1
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Herbst R, Huijbers MG, Oury J, Burden SJ. Building, Breaking, and Repairing Neuromuscular Synapses. Cold Spring Harb Perspect Biol 2024; 16:a041490. [PMID: 38697654 PMCID: PMC11065174 DOI: 10.1101/cshperspect.a041490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.
Collapse
Affiliation(s)
- Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Centre LUMC, 2300 RC Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Centre LUMC, 2333 ZA Leiden, the Netherlands
| | - Julien Oury
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, New York 10016, USA
| | - Steven J Burden
- Neurology Department, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
3
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Chen T, Tang X, Wang Z, Feng F, Xu C, Zhao Q, Wu Y, Sun H, Chen Y. Inhibition of Son of Sevenless Homologue 1 (SOS1): Promising therapeutic treatment for KRAS-mutant cancers. Eur J Med Chem 2023; 261:115828. [PMID: 37778239 DOI: 10.1016/j.ejmech.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Kristen rat sarcoma (KRAS) is one of the most common oncogenes in human cancers. As a guanine nucleotide exchange factor, Son of Sevenless Homologue 1 (SOS1) represents a potential therapeutic concept for the treatment of KRAS-mutant cancers because of its activation on KRAS and downstream signaling pathways. In this review, we provide a comprehensive overview of the structure, biological function, and regulation of SOS1. We also focus on the recent advances in SOS1 inhibitors and emphasize their binding modes, structure-activity relationships and pharmacological activities. We hope that this publication can provide a comprehensive compendium on the rational design of SOS1 inhibitors.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xu Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Feng Feng
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, People's Republic of China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Medina‐Moreno A, Henríquez JP. Maturation of a postsynaptic domain: Role of small Rho GTPases in organising nicotinic acetylcholine receptor aggregates at the vertebrate neuromuscular junction. J Anat 2022; 241:1148-1156. [PMID: 34342888 PMCID: PMC9558164 DOI: 10.1111/joa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse formed between a motor axon and a skeletal muscle fibre that allows muscle contraction and the coordinated movement in many species. A main hallmark of the mature NMJ is the assembly of nicotinic acetylcholine receptor (nAChR) aggregates in the muscle postsynaptic domain, that distributes in perfect apposition to presynaptic motor terminals. To assemble its unique functional architecture, initial embryonic NMJs undergo an early postnatal maturation process characterised by the transformation of homogenous nAChR-containing plaques to elaborate and branched pretzel-like structures. In spite of a detailed morphological characterisation, the molecular mechanisms controlling the intracellular scaffolding that organises a postsynaptic domain at the mature NMJ have not been fully elucidated. In this review, we integrate evidence of key processes and molecules that have shed light on our current understanding of the NMJ maturation process. On the one hand, we consider in vitro studies revealing the potential role of podosome-like structures to define discrete low nAChR-containing regions to consolidate a plaque-to-pretzel transition at the NMJ. On the other hand, we focus on in vitro and in vivo evidence demonstrating that members of the Ras homologous (Rho) protein family of small GTPases (small Rho GTPases) play indispensable roles on NMJ maturation by regulating the stability of nAChR aggregates. We combine this evidence to propose that small Rho GTPases are key players in the assembly of podosome-like structures that drive the postsynaptic maturation of vertebrate NMJs.
Collapse
Affiliation(s)
- Angelymar Medina‐Moreno
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab)Department of Cell BiologyFaculty of Biological SciencesCenter for Advanced Microscopy (CMA BioBio)Universidad de ConcepciónConcepciónChile
| |
Collapse
|
8
|
Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat Commun 2022; 13:3180. [PMID: 35676269 PMCID: PMC9178026 DOI: 10.1038/s41467-022-30778-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/07/2022] [Indexed: 11/08/2022] Open
Abstract
Formation and maintenance of neuromuscular junctions (NMJs) are essential for skeletal muscle function, allowing voluntary movements and maintenance of the muscle tone, thereby preventing atrophy. Generation of NMJs depends on the interaction of motor neurons with skeletal muscle fibers, which initiates a cascade of regulatory events that is essential for patterning of acetylcholine receptor (AChR) clusters at specific sites of the sarcolemma. Here, we show that muscle-specific miRNAs of the miR-1/206/133 family are crucial regulators of a signaling cascade comprising DOK7-CRK-RAC1, which is critical for stabilization and anchoring of postsynaptic AChRs during NMJ development and maintenance. We describe that posttranscriptional repression of CRK by miR-1/206/133 is essential for balanced activation of RAC1. Failure to adjust RAC1 activity severely compromises NMJ function, causing respiratory failure in neonates and neuromuscular symptoms in adult mice. We conclude that miR-1/206/133 serve a specific function for NMJs but are dispensable for skeletal muscle development. The miR-1/133/206 gene family codes for the most abundant microRNAs in striated muscles. Here, Klockner et al show that inactivation of all family members in skeletal muscle prevents formation of normal neuromuscular junctions due to increased expression of the adaptor protein CRK.
