findings of our work indicate that in the yeast multidrug system, several transcriptional activators with distinguishable selectivities trigger differential activation of the transporter genes.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Carlos Lozano-Pérez
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain
| | - Benito Alarcón
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
6
|
Savitskaya J, Protzko RJ, Li FZ, Arkin AP, Dueber JE. Iterative screening methodology enables isolation of strains with improved properties for a FACS-based screen and increased L-DOPA production. Sci Rep 2019; 9:5815. [PMID: 30967567 PMCID: PMC6456618 DOI: 10.1038/s41598-019-41759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Optimizing microbial hosts for the large-scale production of valuable metabolites often requires multiple mutations and modifications to the host's genome. We describe a three-round screen for increased L-DOPA production in S. cerevisiae using FACS enrichment of an enzyme-coupled biosensor for L-DOPA. Multiple rounds of screening were enabled by a single build of a barcoded in vitro transposon-mediated disruption library. New background strains for screening were built for each iteration using results from previous iterations. The same in vitro transposon-mediated disruption library was integrated by homologous recombination into new background strains in each round of screening. Compared with creating new transposon insertions in each round, this method takes less time and saves the cost of additional sequencing to characterize transposon insertion sites. In the first two rounds of screening, we identified deletions that improved biosensor compartmentalization and, consequently, improved our ability to screen for L-DOPA production. In a final round, we discovered that deletion of heme oxygenase (HMX1) increases total heme concentration and increases L-DOPA production, using dopamine measurement as a proxy. We further demonstrated that deleting HMX1 may represent a general strategy for P450 function improvement by improving activity of a second P450 enzyme, BM3, which performs a distinct reaction.
Collapse
Affiliation(s)
- Judy Savitskaya
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ryan J Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Francesca-Zhoufan Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Environmental Genomics & System Biology, Lawrence Berkeley National Lab, Berkeley, California, USA.
| | - John E Dueber
- University of California, Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, CA, 94720, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Put3 Positively Regulates Proline Utilization in Candida albicans. mSphere 2017; 2:mSphere00354-17. [PMID: 29242833 PMCID: PMC5729217 DOI: 10.1128/msphere.00354-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022] Open
Abstract
Candida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen. The zinc cluster transcription factor Put3 was initially characterized in Saccharomyces cerevisiae as the transcriptional activator of PUT1 and PUT2, two genes acting early in the proline assimilation pathway. We have used phenotypic studies, transcription profiling, and chromatin immunoprecipitation with microarray technology (ChIP-chip) to establish that unlike S. cerevisiae, which only uses proline as a nitrogen source, Candida albicans can use proline as a nitrogen source, a carbon source, or a source of both nitrogen and carbon. However, a C. albicans put3 null mutant cannot grow on proline, suggesting that as in S. cerevisiae, C. albicans Put3 (CaPut3) is required for proline catabolism, and because the C. albicans put3 null mutant grew efficiently on glutamate as the sole carbon or nitrogen source, it appears that CaPut3 also regulates the early genes of the pathway. CaPut3 showed direct binding to the CaPUT1 promoter, and both PUT1 and PUT2 were upregulated in response to proline addition in a Put3-dependent manner, as well as in a C. albicans strain expressing a hyperactive Put3. CaPut3 directs proline degradation even in the presence of a good nitrogen source such as ammonia, which contrasts with S. cerevisiae Put3 (ScPut3)-regulated proline catabolism, which only occurs in the absence of a rich nitrogen source. Thus, while overall proline regulatory circuitry differs between S. cerevisiae and C. albicans, the specific role of Put3 appears fundamentally conserved. IMPORTANCECandida albicans poses a significant threat to the lives of immunocompromised people. Historically, knowledge has been drawn from studies on Saccharomyces cerevisiae to understand the pathogen, and many Candida albicans genes are named after their S. cerevisiae orthologs. Direct studies on the pathogen have, however, revealed differences in the roles of some orthologous proteins in the two yeasts. We show that the Put3 transcription factor allows the pathogen to completely degrade proline to usable nitrogen and carbon by evading regulatory restrictions imposed on its S. cerevisiae ortholog, which mandates conditional use of proline only as a nitrogen source in the baker’s yeast. The ability of Candida albicans to freely obtain nutrients from multiple sources may help it thrive as a commensal and opportunistic pathogen.
Collapse
|
8
|
Nishida-Aoki N, Mori H, Kuroda K, Ueda M. Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast. Curr Genet 2014; 61:153-64. [DOI: 10.1007/s00294-014-0463-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
9
|
Paul S, Moye-Rowley WS. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 2014; 5:143. [PMID: 24795641 PMCID: PMC3997011 DOI: 10.3389/fphys.2014.00143] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
10
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
11
|
Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 2013; 19:1-22. [PMID: 24297686 PMCID: PMC6275743 DOI: 10.2478/s11658-013-0111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pleiotropic drug resistance is a complex phenomenon that involves many proteins that together create a network. One of the common mechanisms of multidrug resistance in eukaryotic cells is the active efflux of a broad range of xenobiotics through ATP-binding cassette (ABC) transporters. Saccharomyces cerevisiae is often used as a model to study such activity because of the functional and structural similarities of its ABC transporters to mammalian ones. Numerous ABC transporters are found in humans and some are associated with the resistance of tumors to chemotherapeutics. Efflux pump modulators that change the activity of ABC proteins are the most promising candidate drugs to overcome such resistance. These modulators can be chemically synthesized or isolated from natural sources (e.g., plant alkaloids) and might also be used in the treatment of fungal infections. There are several generations of synthetic modulators that differ in specificity, toxicity and effectiveness, and are often used for other clinical effects.
