1
|
Yang Y, Zhang B, Yong J, James P, Xu ZP, Mitter N, Mahony TJ, Mody KT. The use of cell and larval assays to identify target genes for RNA interference-meditated control of the Australian sheep blowfly (Lucilia cuprina). PEST MANAGEMENT SCIENCE 2024; 80:4686-4698. [PMID: 38847522 DOI: 10.1002/ps.8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Flystrike, primarily caused by Lucilia cuprina, is a major health and welfare issue for sheep wool industries. Current chemical-based controls can have limited effectiveness due to the emergence of resistance in the parasite. RNA interference (RNAi), which uses double-stranded RNA (dsRNA) as a trigger molecule, has been successfully investigated for the development of innovative pest control strategies. Although RNAi offers great potential, the efficient identification, selection of target genes and delivery of dsRNA represent challenges to be overcome for the successful application of RNAi for control of L. cuprina. RESULTS A primary L. cuprina (blowfly) embryo cell line (BFEC) was established and confirmed as being derived from L. cuprina eggs by PCR and amplicon sequencing. The BFECs were successfully transfected with plasmids and messenger RNA (mRNA) expressing fluorescent reporter proteins and dsRNA using lipid-based transfection reagents. The transfection of dsRNA into BEFC in this study suggested decreased mRNA levels of target gene expression, which suggested RNAi-mediated knockdown. Three of the dsRNAs identified in this study resulted in reductions of in target gene mRNA levels in BFEC and loss of biological fitness by L. cuprina larvae in a feeding bioassay. CONCLUSION This study confirms that the novel BFEC cell line can be used to improve the efficacy of dsRNA-mediated screening to accelerate the identification of potential target genes in the development of RNAi mediated control approaches for L. cuprina. The research models established in this study are encouraging with respect to the use of RNAi as a blowfly control method, however further improvement and validation are required for field applicationsnot prefect, and could be ongoing developing. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunjia Yang
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Bing Zhang
- Department of Agriculture and Fisheries, Ecosciences Precinct (ESP), Brisbane, Australia
| | - Jiaxi Yong
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Chavez-Pena C. RNAi-Mediated Silencing in the Insect Cell-Baculovirus Expression System. Methods Mol Biol 2024; 2829:91-107. [PMID: 38951329 DOI: 10.1007/978-1-0716-3961-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
RNA interference (RNAi) serves as an indispensable tool for gene function studies and has been substantiated through extensive research for its practical applications in the baculovirus expression vector system (BEVS). This chapter expands the RNAi toolkit in insect cell culture by including small interfering RNA (siRNA) in the protocol, in addition to the conventional use of double-stranded RNA (dsRNA). This chapter also brings attention to key design and reporting considerations, based on Minimum Information About an RNAi Experiment (MIARE) guidelines. Recommendations regarding online tools for dsRNA and siRNA design are provided, along with guidance on choosing suitable methods for measuring silencing outcomes.
Collapse
|
3
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
4
|
Watanabe K, Yoshiyama M, Akiduki G, Yokoi K, Hoshida H, Kayukawa T, Kimura K, Hatakeyama M. A simple method for ex vivo honey bee cell culture capable of in vitro gene expression analysis. PLoS One 2021; 16:e0257770. [PMID: 34555120 PMCID: PMC8460014 DOI: 10.1371/journal.pone.0257770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Cultured cells are a very powerful tool for investigating biological events in vitro; therefore, cell lines have been established not only in model insect species, but also in non-model species. However, there are few reports on the establishment of stable cell lines and development of systems to introduce genes into the cultured cells of the honey bee (Apis mellifera). We describe a simple ex vivo cell culture system for the honey bee. Hemocyte cells obtained from third and fourth instar larvae were cultured in commercial Grace’s insect medium or MGM-450 insect medium for more than two weeks maintaining a normal morphology without deterioration. After an expression plasmid vector bearing the enhanced green fluorescent protein (egfp) gene driven by the immediate early 2 (IE2) viral promoter was transfected into cells, EGFP fluorescence was detected in cells for more than one week from one day after transfection. Furthermore, double-stranded RNA corresponding to a part of the egfp gene was successfully introduced into cells and interfered with egfp gene expression. A convenient and reproducible method for an ex vivo cell culture that is fully practicable for gene expression assays was established for the honey bee.