Collapse
|
9
|
Boëx M, Cottin S, Halliez M, Bauché S, Buon C, Sans N, Montcouquiol M, Molgó J, Amar M, Ferry A, Lemaitre M, Rouche A, Langui D, Baskaran A, Fontaine B, Messéant J, Strochlic L. The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Sci Signal 2022; 15:eabg4982. [PMID: 35580169 DOI: 10.1126/scisignal.abg4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Collapse
Affiliation(s)
- Myriam Boëx
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Steve Cottin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Marius Halliez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Stéphanie Bauché
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Céline Buon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Nathalie Sans
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Mireille Montcouquiol
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Jordi Molgó
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Muriel Amar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Arnaud Ferry
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Mégane Lemaitre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du Petit Animal, Paris 75013, France
| | - Andrée Rouche
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Dominique Langui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Asha Baskaran
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Bertrand Fontaine
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Service de Neuro-Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris 75013, France
| | - Julien Messéant
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Laure Strochlic
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| |
Collapse
|
10
|
Alvarez-Suarez P, Nowak N, Protasiuk-Filipunas A, Yamazaki H, Prószyński TJ, Gawor M. Drebrin Regulates Acetylcholine Receptor Clustering and Organization of Microtubules at the Postsynaptic Machinery. Int J Mol Sci 2021; 22:9387. [PMID: 34502296 PMCID: PMC8430516 DOI: 10.3390/ijms22179387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
Proper muscle function depends on the neuromuscular junctions (NMJs), which mature postnatally to complex "pretzel-like" structures, allowing for effective synaptic transmission. Postsynaptic acetylcholine receptors (AChRs) at NMJs are anchored in the actin cytoskeleton and clustered by the scaffold protein rapsyn, recruiting various actin-organizing proteins. Mechanisms driving the maturation of the postsynaptic machinery and regulating rapsyn interactions with the cytoskeleton are still poorly understood. Drebrin is an actin and microtubule cross-linker essential for the functioning of the synapses in the brain, but its role at NMJs remains elusive. We used immunohistochemistry, RNA interference, drebrin inhibitor 3,5-bis-trifluoromethyl pyrazole (BTP2) and co-immunopreciptation to explore the role of this protein at the postsynaptic machinery. We identify drebrin as a postsynaptic protein colocalizing with the AChRs both in vitro and in vivo. We also show that drebrin is enriched at synaptic podosomes. Downregulation of drebrin or blocking its interaction with actin in cultured myotubes impairs the organization of AChR clusters and the cluster-associated microtubule network. Finally, we demonstrate that drebrin interacts with rapsyn and a drebrin interactor, plus-end-tracking protein EB3. Our results reveal an interplay between drebrin and cluster-stabilizing machinery involving rapsyn, actin cytoskeleton, and microtubules.
Collapse
Affiliation(s)
- Paloma Alvarez-Suarez
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Natalia Nowak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Anna Protasiuk-Filipunas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Hiroyuki Yamazaki
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;
| | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| | - Marta Gawor
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (P.A.-S.); (N.N.); (A.P.-F.); (T.J.P.)
| |
Collapse
|
11
|
Luttrell SM, Smith AST, Mack DL. Creating stem cell-derived neuromuscular junctions in vitro. Muscle Nerve 2021; 64:388-403. [PMID: 34328673 PMCID: PMC9292444 DOI: 10.1002/mus.27360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Recent development of novel therapies has improved mobility and quality of life for people suffering from inheritable neuromuscular disorders. Despite this progress, the majority of neuromuscular disorders are still incurable, in part due to a lack of predictive models of neuromuscular junction (NMJ) breakdown. Improvement of predictive models of a human NMJ would be transformative in terms of expanding our understanding of the mechanisms that underpin development, maintenance, and disease, and as a testbed with which to evaluate novel therapeutics. Induced pluripotent stem cells (iPSCs) are emerging as a clinically relevant and non‐invasive cell source to create human NMJs to study synaptic development and maturation, as well as disease modeling and drug discovery. This review will highlight the recent advances and remaining challenges to generating an NMJ capable of eliciting contraction of stem cell‐derived skeletal muscle in vitro. We explore the advantages and shortcomings of traditional NMJ culturing platforms, as well as the pioneering technologies and novel, biomimetic culturing systems currently in use to guide development and maturation of the neuromuscular synapse and extracellular microenvironment. Then, we will explore how this NMJ‐in‐a‐dish can be used to study normal assembly and function of the efferent portion of the neuromuscular arc, and how neuromuscular disease‐causing mutations disrupt structure, signaling, and function.
Collapse
Affiliation(s)
- Shawn M Luttrell
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Alec S T Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Cheng M, Ye X, Dai J, Sun F. SOS1 promotes epithelial-mesenchymal transition of Epithelial Ovarian Cancer(EOC) cells through AKT independent NF-κB signaling pathway. Transl Oncol 2021; 14:101160. [PMID: 34175715 PMCID: PMC8242062 DOI: 10.1016/j.tranon.2021.101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
We aimed to explore the role and mechanism of SOS1 (Son of sevenless homolog 1) in malignant behaviors of epithelial ovarian cancer (EOC) cells Hey with high metastatic potential. Firstly, compared with Hey-WT (wild type) and Hey-NT (none targeted) cells, Hey-SOS1i cells showed decreased polarities, disorders in cytoskeleton arrangement. Numbers of transwell migrated, invaded, intravasation cells and extravasated cells were decreased significantly. Hey-NT cells and Hey-SOS1i cells were employed to establish a peritoneal dissemination model in nude mice. Hey-SOS1i cells formed less implantation metastatic foci in the abdominal cavity than Hey-NT cells, especially on the intestine and diaphragm in the 5th week after the tumor cells were injected intraperitoneally. SOS1 knockdown in Hey cells resulted in increased E-cadherin and decreased Vimentin, N-cadherin, MMP2, and MMP9, together with reduced Snail and activation of NF-κB pathway. Together, these results suggest SOS1 might induce EMT through activating AKT independent NF-κB pathway and the transcriptive activity of Snail, and subsequently regulate the cytoskeleton reprogramming and cell motility of Hey, one of EOC cells with high metastatic potential. This may provide some new targets for the treatment of ovarian cancer with high metastatic potential.
Collapse
Affiliation(s)
- Min Cheng
- Department of Reproductive Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, P.R. China
| | - Xiaolin Ye
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Feiji Sun
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, P.R. China.
| |
Collapse
|
13
|
An Inside Job: Molecular Determinants for Postsynaptic Localization of Nicotinic Acetylcholine Receptors. Molecules 2021; 26:molecules26113065. [PMID: 34063759 PMCID: PMC8196675 DOI: 10.3390/molecules26113065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission at neuromuscular and autonomic ganglionic synapses in the peripheral nervous system. The postsynaptic localization of muscle ((α1)2β1γδ) and neuronal ((α3β4)2β4) nicotinic receptors at these synapses is mediated by interactions between the nAChR intracellular domains and cytoplasmic scaffolding proteins. Recent high resolution structures and functional studies provide new insights into the molecular determinants that mediate these interactions. Surprisingly, they reveal that the muscle nAChR binds 1–3 rapsyn scaffolding molecules, which dimerize and thereby form an interconnected lattice between receptors. Moreover, rapsyn binds two distinct sites on the nAChR subunit cytoplasmic loops; the MA-helix on one or more subunits and a motif specific to the β subunit. Binding at the latter site is regulated by agrin-induced phosphorylation of βY390, and increases the stoichiometry of rapsyn/AChR complexes. Similarly, the neuronal nAChR may be localized at ganglionic synapses by phosphorylation-dependent interactions with 14-3-3 adaptor proteins which bind specific motifs in each of the α3 subunit cytoplasmic loops. Thus, postsynaptic localization of nAChRs is mediated by regulated interactions with multiple scaffolding molecules, and the stoichiometry of these complexes likely helps regulate the number, density, and stability of receptors at the synapse.