Collapse
|
12
|
Brion C, Ambroset C, Sanchez I, Legras JL, Blondin B. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics 2013; 14:681. [PMID: 24094006 PMCID: PMC3870980 DOI: 10.1186/1471-2164-14-681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. RESULTS Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8-16 translocation. CONCLUSIONS This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear to be of particular importance, probably due to nitrogen starvation. Furthermore, we show that the well characterized 8-16 translocation located in SSU1, which is associated with sulfite resistance, can lead to a partial chromosomic amplification in the progeny of strains that carry it, greatly improving fermentation kinetics. This amplification has been detected among other wine yeasts.
Collapse
Affiliation(s)
- Christian Brion
- INRA, UMR1083 Science pour l'Œnologie, 2 Place Viala, Montpellier F-34060, France.
| | | | | | | | | |
Collapse
|
13
|
Schillig R, Morschhäuser J. Analysis of a fungus-specific transcription factor family, theCandida albicanszinc cluster proteins, by artificial activation. Mol Microbiol 2013; 89:1003-17. [DOI: 10.1111/mmi.12327] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Rebecca Schillig
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg; Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg; Germany
| |
Collapse
|
14
|
Steyer D, Ambroset C, Brion C, Claudel P, Delobel P, Sanchez I, Erny C, Blondin B, Karst F, Legras JL. QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics 2012; 13:573. [PMID: 23110365 PMCID: PMC3575298 DOI: 10.1186/1471-2164-13-573] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/04/2012] [Indexed: 12/04/2022] Open
Abstract
Background Wine aroma results from the combination of numerous volatile compounds, some produced by yeast and others produced in the grapes and further metabolized by yeast. However, little is known about the consequences of the genetic variation of yeast on the production of these volatile metabolites, or on the metabolic pathways involved in the metabolism of grape compounds. As a tool to decipher how wine aroma develops, we analyzed, under two experimental conditions, the production of 44 compounds by a population of 30 segregants from a cross between a laboratory strain and an industrial strain genotyped at high density. Results We detected eight genomic regions explaining the diversity concerning 15 compounds, some produced de novo by yeast, such as nerolidol, ethyl esters and phenyl ethanol, and others derived from grape compounds such as citronellol, and cis-rose oxide. In three of these eight regions, we identified genes involved in the phenotype. Hemizygote comparison allowed the attribution of differences in the production of nerolidol and 2-phenyl ethanol to the PDR8 and ABZ1 genes, respectively. Deletion of a PLB2 gene confirmed its involvement in the production of ethyl esters. A comparison of allelic variants of PDR8 and ABZ1 in a set of available sequences revealed that both genes present a higher than expected number of non-synonymous mutations indicating possible balancing selection. Conclusions This study illustrates the value of QTL analysis for the analysis of metabolic traits, and in particular the production of wine aromas. It also identifies the particular role of the PDR8 gene in the production of farnesyldiphosphate derivatives, of ABZ1 in the production of numerous compounds and of PLB2 in ethyl ester synthesis. This work also provides a basis for elucidating the metabolism of various grape compounds, such as citronellol and cis-rose oxide.