Collapse
Affiliation(s)
- Kazuyo Watanabe
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Mikio Yoshiyama
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Gaku Akiduki
- Insect Pest Management Group, Division of Agro-Environment Research, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, Japan
| | - Kakeru Yokoi
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Hiroko Hoshida
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Takumi Kayukawa
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Kiyoshi Kimura
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
5
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
6
|
Zheng H, Ren F, Lu Q, Cao Z, Song J, Feng M, Liu J, Sun J. An efficient method for multigene co-interference by recombinant Bombyx mori nucleopolyhedrovirus. Mol Genet Genomics 2018; 294:111-120. [PMID: 30229292 DOI: 10.1007/s00438-018-1491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
Bombyx mori Nucleopolyhedrovirus (BmNPV), which is a member of the Baculoviridae family, is a significant pathogen of the silkworm. The infection of BmNPV is often lethal and causes about 20% loss of cocoon in the silk industry annually. To explore the effects of different gene inhibition strategies on the replication cycle of baculovirus, we constructed the mutant virus to infect BmN cells directly and further identified ie0, ie1, and gp64 as the essential viral genes of BmNPV. To elucidate the significance of the inhibition effect of different interference strategies, we characterized and constructed the recombinant BmNPV that carried a single or multigene-interfering cassette. The results showed that the inhibition effect of dsie1 on target gene expression, virus titer, and silkworm mortality was significantly better than that of dsie0 and dsgp64. It also showed that the dsie1 interference produced fewer progeny virions and was less lethal, which indicates that ie1 played a more critical role in the BmNPV replication cycle. Furthermore, the inhibitory effect of the virus titer and mortality indicated that the multigene co-interference constructed by the baculovirus expression system was significantly better than the interference of any single-gene (p < 0.05). In summary, the strategy of multigene synergy can achieve the function of continuous interference and provide a new platform for the breeding of silkworm disease resistant. In addition, this strategy improves the various traits of the silkworm.
Collapse
Affiliation(s)
- Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qiuyuan Lu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhenming Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jichen Song
- Department of Animal Sciences, University of Manitoba, Winnipeg, MB, R3T2N2, Canada
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding and Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
7
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
8
|
RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnol Adv 2018; 36:443-451. [DOI: 10.1016/j.biotechadv.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/11/2017] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
|
9
|
Kumar D, Gong C. Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121382 DOI: 10.1007/978-3-319-61343-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.
Collapse
Affiliation(s)
- Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Abstract
Gene therapy was originally thought to cover replacement of malfunctioning genes in treatment of various diseases. Today, the field has been expanded to application of viral and non-viral vectors for delivery of recombinant proteins for the compensation of missing or insufficient proteins, anti-cancer genes and proteins for destruction of tumor cells, immunostimulatory genes and proteins for stimulation of the host defense system against viral agents and tumors. Recently, the importance of RNA interference and its application in gene therapy has become an attractive alternative for drug development.