Collapse
|
14
|
Barrantes FJ. Possible implications of dysregulated nicotinic acetylcholine receptor diffusion and nanocluster formation in myasthenia gravis. Neural Regen Res 2021; 16:242-246. [PMID: 32859770 PMCID: PMC7896218 DOI: 10.4103/1673-5374.290880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myasthenia gravis is a rare and invalidating disease affecting the neuromuscular junction of voluntary muscles. The classical form of this autoimmune disease is characterized by the presence of antibodies against the most abundant protein in the neuromuscular junction, the nicotinic acetylcholine receptor. Other variants of the disease involve autoimmune attack of non-receptor scaffolding proteins or enzymes essential for building or maintaining the integrity of this peripheral synapse. This review summarizes the participation of the above proteins in building the neuromuscular junction and the destruction of this cholinergic synapse by autoimmune aggression in myasthenia gravis. The review also covers the application of a powerful biophysical technique, superresolution optical microscopy, to image the nicotinic receptor in live cells and follow its motional dynamics. The hypothesis is entertained that anomalous nanocluster formation by antibody crosslinking may lead to accelerated endocytic internalization and elevated turnover of the receptor, as observed in myasthenia gravis.
Collapse
|
15
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
16
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
17
|
Cao M, Koneczny I, Vincent A. Myasthenia Gravis With Antibodies Against Muscle Specific Kinase: An Update on Clinical Features, Pathophysiology and Treatment. Front Mol Neurosci 2020; 13:159. [PMID: 32982689 PMCID: PMC7492727 DOI: 10.3389/fnmol.2020.00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease that impairs neuromuscular transmission leading to generalized muscle weakness. Compared to the more common myasthenia gravis with antibodies against the acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory muscles, with more frequent and severe myasthenic crises. Treatments are usually less effective with the need for prolonged, high doses of steroids and other immunosuppressants to control symptoms. Under physiological condition, MuSK regulates a phosphorylation cascade which is fundamental for the development and maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin, secreted by the motor nerve terminal into the synaptic cleft, binds to low density lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG, monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK activation and leading to the dispersal of AChR clusters. Lower levels of divalent MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to the pathogenesis of the disease remains controversial. This review aims to provide a detailed update on the epidemiological and clinical features of MuSK-MG, focusing on the pathophysiological mechanisms and the latest indications regarding the efficacy and safety of different treatment options.
Collapse
Affiliation(s)
- Michelangelo Cao
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Bernadzki KM, Daszczuk P, Rojek KO, Pęziński M, Gawor M, Pradhan BS, de Cicco T, Bijata M, Bijata K, Włodarczyk J, Prószyński TJ, Niewiadomski P. Arhgef5 Binds α-Dystrobrevin 1 and Regulates Neuromuscular Junction Integrity. Front Mol Neurosci 2020; 13:104. [PMID: 32587503 PMCID: PMC7299196 DOI: 10.3389/fnmol.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Patrycja Daszczuk
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna O Rojek
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bhola S Pradhan
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Teresa de Cicco
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Laboratory of Molecular and Cellular Signaling, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Herbst R. MuSk function during health and disease. Neurosci Lett 2019; 716:134676. [PMID: 31811897 DOI: 10.1016/j.neulet.2019.134676] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MuSK (muscle-specific kinase) is the key signaling molecule during the formation of a mature and functional neuromuscular junction (NMJ). Signal transduction events downstream of MuSK activation induce both pre- and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors (AChRs) at synaptic sites. MuSK activation requires a complex interplay between its co-receptor Lrp4 (low-density lipoprotein receptor-related protein-4), the motor neuron-derived heparan-sulfate proteoglycan Agrin and the intracellular adaptor protein Dok-7. A tight regulation of MuSK kinase activity is crucial for proper NMJ development. Defects in MuSK signaling are the cause of muscle weakness as reported in congenital myasthenic syndromes and myasthenia gravis. This review focuses on recent structure-based analyses of MuSK, Agrin, Lrp4 and Dok-7 interactions and their function during MuSK activation. Conclusions about the regulation of the MuSK kinase that were derived from molecular structures will be highlighted. In addition, the role of MuSK during development and disease will be discussed.
Collapse
Affiliation(s)
- Ruth Herbst
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Bai Y, Guo D, Sun X, Tang G, Liao T, Peng Y, Xu J, Shi L. Balanced Rac1 activity controls formation and maintenance of neuromuscular acetylcholine receptor clusters. J Cell Sci 2018; 131:jcs.215251. [PMID: 30012833 DOI: 10.1242/jcs.215251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Rac1, an important Rho GTPase that regulates the actin cytoskeleton, has long been suggested to participate in acetylcholine receptor (AChR) clustering at the postsynaptic neuromuscular junction. However, how Rac1 is regulated and how it influences AChR clusters have remained unexplored. This study shows that breaking the balance of Rac1 regulation, by either increasing or decreasing its activity, led to impaired formation and maintenance of AChR clusters. By manipulating Rac1 activity at different stages of AChR clustering in cultured myotubes, we show that Rac1 activation was required for the initial formation of AChR clusters, but its persistent activation led to AChR destabilization, and uncontrolled hyperactivation of Rac1 even caused excessive myotube fusion. Both AChR dispersal and myotube fusion induced by Rac1 were dependent on its downstream effector Pak1. Two Rac1 GAPs and six Rac1 GEFs were screened and found to be important for normal AChR clustering. This study reveals that, although general Rac1 activity remains at low levels during terminal differentiation of myotubes and AChR cluster maintenance, tightly regulated Rac1 activity controls normal AChR clustering.