Collapse
|
15
|
Suzuki T, Iwahashi Y. Comprehensive gene expression analysis of type B trichothecenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9519-9527. [PMID: 22897823 DOI: 10.1021/jf3020975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Type B trichothecenes, deoxynivalenol (DON) and nivalenol (NIV), are secondary metabolites of Fusarium species and are major pollutants in food and feed products. Recently, the production trend of their derivatives, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and 4-acetylnivalenol (4-AcNIV or fusarenon-X), has been changing in various regions worldwide. Although in vivo behavior has been reported, it is necessary to acquire more detailed information about these derivatives. Here, the yeast PDR5 mutant was used for toxicity evaluation, and the growth test revealed that DON, 15-AcDON, and 4-AcNIV had higher toxicity compared to 3-AcDON and NIV. 15-AcDON exerted the most significant gene expression changes, and cellular localization clustering exhibited repression of mitochondrial ribosomal genes. This study suggests that the toxicity trends of both DON products (DON and its derivatives) and NIV products (NIV and its derivatives) are similar to those observed in mammalian cells, with a notable toxic response to 15-AcDON.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
16
|
Comprehensive profiling of proteome changes upon sequential deletion of deubiquitylating enzymes. J Proteomics 2012; 75:3886-97. [PMID: 22634085 DOI: 10.1016/j.jprot.2012.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/15/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
Abstract
Deubiquitylating enzymes (DUBs) are a large group of proteases that regulate ubiquitin-dependent metabolic pathways by cleaving ubiquitin-protein bonds. Here we present a global study aimed at elucidating the effects DUBs have on protein abundance changes in eukaryotic cells. To this end we compare wild-type Saccharomyces cerevisiae to 20 DUB knock-out strains using quantitative proteomics to measure proteome-wide expression of isotope labeled proteins, and analyze the data in the context of known transcription-factor regulatory networks. Overall we find that protein abundances differ widely between individual deletion strains, demonstrating that removing just a single component from the complex ubiquitin system causes major changes in cellular protein expression. The outcome of our analysis confirms many of the known biological roles for characterized DUBs such as Ubp3p and Ubp8p, and we demonstrate that Sec28p is a novel Ubp3p substrate. In addition we find strong associations for several uncharacterized DUBs providing clues for their possible cellular roles. Hierarchical clustering of all deletion strains reveals pronounced similarities between various DUBs, which corroborate current DUB knowledge and uncover novel functional aspects for uncharacterized DUBs. Observations in our analysis support that DUBs induce both direct and indirect effects on protein abundances.
Collapse
|
17
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
18
|
Diagnosis of Antifungal Drug Resistance Mechanisms in Fungal Pathogens: Transcriptional Gene Regulation. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0055-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Jarosz DF, Lindquist S. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 2011; 330:1820-4. [PMID: 21205668 PMCID: PMC3260023 DOI: 10.1126/science.1195487] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
20
|
Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJJ. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response. Yeast 2010; 27:983-98. [DOI: 10.1002/yea.1807] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Lelandais G, Devaux F. Comparative Functional Genomics of Stress Responses in Yeasts. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:501-15. [DOI: 10.1089/omi.2010.0029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM UMR-S 665, Université Paris Diderot, Paris France
| | - Frédéric Devaux
- Laboratoire de génomique des microorganismes, CNRS FRE3214, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| |
Collapse
|
22
|
Bailly-Bechet M, Braunstein A, Pagnani A, Weigt M, Zecchina R. Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach. BMC Bioinformatics 2010; 11:355. [PMID: 20587029 PMCID: PMC2909222 DOI: 10.1186/1471-2105-11-355] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Transcriptional gene regulation is one of the most important mechanisms in controlling many essential cellular processes, including cell development, cell-cycle control, and the cellular response to variations in environmental conditions. Genes are regulated by transcription factors and other genes/proteins via a complex interconnection network. Such regulatory links may be predicted using microarray expression data, but most regulation models suppose transcription factor independence, which leads to spurious links when many genes have highly correlated expression levels. Results We propose a new algorithm to infer combinatorial control networks from gene-expression data. Based on a simple model of combinatorial gene regulation, it includes a message-passing approach which avoids explicit sampling over putative gene-regulatory networks. This algorithm is shown to recover the structure of a simple artificial cell-cycle network model for baker's yeast. It is then applied to a large-scale yeast gene expression dataset in order to identify combinatorial regulations, and to a data set of direct medical interest, namely the Pleiotropic Drug Resistance (PDR) network. Conclusions The algorithm we designed is able to recover biologically meaningful interactions, as shown by recent experimental results [1]. Moreover, new cases of combinatorial control are predicted, showing how simple models taking this phenomenon into account can lead to informative predictions and allow to extract more putative regulatory interactions from microarray databases.
Collapse
Affiliation(s)
- Marc Bailly-Bechet
- ISI Foundation Viale Settimio Severo 65, Villa Gualino, I-10133 Torino, Italy
| | | | | | | | | |
Collapse
|
23
|
Overexpression of SNG1 causes 6-azauracil resistance in Saccharomyces cerevisiae. Curr Genet 2010; 56:251-63. [PMID: 20424846 DOI: 10.1007/s00294-010-0297-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/04/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
Abstract
The mechanism of action of 6AU, a growth inhibitor for many microorganisms causing depletion of intracellular nucleotide pools of GTP and UTP, is not well understood. To gain insight into the mechanisms leading to 6AU resistance, and in an attempt to uncover novel genes required for this resistance, we undertook a high-copy-number suppressor screening to identify genes whose overexpression could repair the 6AU(S) growth defect caused by rpb1 mutations in Saccharomyces cerevisiae. We have identified SNG1 as a multicopy suppressor of the 6AU(S) growth defect caused by the S. cerevisiae rpb1 mutant. The mechanism by which Sng1 causes 6AU resistance is independent of the transcriptional elongation and of the nucleotide-pool regulation through Imd2 and Ura2, as well as of the Ssm1-mediated 6AU detoxification. This resistance to 6AU is not extended to other uracil analogues, such as 5-fluorouracil, 5FU. In addition, our results suggest that 6AU enters S. cerevisiae cells through the uracil permease Fur4. Our results demonstrate that Sng1 is localised in the plasma membrane and evidence SNG1 and FUR4 genes as determinants of resistance and susceptibility to this inhibitory compound, respectively. Taken together, these results show new mechanisms involved in the resistance and susceptibility to 6AU.