Collapse
Affiliation(s)
- Yanyang Bai
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoyu Sun
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Genyun Tang
- Department of Medical Genetics, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Tailin Liao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
21
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
22
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
23
|
Muscle Yap Is a Regulator of Neuromuscular Junction Formation and Regeneration. J Neurosci 2017; 37:3465-3477. [PMID: 28213440 DOI: 10.1523/jneurosci.2934-16.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Yes-associated protein (Yap) is a major effector of the Hippo pathway that regulates cell proliferation and differentiation during development and restricts tissue growth in adult animals. However, its role in synapse formation remains poorly understood. In this study, we characterized Yap's role in the formation of the neuromuscular junction (NMJ). In HSA-Yap-/- mice where Yap was mutated specifically in muscle cells, AChR clusters were smaller and were distributed in a broader region in the middle of muscle fibers, suggesting that muscle Yap is necessary for the size and location of AChR clusters. In addition, HSA-Yap-/- mice also exhibited remarkable presynaptic deficits. Many AChR clusters were not or less covered by nerve terminals; miniature endplate potential frequency was reduced, which was associated with an increase in paired-pulse facilitation, indicating structural and functional defects. In addition, muscle Yap mutation prevented reinnervation of denervated muscle fibers. Together, these observations indicate a role of muscle Yap in NMJ formation and regeneration. We found that β-catenin was reduced in the cytoplasm and nucleus of mutant muscles, suggesting compromised β-catenin signaling. Both NMJ formation and regeneration deficits of HSA-Yap-/- mice were ameliorated by inhibiting β-catenin degradation, further corroborating a role of β-catenin or Wnt-dependent signaling downstream of Yap to regulate NMJ formation and regeneration.SIGNIFICANCE STATEMENT This paper explored the role of Yes-associated protein (Yap) in neuromuscular junction (NMJ) formation and regeneration. Yap is a major effector of the Hippo pathway that regulates cell proliferation and differentiation during development and restricts tissue growth in adult animals. However, its role in synapse formation remains poorly understood. We provide evidence that muscle Yap mutation impairs both postsynaptic and presynaptic differentiation and function and inhibits NMJ regeneration after nerve injury, indicating a role of muscle Yap in these events. Further studies suggest compromised β-catenin signaling as a potential mechanism. Both NMJ formation and regeneration deficits of HSA-Yap-/- mice were ameliorated by inhibiting β-catenin degradation, corroborating a role of β-catenin or Wnt-dependent signaling downstream of Yap to regulate NMJ formation and regeneration.
Collapse
|
24
|
Etherington SJ, Hong IHK, Wong CJW, Stephens N, Warburton NM. Heterochronic neuromuscular junction development in an Australian marsupial (Macropus fuliginosus
). J Zool (1987) 2016. [DOI: 10.1111/jzo.12367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- S. J. Etherington
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - I. H. K. Hong
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - C. J. W. Wong
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - N. Stephens
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - N. M. Warburton
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| |
Collapse
|
25
|
Sakuma M, Gorski G, Sheu SH, Lee S, Barrett LB, Singh B, Omura T, Latremoliere A, Woolf CJ. Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. Eur J Neurosci 2015; 43:451-62. [PMID: 26332731 DOI: 10.1111/ejn.13059] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022]
Abstract
Motor axons in peripheral nerves have the capacity to regenerate after injury. However, full functional motor recovery rarely occurs clinically, and this depends on the nature and location of the injury. Recent preclinical findings suggest that there may be a time after nerve injury where, while regrowth to the muscle successfully occurs, there is nevertheless a failure to re-establish motor function, suggesting a possible critical period for synapse reformation. We have now examined the temporal and anatomical determinants for the re-establishment of motor function after prolonged neuromuscular junction (NMJ) denervation in rats and mice. Using both sciatic transection-resuture and multiple nerve crush models in rats and mice to produce prolonged delays in reinnervation, we show that regenerating fibres reach motor endplates and anatomically fully reform the NMJ even after extended periods of denervation. However, in spite of this remarkably successful anatomical regeneration, after 1 month of denervation there is a consistent failure to re-establish functional recovery, as assessed by behavioural and electrophysiological assays. We conclude that this represents a failure in re-establishment of synaptic function, and the possible mechanisms responsible are discussed, as are their clinical implications.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Grzegorz Gorski
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Shu-Hsien Sheu
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pathology and Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Stella Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Lee B Barrett
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Bhagat Singh
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Takao Omura
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alban Latremoliere
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
26
|
PAK1 and CtBP1 Regulate the Coupling of Neuronal Activity to Muscle Chromatin and Gene Expression. Mol Cell Biol 2015; 35:4110-20. [PMID: 26416879 DOI: 10.1128/mcb.00354-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylcholine receptor (AChR) expression in innervated muscle is limited to the synaptic region. Neuron-induced electrical activity participates in this compartmentalization by promoting the repression of AChR expression in the extrasynaptic regions. Here, we show that the corepressor CtBP1 (C-terminal binding protein 1) is present on the myogenin promoter together with repressive histone marks. shRNA-mediated downregulation of CtBP1 expression is sufficient to derepress myogenin and AChR expression in innervated muscle. Upon denervation, CtBP1 is displaced from the myogenin promoter and relocates to the cytoplasm, while repressive histone marks are replaced by activating ones concomitantly to the activation of myogenin expression. We also observed that upon denervation the p21-activated kinase 1 (PAK1) expression is upregulated, suggesting that phosphorylation by PAK1 may be involved in the relocation of CtBP1. Indeed, preventing CtBP1 Ser158 phosphorylation induces CtBP1 accumulation in the nuclei and abrogates the activation of myogenin and AChR expression. Altogether, these findings reveal a molecular mechanism to account for the coordinated control of chromatin modifications and muscle gene expression by presynaptic neurons via a PAK1/CtBP1 pathway.
Collapse
|
27
|
Tintignac LA, Brenner HR, Rüegg MA. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiol Rev 2015; 95:809-52. [DOI: 10.1152/physrev.00033.2014] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia.
Collapse
Affiliation(s)
- Lionel A. Tintignac
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Hans-Rudolf Brenner
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Markus A. Rüegg
- Biozentrum, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; and INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| |
Collapse
|
28
|
Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, Mechtler K, Herbst R. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics 2014; 13:1993-2003. [PMID: 24899341 DOI: 10.1074/mcp.m113.036087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of the neuromuscular synapse depends on signaling processes that involve protein phosphorylation as a crucial regulatory event. Muscle-specific kinase (MuSK) is the key signaling molecule at the neuromuscular synapse whose activity is required for the formation of a mature and functional synapse. However, the signaling cascade downstream of MuSK and the regulation of the different components are still poorly understood. In this study we used a quantitative phosphoproteomics approach to study the phosphorylation events and their temporal regulation downstream of MuSK. We identified a total of 10,183 phosphopeptides, of which 203 were significantly up- or down-regulated. Regulated phosphopeptides were classified into four different clusters according to their temporal profiles. Within these clusters we found an overrepresentation of specific protein classes associated with different cellular functions. In particular, we found an enrichment of regulated phosphoproteins involved in posttranscriptional mechanisms and in cytoskeletal organization. These findings provide novel insights into the complex signaling network downstream of MuSK and form the basis for future mechanistic studies.
Collapse
Affiliation(s)
- Gerhard Dürnberger
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bahar Z Camurdanoglu
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Matthias Tomschik
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael Schutzbier
- From the ‡Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria; §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Elisabeth Roitinger
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Otto Hudecz
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Karl Mechtler
- §Institute for Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria; ¶Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ruth Herbst
- ‖Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria; ‡‡Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| |
Collapse
|
29
|
Barik A, Zhang B, Sohal GS, Xiong WC, Mei L. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev Neurobiol 2014; 74:828-38. [PMID: 24838312 DOI: 10.1002/dneu.22190] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 05/01/2014] [Accepted: 05/14/2014] [Indexed: 11/08/2022]
Abstract
Neuromuscular junction (NMJ) is a cholinergic synapse where motor neurons elicit muscle contraction. Agrin and its coreceptors LRP4 and MuSK are critical for vertebrate NMJ formation. This paper reviews recent evidence for Wnts and Wnt signaling molecules in NMJ formation including a possible retrograde mechanism by muscle β-catenin. We also present data that Wnt3a, 7a, 8a and 10b could inhibit agrin-mediated AChR clustering. Together with the stimulating effect of Wnt9a, 9b, 10b, 11 and 16 on AChR clustering in the absence of agrin, these results suggest diverse roles for Wnt ligands in NMJ development.
Collapse
Affiliation(s)
- Arnab Barik
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, 30912
| | | | | | | | | |
Collapse
|
30
|
Akiyama T, Niyonsaba F, Kiatsurayanon C, Nguyen TT, Ushio H, Fujimura T, Ueno T, Okumura K, Ogawa H, Ikeda S. The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function. J Innate Immun 2014; 6:739-53. [PMID: 24862212 DOI: 10.1159/000362789] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
Both psoriasis and atopic dermatitis (AD) are not only associated with an impaired stratum corneum barrier, but also with abnormal expression of the tight junction (TJ) proteins. Because host defense peptides, including LL-37, are overexpressed in lesional psoriatic skin but are downregulated in lesional AD skin, we hypothesized that LL-37 might regulate the TJ function in keratinocytes. We demonstrated that LL-37 selectively increased the expression of several claudins and occludin, and enhanced their membrane distribution. Furthermore, LL-37 elevated the transepithelial electrical resistance while reducing the paracellular permeability of keratinocyte layers, and this activity was weakened by the claudin inhibitor ochratoxin A. A characterization of the molecular mechanism underlying the regulation of the TJ barrier by LL-37 revealed that LL-37 induced the activation of the Rac1, atypical PKC, glycogen synthase kinase-3 and PI3K pathways, and the specific inhibition of these pathways reversed the LL-37-mediated regulation of TJ function. In addition, LL-37 enhanced the expression of differentiation markers under the control of ochratoxin A, suggesting an association between LL-37-induced TJ function and keratinocyte differentiation. These data provide novel evidence that, in addition to its antimicrobial and other immunoregulatory functions, LL-37 contributes to cutaneous immunity by strengthening the skin's barrier function.
Collapse
Affiliation(s)
- Toshihiro Akiyama
- Department of Dermatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghazanfari N, Morsch M, Reddel SW, Liang SX, Phillips WD. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. J Physiol 2014; 592:2881-97. [PMID: 24860174 DOI: 10.1113/jphysiol.2013.270207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Stephen W Reddel
- Department of Molecular Medicine, Concord Hospital, Concord, New South Wales, 2139, Australia
| | - Simon X Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Liaoning Medical University, China
| | - William D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
32
|
Stamatakou E, Salinas PC. Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 2013; 74:818-27. [PMID: 24105999 PMCID: PMC4237178 DOI: 10.1002/dneu.22138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023]
Abstract
Synapse formation requires the coordinated formation of the presynaptic terminal, containing the machinery for neurotransmitter release, and the postsynaptic side that possesses the machinery for neurotransmitter reception. For coordinated pre- and postsynaptic assembly signals across the synapse are required. Wnt secreted proteins are well-known synaptogenic factors that promote the recruitment of presynaptic components in diverse organisms. However, recent studies demonstrate that Wnts act directly onto the postsynaptic side at both central and peripheral synapses to promote postsynaptic development and synaptic strength. This review focuses on the role of Wnts in postsynaptic development at central synapses and the neuromuscular junction. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 74: 818–827, 2014
Collapse
Affiliation(s)
- Eleanna Stamatakou
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
33
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
34
|
Abstract
Muscle-specific kinase (MuSK) is essential for each step in neuromuscular synapse formation. Before innervation, MuSK initiates postsynaptic differentiation, priming the muscle for synapse formation. Approaching motor axons recognize the primed, or prepatterned, region of muscle, causing motor axons to stop growing and differentiate into specialized nerve terminals. MuSK controls presynaptic differentiation by causing the clustering of Lrp4, which functions as a direct retrograde signal for presynaptic differentiation. Developing synapses are stabilized by neuronal Agrin, which is released by motor nerve terminals and binds to Lrp4, a member of the low-density lipoprotein receptor family, stimulating further association between Lrp4 and MuSK and increasing MuSK kinase activity. In addition, MuSK phosphorylation is stimulated by an inside-out ligand, docking protein-7 (Dok-7), which is recruited to tyrosine-phosphorylated MuSK and increases MuSK kinase activity. Mutations in MuSK and in genes that function in the MuSK signaling pathway, including Dok-7, cause congenital myasthenia, and autoantibodies to MuSK, Lrp4, and acetylcholine receptors are responsible for myasthenia gravis.