Collapse
|
24
|
MIAO M, CAO HP, ZHONG Y, LIU J, WANG YH, LIU X, ZHANG NH, LIU K. Transcriptional Repressor Rdr1 Negatively Regulates Stress Response in Budding Yeast <I>Saccharomyces cerevisiae</I>*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hazelwood LA, Walsh MC, Pronk JT, Daran JM. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-alpha-acids. Appl Environ Microbiol 2010; 76:318-28. [PMID: 19915041 PMCID: PMC2798648 DOI: 10.1128/aem.01457-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022] Open
Abstract
The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop alpha-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-alpha-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-alpha-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-alpha-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-alpha-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-alpha-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-alpha-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-alpha-acids across the plasma membrane. Furthermore, iso-alpha-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators.
Collapse
Affiliation(s)
- Lucie A. Hazelwood
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands, Heineken Supply Chain, Research and Innovation, Burgemeester Smeetsweg 1, 2380 BB Zoeterwoude, the Netherlands
| | - Michael C. Walsh
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands, Heineken Supply Chain, Research and Innovation, Burgemeester Smeetsweg 1, 2380 BB Zoeterwoude, the Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands, Heineken Supply Chain, Research and Innovation, Burgemeester Smeetsweg 1, 2380 BB Zoeterwoude, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands, Heineken Supply Chain, Research and Innovation, Burgemeester Smeetsweg 1, 2380 BB Zoeterwoude, the Netherlands
| |
Collapse
|
26
|
Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 2009; 9:1029-50. [PMID: 19799636 DOI: 10.1111/j.1567-1364.2009.00578.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
27
|
A pathogenesis assay using Saccharomyces cerevisiae and Caenorhabditis elegans reveals novel roles for yeast AP-1, Yap1, and host dual oxidase BLI-3 in fungal pathogenesis. EUKARYOTIC CELL 2009; 8:1218-27. [PMID: 19502579 DOI: 10.1128/ec.00367-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Treatment of systemic fungal infections is difficult because of the limited number of antimycotic drugs available. Thus, there is an immediate need for simple and innovative systems to assay the contribution of individual genes to fungal pathogenesis. We have developed a pathogenesis assay using Caenorhabditis elegans, an established model host, with Saccharomyces cerevisiae as the invading fungus. We have found that yeast infects nematodes, causing disease and death. Our data indicate that the host produces reactive oxygen species (ROS) in response to fungal infection. Yeast mutants sod1Delta and yap1Delta, which cannot withstand ROS, fail to cause disease, except in bli-3 worms, which carry a mutation in a dual oxidase gene. Chemical inhibition of the NADPH oxidase activity abolishes ROS production in worms exposed to yeast. This pathogenesis assay is useful for conducting systematic, whole-genome screens to identify fungal virulence factors as alternative targets for drug development and exploration of host responses to fungal infections.
Collapse
|
28
|
Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. Drug:H+ antiporters in chemical stress response in yeast. Trends Microbiol 2008; 17:22-31. [PMID: 19062291 DOI: 10.1016/j.tim.2008.09.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/03/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
The emergence of widespread multidrug resistance (MDR) is a serious challenge for therapeutics, food-preservation and crop protection. Frequently, MDR is a result of the action of drug-efflux pumps, which are able to catalyze the extrusion of unrelated chemical compounds. This review summarizes the current knowledge on the Saccharomyces cerevisiae drug:H+ antiporters of the major facilitator superfamily (MFS), a group of MDR transporters that is still characterized poorly in eukaryotes. Particular focus is given here to the physiological role and expression regulation of these transporters, while we provide a unified view of new data emerging from functional genomics approaches. Although traditionally described as drug pumps, evidence reviewed here corroborates the hypothesis that several MFS-MDR transporters might have a natural substrate and that drug transport might occur only fortuitously or opportunistically. Their role in MDR might even result from the transport of endogenous metabolites that affect the partition of cytotoxic compounds indirectly. Finally, the extrapolation of the gathered knowledge on the MDR phenomenon in yeast to pathogenic fungi and higher eukaryotes is discussed.
Collapse
Affiliation(s)
- Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
29
|
Stepanov A, Nitiss KC, Neale G, Nitiss JL. Enhancing drug accumulation in Saccharomyces cerevisiae by repression of pleiotropic drug resistance genes with chimeric transcription repressors. Mol Pharmacol 2008; 74:423-31. [PMID: 18469141 PMCID: PMC2597350 DOI: 10.1124/mol.107.044651] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast is a powerful model system for studying the action of small-molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator pleiotropic drug resistance 1 (Pdr1) fused in-frame to transcription repressors to repress Pdr1-regulated genes. Expression of these chimeric regulators conferred dominant enhancement of sensitivity to a different class of compounds and led to greatly diminished levels of Pdr1p-regulated transcripts, including the yeast p-glycoprotein homolog Pdr5. Enhanced sensitivity was seen for a wide range of small molecules. Biochemical measurements demonstrated enhanced accumulation of rhodamine in yeast cells expressing the chimeric repressors. These repressors of Pdr1p-regulated transcripts can be introduced into large collections of strains such as the Saccharomyces cerevisiae deletion set and enhance the utility of yeast for studying drug action and for mechanism-based drug discovery.