Collapse
|
35
|
Rudell JB, Ferns MJ. Regulation of muscle acetylcholine receptor turnover by β subunit tyrosine phosphorylation. Dev Neurobiol 2013; 73:399-410. [PMID: 23325468 DOI: 10.1002/dneu.22070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/17/2012] [Accepted: 12/29/2012] [Indexed: 12/21/2022]
Abstract
At the neuromuscular junction (NMJ), the postsynaptic localization of muscle acetylcholine receptor (AChR) is regulated by neural signals and occurs via several processes including metabolic stabilization of the receptor. However, the molecular mechanisms that influence receptor stability remain poorly defined. Here, we show that neural agrin and the tyrosine phosphatase inhibitor, pervanadate slow the degradation of surface receptor in cultured muscle cells. Their action is mediated by tyrosine phosphorylation of the AChR β subunit, as agrin and pervandate had no effect on receptor half-life in AChR-β(3F/3F) muscle cells, which have targeted mutations of the β subunit cytoplasmic tyrosines. Moreover, in wild type AChR-β(3Y) muscle cells, we found a linear relationship between average receptor half-life and the percentage of AChR with phosphorylated β subunit, with half-lives of 12.7 and 23 h for nonphosphorylated and phosphorylated receptor, respectively. Surprisingly, pervanadate increased receptor half-life in AChR-β(3Y) myotubes in the absence of clustering, and agrin failed to increase receptor half-life in AChR-β(3F/3F) myotubes even in the presence of clustering. The metabolic stabilization of the AChR was mediated specifically by phosphorylation of βY390 as mutation of this residue abolished β subunit phosphorylation but did not affect δ subunit phosphorylation. Receptor stabilization also led to higher receptor levels, as agrin increased surface AChR by 30% in AChR-β(3Y) but not AChR-β(3F/3F) myotubes. Together, these findings identify an unexpected role for agrin-induced phosphorylation of β(Y390) in downregulating AChR turnover. This likely stabilizes AChR at developing synapses, and contributes to the extended half-life of AChR at adult NMJs.
Collapse
Affiliation(s)
- John B Rudell
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
36
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
37
|
Abstract
Wnt proteins are best known for their profound roles in cell patterning, because they are required for the embryonic development of all animal species studied to date. Besides regulating cell fate, Wnt proteins are gaining increasing recognition for their roles in nervous system development and function. New studies indicate that multiple positive and negative Wnt signaling pathways take place simultaneously during the formation of vertebrate and invertebrate neuromuscular junctions. Although some Wnts are essential for the formation of NMJs, others appear to play a more modulatory role as part of multiple signaling pathways. Here we review the most recent findings regarding the function of Wnts at the NMJ from both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Kate Koles
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | |
Collapse
|
38
|
Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 2012; 35:441-53. [PMID: 22633140 DOI: 10.1016/j.tins.2012.04.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
The vertebrate neuromuscular junction (NMJ), a peripheral synapse formed between motoneuron and skeletal muscle, is characterized by a protracted postnatal period of maturation and life-long maintenance. In neuromuscular disorders such as congenital myasthenic syndromes (CMSs), disruptions of NMJ maturation and/or maintenance are frequently observed. In particular, defective neuromuscular transmission associated with structural and molecular abnormalities at the pre- and postsynaptic membranes, as well as at the synaptic cleft, has been reported in these patients. Here, we review recent advances in the understanding of molecular and cellular events that mediate NMJ maturation and maintenance. The underlying regulatory mechanisms, including key molecular regulators at the presynaptic nerve terminal, synaptic cleft, and postsynaptic muscle membrane, are discussed.
Collapse
|
39
|
Henríquez JP, Salinas PC. Dual roles for Wnt signalling during the formation of the vertebrate neuromuscular junction. Acta Physiol (Oxf) 2012; 204:128-36. [PMID: 21554559 DOI: 10.1111/j.1748-1716.2011.02295.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wnt proteins play prominent roles in different aspects of neuronal development culminating with the formation of complex neuronal circuits. Here, we discuss new studies addressing the function of Wnt signalling at the peripheral neuromuscular junction (NMJ). In both, invertebrate and vertebrate organisms, Wnt signalling promotes and also inhibits the assembly of the neuromuscular synapse. Here, we focus our attention on recent studies at the vertebrate NMJ that demonstrate that some Wnt proteins collaborate with the Agrin-MuSK signalling to induce post-synaptic differentiation. In contrast, Wnts that activate the Wnt/β-catenin signalling inhibit post-synaptic differentiation. The dual function of different Wnts might finely modulate the proper apposition of the pre- and post-synaptic terminals during NMJ formation and growth.
Collapse
Affiliation(s)
- J P Henríquez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile.
| | | |
Collapse
|
40
|
Henríquez JP, Krull CE, Osses N. The Wnt and BMP families of signaling morphogens at the vertebrate neuromuscular junction. Int J Mol Sci 2011; 12:8924-46. [PMID: 22272112 PMCID: PMC3257109 DOI: 10.3390/ijms12128924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022] Open
Abstract
The neuromuscular junction has been extensively employed in order to identify crucial determinants of synaptogenesis. At the vertebrate neuromuscular synapse, extracellular matrix and signaling proteins play stimulatory and inhibitory roles on the assembly of functional synapses. Studies in invertebrate species have revealed crucial functions of early morphogens during the assembly and maturation of the neuromuscular junction. Here, we discuss growing evidence addressing the function of Wnt and Bone morphogenetic protein (BMP) signaling pathways at the vertebrate neuromuscular synapse. We focus on the emerging role of Wnt proteins as positive and negative regulators of postsynaptic differentiation. We also address the possible involvement of BMP pathways on motor neuron behavior for the assembly and/or regeneration of the neuromuscular junction.
Collapse
Affiliation(s)
- Juan P. Henríquez
- Laboratory of Developmental Neurobiology (LDNB), Department of Cell Biology, Faculty of Biological Sciences, University of Concepcion, and CMA Bio-Bio, Concepcion 4089100, Chile
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-41-220-4531; Fax: +56-41-224-5975
| | - Catherine E. Krull
- University of Michigan, 5211 Dental, Ann Arbor, Michigan, MI 48109, USA; E-Mail:
| | - Nelson Osses
- Institute of Chemistry, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaiso 2340025, Chile; E-Mail:
| |
Collapse
|
41
|
Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biol Cell 2011; 103:287-301. [PMID: 21524273 DOI: 10.1042/bc20110018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION Cholesterol/sphingolipid-rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (muscle-specific kinase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. RESULTS In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the -MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid-ordered phase by methyl-β-cyclodextrin abolished this association. We further show that actin and the actin-nucleation factors, N-WASP (neuronal Wiscott-Aldrich syndrome protein) and Arp2/3 (actin-related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N-WASP activity perturbed agrin-elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR-enriched rafts. CONCLUSIONS The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.
Collapse
|
42
|
Pierre S, Bats AS, Coumoul X. Understanding SOS (Son of Sevenless). Biochem Pharmacol 2011; 82:1049-56. [PMID: 21787760 DOI: 10.1016/j.bcp.2011.07.072] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/02/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
Abstract
Son of Sevenless (SOS) was discovered in Drosophila melanogaster. Essential for normal eye development in Drosophila, SOS has two human homologues, SOS1 and SOS2. The SOS1 gene encodes the Son of Sevenless 1 protein, a Ras and Rac guanine nucleotide exchange factor. This protein is composed of several important domains. The CDC25 and REM domains provide the catalytic activity of SOS1 towards Ras and the histone fold DH/PH (Dbl homology and Pleckstrin homology) domains function, in tandem, to stimulate GTP/GDP exchange for Rac. In contrast to Ras, there have been few studies that implicate SOS1 in human disease and, initially, less attention was given to this gene. However, mutations in SOS1 have been reported recently in Noonan syndrome and in type 1 hereditary gingival fibromatosis. Although, there have been very few studies that focus on the regulation of this important gene by physiological or exogenous factors, we recently found that the SOS1 gene was induced by the environmental toxin, dioxin, and that this effect was mediated by the aryl hydrocarbon receptor (AhR). These recent observations raise the possibility that alterations in the expression of the SOS1 gene and, consequently, in the activity of the SOS1 protein may affect toxicological endpoints and lead to clinical disease. These possibilities, thus, have stimulated much interest in SOS1 recently. In this article, we review the functions of SOS1 and the evidence for its roles in physiology and pathology across species.
Collapse
Affiliation(s)
- Stéphane Pierre
- INSERM UMR-S 747, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints Pères, 75006 Paris, France
| | | | | |
Collapse
|
43
|
Mate SE, Brown KJ, Hoffman EP. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction. Skelet Muscle 2011; 1:20. [PMID: 21798097 PMCID: PMC3156643 DOI: 10.1186/2044-5040-1-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/04/2011] [Indexed: 11/25/2022] Open
Abstract
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.
Collapse
Affiliation(s)
- Suzanne E Mate
- Department of Biochemistry and Molecular Genetics, IBS, George Washington University, Washington DC, USA
| | | | | |
Collapse
|
44
|
Hallock PT, Xu CF, Park TJ, Neubert TA, Curran T, Burden SJ. Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev 2011; 24:2451-61. [PMID: 21041412 DOI: 10.1101/gad.1977710] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Agrin, released by motor neurons, promotes neuromuscular synapse formation by stimulating MuSK, a receptor tyrosine kinase expressed in skeletal muscle. Phosphorylated MuSK recruits docking protein-7 (Dok-7), an adaptor protein that is expressed selectively in muscle. In the absence of Dok-7, neuromuscular synapses fail to form, and mutations that impair Dok-7 are a major cause of congenital myasthenia in humans. How Dok-7 stimulates synaptic differentiation is poorly understood. Once recruited to MuSK, Dok-7 directly stimulates MuSK kinase activity. This unusual activity of an adapter protein is mediated by the N-terminal region of Dok-7, whereas most mutations that cause congenital myasthenia truncate the C-terminal domain. Here, we demonstrate that Dok-7 also functions downstream from MuSK, and we identify the proteins that are recruited to the C-terminal domain of Dok-7. We show that Agrin stimulates phosphorylation of two tyrosine residues in the C-terminal domain of Dok-7, which leads to recruitment of two adapter proteins: Crk and Crk-L. Furthermore, we show that selective inactivation of Crk and Crk-L in skeletal muscle leads to severe defects in neuromuscular synapses in vivo, revealing a critical role for Crk and Crk-L downstream from Dok-7 in presynaptic and postsynaptic differentiation.
Collapse
Affiliation(s)
- Peter T Hallock
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ghazanfari N, Fernandez KJ, Murata Y, Morsch M, Ngo ST, Reddel SW, Noakes PG, Phillips WD. Muscle specific kinase: organiser of synaptic membrane domains. Int J Biochem Cell Biol 2010; 43:295-8. [PMID: 20974278 DOI: 10.1016/j.biocel.2010.10.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 11/19/2022]
Abstract
Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, Anderson Stuart Bldg (F13), The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu H, Xiong WC, Mei L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 2010; 137:1017-33. [PMID: 20215342 DOI: 10.1242/dev.038711] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy.