Collapse
Affiliation(s)
- Alexander Stepanov
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
30
|
OBA T, Tashiro K, Kuhara S. Trifluoroleucine-resistant mutant ofSaccharomyces cerevisiae also exhibits pleiotropic drug resistance. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
31
|
Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:1150-65. [PMID: 17513564 PMCID: PMC1951111 DOI: 10.1128/ec.00091-07] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/10/2007] [Indexed: 11/20/2022]
Abstract
The study of eukaryotic membrane proteins has been hampered by a paucity of systems that achieve consistent high-level functional protein expression. We report the use of a modified membrane protein hyperexpression system to characterize three classes of fungal membrane proteins (ABC transporters Pdr5p, CaCdr1p, CaCdr2p, CgCdr1p, CgPdh1p, CkAbc1p, and CneMdr1p, the major facilitator superfamily transporter CaMdr1p, and the cytochrome P450 enzyme CaErg11p) that contribute to the drug resistance phenotypes of five pathogenic fungi and to express human P glycoprotein (HsAbcb1p). The hyperexpression system consists of a set of plasmids that direct the stable integration of a single copy of the expression cassette at the chromosomal PDR5 locus of a modified host Saccharomyces cerevisiae strain, ADDelta. Overexpression of heterologous proteins at levels of up to 29% of plasma membrane protein was achieved. Membrane proteins were expressed with or without green fluorescent protein (GFP), monomeric red fluorescent protein, His, FLAG/His, Cys, or His/Cys tags. Most GFP-tagged proteins tested were correctly trafficked within the cell, and His-tagged proteins could be affinity purified. Kinetic analysis of ABC transporters indicated that the apparent K(m) value and the V(max) value of ATPase activities were not significantly affected by the addition of His tags. The efflux properties of seven fungal drug pumps were characterized by their substrate specificities and their unique patterns of inhibition by eight xenobiotics that chemosensitized S. cerevisiae strains overexpressing ABC drug pumps to fluconazole. The modified hyperexpression system has wide application for the study of eukaryotic membrane proteins and could also be used in the pharmaceutical industry for drug screening.
Collapse
Affiliation(s)
- Erwin Lamping
- Department of Oral Sciences, University of Otago, PO Box 647, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:3065-86. [PMID: 17308034 PMCID: PMC1899933 DOI: 10.1128/mcb.01084-06] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 07/24/2006] [Accepted: 01/16/2007] [Indexed: 11/20/2022] Open
Abstract
We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cell's metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.
Collapse
Affiliation(s)
- Patrice Godard
- Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Fardeau V, Lelandais G, Oldfield A, Salin HN, Lemoine S, Garcia M, Tanty V, Le Crom S, Jacq C, Devaux F. The central role of PDR1 in the foundation of yeast drug resistance. J Biol Chem 2006; 282:5063-5074. [PMID: 17158869 DOI: 10.1074/jbc.m610197200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widespread pleiotropic drug resistance (PDR) phenomenon is well described as the long term selection of genetic variants expressing constitutively high levels of membrane transporters involved in drug efflux. However, the transcriptional cascades leading to the PDR phenotype in wild-type cells are largely unknown, and the first steps of this phenomenon are poorly understood. We investigated the transcriptional mechanisms underlying the establishment of an efficient PDR response in budding yeast. We show that within a few minutes of drug sensing yeast elicits an effective PDR response, involving tens of PDR genes. This early PDR response (ePDR) is highly dependent on the Pdr1p transcription factor, which is also one of the major genetic determinants of long term PDR acquisition. The activity of Pdr1p in early drug response is not drug-specific, as two chemically unrelated drugs, benomyl and fluphenazine, elicit identical, Pdr1p-dependent, ePDR patterns. Our data also demonstrate that Pdr1p is an original stress response factor, the DNA binding properties of which do not depend on the presence of drugs. Thus, Pdr1p is a promoter-resident regulator involved in both basal expression and rapid drug-dependent induction of PDR genes.