Collapse
Affiliation(s)
- Haitao Wu
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
47
|
Godfrey EW, Schwarte RC. Nitric oxide and cyclic GMP regulate early events in agrin signaling in skeletal muscle cells. Exp Cell Res 2010; 316:1935-45. [PMID: 20346357 DOI: 10.1016/j.yexcr.2010.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 01/09/2023]
Abstract
Agrin released from motor nerve terminals directs differentiation of the vertebrate neuromuscular junction (NMJ). Activity of nitric oxide synthase (NOS), guanylate cyclase (GC), and cyclic GMP-dependent protein kinase (PKG) contributes to agrin signaling in embryonic frog and chick muscle cells. Stimulation of the NO/cyclic GMP (cGMP) pathway in embryos potentiates agrin's ability to aggregate acetylcholine receptors (AChRs) at NMJs. Here we investigated the timing and mechanism of NO and cGMP action. Agrin increased NO levels in mouse C2C12 myotubes. NO donors potentiated agrin-induced AChR aggregation during the first 20 min of agrin treatment, but overnight treatment with NO donors inhibited agrin activity. Adenoviruses encoding siRNAs against each of three NOS isoforms reduced agrin activity, indicating that these isoforms all contribute to agrin signaling. Inhibitors of NOS, GC, or PKG reduced agrin-induced AChR aggregation in mouse muscle cells by approximately 50%. However, increased activation of the GTPase Rac1, an early step in agrin signaling, was dependent on NOS activity and was mimicked by NO donors and a cGMP analog. Our results indicate that stimulation of the NO/cGMP pathway is important during the first few minutes of agrin signaling and is required for agrin-induced Rac1 activation, a key step leading to reorganization of the actin cytoskeleton and subsequent aggregation of AChRs on the surface of skeletal muscle cells.
Collapse
Affiliation(s)
- Earl W Godfrey
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA.
| | | |
Collapse
|
48
|
Shi L, Butt B, Ip FCF, Dai Y, Jiang L, Yung WH, Greenberg ME, Fu AKY, Ip NY. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 2010; 65:204-16. [PMID: 20152127 DOI: 10.1016/j.neuron.2010.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2009] [Indexed: 12/24/2022]
Abstract
The maturation of neuromuscular junctions (NMJs) requires the topological transformation of postsynaptic acetylcholine receptor (AChR)-containing structures from a simple plaque to an elaborate structure composed of pretzel-like branches. This maturation process results in the precise apposition of the presynaptic and postsynaptic specializations. However, little is known about the molecular mechanisms underlying the plaque-to-pretzel transition of AChR clusters. In this study, we identify an essential role for the RhoGEF ephexin1 in the maturation of AChR clusters. Adult ephexin1(-/-) mice exhibit severe muscle weakness and impaired synaptic transmission at the NMJ. Intriguingly, when ephexin1 expression is deficient in vivo, the NMJ fails to mature into the pretzel-like shape, and such abnormalities can be rescued by re-expression of ephexin1. We further demonstrate that ephexin1 regulates the stability of AChR clusters in a RhoA-dependent manner. Taken together, our findings reveal an indispensible role for ephexin1 in regulating the structural maturation and neurotransmission of NMJs.
Collapse
Affiliation(s)
- Lei Shi
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mohamadnejad M, Sohail MA, Watanabe A, Krause DS, Swenson ES, Mehal WZ. Adenosine inhibits chemotaxis and induces hepatocyte-specific genes in bone marrow mesenchymal stem cells. Hepatology 2010; 51:963-73. [PMID: 20044808 PMCID: PMC2840188 DOI: 10.1002/hep.23389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Bone marrow-derived mesenchymal stem cells (MSCs) have therapeutic potential in liver injury, but the signals responsible for MSC localization to sites of injury and initiation of differentiation are not known. Adenosine concentration is increased at sites of cellular injury and inflammation, and adenosine is known to signal a variety of cellular changes. We hypothesized that local elevations in the concentration of adenosine at sites of tissue injury regulate MSC homing and differentiation. Here we demonstrate that adenosine does not induce MSC chemotaxis but dramatically inhibits MSC chemotaxis in response to the chemoattractant hepatocyte growth factor (HGF). Inhibition of HGF-induced chemotaxis by adenosine requires the A2a receptor and is mediated via up-regulation of the cyclic adenosine monophosphate (AMP)/protein kinase A pathway. This results in inhibition of cytosolic calcium signaling and down-regulation of HGF-induced Rac1. Because of the important role of Rac1 in the formation of actin stress fibers, we examined the effect of adenosine on stress fiber formation and found that adenosine inhibits HGF-induced stress fiber formation. In addition, we found that adenosine induces the expression of some key endodermal and hepatocyte-specific genes in mouse and human MSCs in vitro. CONCLUSION We propose that the inhibition of MSC chemotaxis at sites of high adenosine concentration results in localization of MSCs to areas of cellular injury and death in the liver. We speculate that adenosine might initiate the process of differentiation of MSCs into hepatocyte-like cells.
Collapse
Affiliation(s)
- Mehdi Mohamadnejad
- Yale University, School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, CT, USA, Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad A Sohail
- Yale University, School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, CT, USA
| | - Azuma Watanabe
- Yale University, School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, CT, USA
| | - Diane S Krause
- Yale University, School of Medicine, Department of Laboratory Medicine, New Haven, CT, USA
| | - E Scott Swenson
- Yale University, School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, CT, USA
| | - Wajahat Z Mehal
- Yale University, School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, CT, USA
| |
Collapse
|
50
|
Madhavan R, Gong ZL, Ma JJ, Chan AWS, Peng HB. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction. PLoS One 2009; 4:e8478. [PMID: 20041195 PMCID: PMC2793544 DOI: 10.1371/journal.pone.0008478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined. Methodology/Principal Findings In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation. Conclusion Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zhuolin L. Gong
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jin Jin Ma
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ariel W. S. Chan
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - H. Benjamin Peng
- Department of Biology, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- * E-mail:
| |
Collapse
|