Collapse
Affiliation(s)
- Vivienne Fardeau
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Gaëlle Lelandais
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Andrew Oldfield
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Héle Ne Salin
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Sophie Lemoine
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Mathilde Garcia
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Véronique Tanty
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Stéphane Le Crom
- Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France; Laboratoire de Biologie Moléculaire du Développement, INSERM U368, and the Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Claude Jacq
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France; Plate-forme Transcriptome IFR36, Ecole Normale Supérieure, 75230 Paris cedex 05, France
| | - Frédéric Devaux
- Laboratoire de Génétique Moléculaire, CNRS UMR8541, the Ecole Normale Supérieure, 75230 Paris cedex 05, France.
| |
Collapse
|
34
|
Guan Q, Zheng W, Tang S, Liu X, Zinkel RA, Tsui KW, Yandell BS, Culbertson MR. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast. PLoS Genet 2006; 2:e203. [PMID: 17166056 PMCID: PMC1657058 DOI: 10.1371/journal.pgen.0020203] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/18/2006] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd+) and mutant (Nmd−) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% ± 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd− strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are available. Genes determine the structure of proteins through transcription and translation in which an RNA copy of the gene is made (mRNA) and then translated to make the protein. Cellular protein levels reflect the relative rates of mRNA synthesis and degradation, which are subject to multiple layers of controls. Mechanisms also exist to ensure the quality of each mRNA. One quality control mechanism called nonsense-mediated mRNA decay (NMD) triggers the rapid degradation of mRNAs containing coding errors that would otherwise lead to the production of non-functional or potentially deleterious proteins. NMD occurs in yeasts, plants, flies, worms, mice, and humans. In humans, NMD affects the etiology of genetic disorders by affecting the expression of genes that carry disease-causing mutations. Besides quality assurance, NMD plays another role in gene expression by controlling the abundance of hundreds of normal mRNAs that are devoid of coding errors. In this paper, the authors used DNA arrays to monitor the relative decay rates of all mRNAs in budding yeast and found a subset where decay rates were dependent on NMD. Many of the corresponding proteins perform related functional roles affecting both the structure and behavior of chromosomes and the structure and integrity of the cell surface.
Collapse
Affiliation(s)
- Qiaoning Guan
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Wei Zheng
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shijie Tang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Xiaosong Liu
- Department of Physics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert A Zinkel
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kam-Wah Tsui
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael R Culbertson
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
MacPherson S, Larochelle M, Turcotte B. A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 2006; 70:583-604. [PMID: 16959962 PMCID: PMC1594591 DOI: 10.1128/mmbr.00015-06] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The trace element zinc is required for proper functioning of a large number of proteins, including various enzymes. However, most zinc-containing proteins are transcription factors capable of binding DNA and are named zinc finger proteins. They form one of the largest families of transcriptional regulators and are categorized into various classes according to zinc-binding motifs. This review focuses on one class of zinc finger proteins called zinc cluster (or binuclear) proteins. Members of this family are exclusively fungal and possess the well-conserved motif CysX(2)CysX(6)CysX(5-12)CysX(2)CysX(6-8)Cys. The cysteine residues bind to two zinc atoms, which coordinate folding of the domain involved in DNA recognition. The first- and best-studied zinc cluster protein is Gal4p, a transcriptional activator of genes involved in the catabolism of galactose in the budding yeast Saccharomyces cerevisiae. Since the discovery of Gal4p, many other zinc cluster proteins have been characterized; they function in a wide range of processes, including primary and secondary metabolism and meiosis. Other roles include regulation of genes involved in the stress response as well as pleiotropic drug resistance, as demonstrated in budding yeast and in human fungal pathogens. With the number of characterized zinc cluster proteins growing rapidly, it is becoming more and more apparent that they are important regulators of fungal physiology.
Collapse
Affiliation(s)
- Sarah MacPherson
- Department of Microbiology and Immunology, Royal Victoria Hospital, McGill University, Montréal, Québec, Canada H3A 1A
| | | | | |
Collapse
|
36
|
Jungwirth H, Kuchler K. Yeast ABC transporters-- a tale of sex, stress, drugs and aging. FEBS Lett 2005; 580:1131-8. [PMID: 16406363 DOI: 10.1016/j.febslet.2005.12.050] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 12/31/2022]
Abstract
Yeast ATP-binding cassette (ABC) proteins are implicated in many biological phenomena, often acting at crossroads of vital cellular processes. Their functions encompass peptide pheromone secretion, regulation of mitochondrial function, vacuolar detoxification, as well as pleiotropic drug resistance and stress adaptation. Because yeast harbors several homologues of mammalian ABC proteins with medical importance, understanding their molecular mechanisms, substrate interaction and three-dimensional structure of yeast ABC proteins might help identifying new approaches aimed at combating drug resistance or other ABC-mediated diseases. This review provides a comprehensive discussion on the functions of the ABC protein family in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Helmut Jungwirth
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University Vienna, Campus Vienna Biocenter, Austria
| | | |
Collapse
|
37
|
Coste AT, Karababa M, Ischer F, Bille J, Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. EUKARYOTIC CELL 2005; 3:1639-52. [PMID: 15590837 PMCID: PMC539021 DOI: 10.1128/ec.3.6.1639-1652.2004] [Citation(s) in RCA: 307] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ABC transporter genes CDR1 and CDR2 can be upregulated in Candida albicans developing resistance to azoles or can be upregulated by exposing cells transiently to drugs such as fluphenazine. The cis-acting drug-responsive element (DRE) present in the promoters of both genes and necessary for their upregulation contains 5'-CGG-3' triplets that are often recognized by transcriptional activators with Zn(2)-Cys(6) fingers. In order to isolate regulators of CDR1 and CDR2, the C. albicans genome was searched for genes encoding proteins with Zn(2)-Cys(6) fingers. Interestingly, three of these genes were tandemly arranged near the mating locus. Their involvement in CDR1 and CDR2 upregulation was addressed because a previous study demonstrated a link between mating locus homozygosity and azole resistance. The deletion of only one of these genes (orf19.3188) was sufficient to result in a loss of transient CDR1 and CDR2 upregulation by fluphenazine and was therefore named TAC1 (transcriptional activator of CDR genes). Tac1p has a nuclear localization, and a fusion of Tac1p with glutathione S-transferase could bind the cis-acting regulatory DRE in both the CDR1 and the CDR2 promoters. TAC1 is also relevant for azole resistance, since a TAC1 allele (TAC1-2) recovered from an azole-resistant strain could trigger constitutive upregulation of CDR1 and CDR2 in an azole-susceptible laboratory strain. Transcript profiling experiments performed with a TAC1 mutant and a revertant containing TAC1-2 revealed not only CDR1 and CDR2 as targets of TAC1 regulation but also other genes (RTA3, IFU5, and HSP12) that interestingly contained a DRE-like element in their promoters. In conclusion, TAC1 appears to be the first C. albicans transcription factor involved in the control of genes mediating antifungal resistance.
Collapse
Affiliation(s)
- Alix T Coste
- Institute of Microbiology, University Hospital Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Lucau-Danila A, Lelandais G, Kozovska Z, Tanty V, Delaveau T, Devaux F, Jacq C. Early expression of yeast genes affected by chemical stress. Mol Cell Biol 2005; 25:1860-8. [PMID: 15713640 PMCID: PMC549374 DOI: 10.1128/mcb.25.5.1860-1868.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The variety of environmental stresses is probably the major challenge imposed on transcription activators and the transcriptional machinery. To precisely describe the very early genomic response developed by yeast to accommodate a chemical stress, we performed time course analyses of the modifications of the yeast gene expression program which immediately follows the addition of the antimitotic drug benomyl. Similar analyses were conducted with different isogenic yeast strains in which genes coding for relevant transcription factors were deleted and coupled with efficient bioinformatics tools. Yap1 and Pdr1, two well-known key mediators of stress tolerance, appeared to be responsible for the very rapid establishment of a transient transcriptional response encompassing 119 genes. Yap1, which plays a predominant role in this response, binds, in vivo, promoters of genes which are not automatically up-regulated. We proposed that Yap1 nuclear localization and DNA binding are necessary but not sufficient to elicit the specificity of the chemical stress response.
Collapse
Affiliation(s)
- A Lucau-Danila
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Imrichova D, Sarinova M, Cernicka J, Gbelska Y, Subik J. -mediated expression in. FEMS Yeast Res 2005; 5:323-9. [PMID: 15691737 DOI: 10.1016/j.femsyr.2004.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/26/2004] [Accepted: 11/18/2004] [Indexed: 10/26/2022] Open
Abstract
The b-Zip transcription factor Yap1p plays an important role in oxidative stress response and multidrug resistance in Saccharomyces cerevisiae. We have previously demonstrated that the KNQ1 gene, encoding a multidrug transporter of the major facilitator superfamily in Kluyveromyces lactis and containing two potential Yap1p response elements in its promoter, is a putative transcriptional target of KlYap1p, the structural and functional homologue of ScYap1p. In this work, we provide evidence that KlYAP1 controls the expression of the KNQ1 gene. Using a P(KNQ1)-gusA fusion construct we showed that the expression of KNQ1 is induced upon cell treatment with the oxidizing agents H2O2 and menadione and that this induction is mediated by KlYap1p. These results were confirmed by Northern-blot analysis showing that the expression of KNQ1 is responsive to hydrogen peroxide and dependent on the presence of KlYap1p. The role of KlYAP1 in the control of KNQ1 expression was further demonstrated by EMSA experiments and drug resistance assays. These results clearly demonstrate the involvement of the KlYap1p transcription factor in the control of KNQ1 gene expression.
Collapse
Affiliation(s)
- Denisa Imrichova
- Department of Microbiology and Virology, Comenius University in Bratislava, Mlynska dolina B-2, 842 15 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
40
|
Chua G, Robinson MD, Morris Q, Hughes TR. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 2005; 7:638-46. [PMID: 15556037 DOI: 10.1016/j.mib.2004.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A major objective in post-genome research is to fully understand the transcriptional control of each gene and the targets of each transcription factor. In yeast, large-scale experimental and computational approaches have been applied to identify co-regulated genes, cis regulatory elements, and transcription factor DNA binding sites in vivo. Methods for modeling and predicting system behavior, and for reconciling discrepancies among data types, are being explored. The results indicate that a complete and comprehensive yeast transcriptional network will ultimately be achieved.
Collapse
Affiliation(s)
- Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Room 307, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
41
|
Onda M, Ota K, Chiba T, Sakaki Y, Ito T. Analysis of gene network regulating yeast multidrug resistance by artificial activation of transcription factors: involvement of Pdr3 in salt tolerance. Gene 2004; 332:51-9. [PMID: 15145054 DOI: 10.1016/j.gene.2004.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/29/2004] [Accepted: 02/04/2004] [Indexed: 11/23/2022]
Abstract
We established a strategy to constitutively activate Zn(2)Cys(6)-type protein by fusing its DNA-binding domain with the VP16 trans-activation domain. To explore gene network regulating yeast multidrug resistance, the strategy was applied to Pdr1, Pdr3 and Yrr1, known to regulate multidrug resistance, as well as three uncharacterized Yrr1-related transcription factors. DNA microarray analysis revealed that all of the six mutants induce typical drug transporter genes including SNQ2 and YOR1, suggesting redundancy in regulation. On the other hand, each displays a unique spectrum of targets, which is coincident with the phylogenetic tree of the transcription factors and presumably reflects their functional specification. Indeed, careful analysis of target genes specific to each transcription factor led us to reveal an unexpected role for Pdr3 in salt tolerance. The strategy would thus contribute not only to identify target genes but to reveal redundancy and specificity in complex gene regulatory networks.
Collapse
Affiliation(s)
- Miyuki Onda
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
42
|
Gaur NA, Puri N, Karnani N, Mukhopadhyay G, Goswami SK, Prasad R. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res 2004; 4:389-99. [PMID: 14734019 DOI: 10.1016/s1567-1356(03)00204-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have earlier shown that transcriptional activation of the Candida drug resistance gene, CDR1, is linked to various stresses wherein a proximal promoter (-345 bp from the transcription start point (TSP)) was found to be predominantly more responsive. In this study we have examined basal expression of the CDR1 proximal promoter by employing a Renilla luciferase reporter system. We observed that upon sequential deletion of the proximal promoter, there was modulation in basal reporter activity. The reporter activity was highest (2.3-fold) in NGY261 (-261 bp from TSP), and was reduced upon subsequent deletions. DNase I footprinting revealed four protected regions (W1, W2, W3 and W4) in the proximal promoter which could represent possible trans-acting factor binding sites and thus might be involved in CDR1 expression. Site-directed mutational analysis of three of these protected regions did not significantly affect the basal reporter activity, however, the mutation of W1 led to a considerable enhancement in reporter activity (approximately 4-fold) and was designated a negative regulatory element (NRE). Mutation as well as deletion of the W1 sequence in the native promoter (-1147 bp from TSP) and sequential deletion of the 5'-flanking region-harboring W1 (NRE) also resulted in enhanced promoter reporter activity. When the reporter activity of native (NPY1147) and NRE-mutated (NGYM1147) promoter integrants was monitored throughout the growth phase of Candida albicans, there was modulation in reporter activity in both integrants, but interestingly the level of basal reporter activity of the NRE-mutated promoter was always approximately 3-fold higher than that of the native promoter. UV cross-linking and affinity purification confirmed that a purified approximately 55-kDa nuclear protein specifically interacts with the NRE. Taken together, we have identified a NRE and purified its interactive protein, which may be involved in controlling basal expression of CDR1.
Collapse
Affiliation(s)
- Naseem Akhtar Gaur
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110-067, India
| | | | | | | | | | | |
Collapse
|
43
|
Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C. Competitive Promoter Occupancy by Two Yeast Paralogous Transcription Factors Controlling the Multidrug Resistance Phenomenon. J Biol Chem 2003; 278:52641-50. [PMID: 14512416 DOI: 10.1074/jbc.m309580200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly flexible gene expression programs are required to allow cell growth in the presence of a wide variety of chemicals. We used genome-wide expression analyses coupled with chromatin immunoprecipitation experiments to study the regulatory relationships between two very similar yeast transcription factors involved in the control of the multidrug resistance phenomenon. Yrm1 (Yor172w) is a new zinc finger transcription factor, the overproduction of which decreases the level of transcription of the target genes of Yrr1, a zinc finger transcription factor controlling the expression of several membrane transporter-encoding genes. Surprisingly, the absence of YRR1 releases the transcriptional activity of Yrm1, which then up-regulates 23 genes, 14 of which are also direct target genes of Yrr1. Chromatin immunoprecipitation experiments confirmed that Yrm1 binds to the promoters of the up-regulated genes only in yeast strains from which YRR1 has been deleted. This sophisticated regulatory program can be associated with drug resistance phenotypes of the cell. The program-specific distribution of paired transcription factors throughout the genome may be a general mechanism by which similar transcription factors regulate overlapping gene expression programs in response to chemical stress.
Collapse
Affiliation(s)
- Ancuta Lucau-Danila
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm 75230 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
44
|
Current awareness on yeast. Yeast 2003; 20:1007-14. [PMID: 14587515 DOI: 10.1002/yea.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2447285 DOI: 10.1002/cfg.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|