Collapse
|
11
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
12
|
Lee HS, Lee HY, Kim YJ, Jung HD, Choi KJ, Yang JM, Kim SS, Kim K. Small interfering (Si) RNA mediated baculovirus replication reduction without affecting target gene expression. Virus Res 2015; 199:68-76. [PMID: 25630059 DOI: 10.1016/j.virusres.2015.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Abstract
The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant protein with posttranslational modification. Recombinant baculoviruses (such as Autographa californica multiple nuclear polyhedrosis virus) are especially useful in producing recombinant proteins and virus-like particles (VLPs) as biodrugs or candidate vaccines for the prevention of serious infectious diseases. However, during the bioprocessing of recombinant proteins in insect cells, baculovirus replication and viral budding are coincident. In some cases, residual baculovirus contaminants remain in the recombinant protein products, even though various purification processes are applied such as ion-exchange chromatography, ultracentrifugation, or gel filtration. To reduce unexpected contamination caused by replication and budding-out of the baculovirus, we designed short interfering (si) RNAs targeting glycoprotein 64 (GP64) or single-stranded DNA-binding protein (DBP) to inhibit baculovirus replication during overexpression of recombinant foreign genes. GP64 is known to be critical both for the entry of virions into cells and for the assembly of the budded virion at the cell surface. DBP is also essential for virus assembly by regulation of the capsid protein P39 and the polyhedrin protein. This study showed that GP64 expression was suppressed by GP64 siRNAs in Western blot experiments, while the expression of recombinant proteins was unaffected. In addition, transfection of GP64 siRNAs and DBP siRNAs reduced the level of baculovirus replication, compared with the treatment with scrambled siRNAs. However, DBP siRNA also suppressed the expression of recombinant proteins. In conclusion, our GP64 siRNAs showed that an interfering RNA system, such as siRNAs and short hairpin (sh) RNAs, can be applicable to reduce baculovirus contaminants during the bioprocessing of recombinant proteins in insect cells. Further investigation should be carried out to establish transformed insect cell lines with stable expression of corresponding interfering RNAs.
Collapse
Affiliation(s)
- Han Saem Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Ho Yeon Lee
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - You-Jin Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Hee-Dong Jung
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Ki Ju Choi
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Jai Myung Yang
- Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Sung Soon Kim
- Division of Respiratory Viruses, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea
| | - Kisoon Kim
- Division of Influenza Virus, Center for Infectious Diseases, National Institute of Health, Korea CDC, 187 Osongsaemyong2-ro, 363-951 Cheongju-si, Chungbuk, South Korea.
| |
Collapse
|
13
|
Mansur JF, Alvarenga ESL, Figueira-Mansur J, Franco TA, Ramos IB, Masuda H, Melo ACA, Moreira MF. Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:110-121. [PMID: 24398146 DOI: 10.1016/j.ibmb.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
In this study, we provided the demonstration of the presence of a single CHS gene in the Rhodnius prolixus (a blood-sucking insect) genome that is expressed in adults (integument and ovary) and in the integument of nymphs during development. This CHS gene appears to be essential for epidermal integrity and egg formation in R. prolixus. Because injection of CHS dsRNA was effective in reducing CHS transcript levels, phenotypic alterations in the normal course of ecdysis occurred. In addition, two phenotypes with severe cuticle deformations were observed, which were associated with loss of mobility and lifetime. The CHS dsRNA treatment in adult females affected oogenesis, reducing the size of the ovary and presenting a greater number of atresic oocytes and a smaller number of chorionated oocytes compared with the control. The overall effect was reduced oviposition. The injection of CHS dsRNA modified the natural course of egg development, producing deformed eggs that were dark in color and unable to hatch, distinct from the viable eggs laid by control females. The ovaries, which were examined under fluorescence microscopy using a probe for chitin detection, showed a reduced deposition on pre-vitellogenic and vitellogenic oocytes compared with control. Taken together, these data suggest that the CHS gene is fundamentally important for ecdysis, oogenesis and egg hatching in R. prolixus and also demonstrated that the CHS gene is a good target for controlling Chagas disease vectors.
Collapse
Affiliation(s)
- Juliana F Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Evelyn S L Alvarenga
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Janaina Figueira-Mansur
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thiago A Franco
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Isabela B Ramos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Hatisaburo Masuda
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mônica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Jiang L, Xia Q. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 48:1-7. [PMID: 24561307 DOI: 10.1016/j.ibmb.2014.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 05/04/2023]
Abstract
Bombyx mori is a common lepidopteran model and an important economic insect for silk production. B. mori nucleopolyhedrovirus (BmNPV) is a typical pathogenic baculovirus that causes serious economic losses in sericulture. B. mori and BmNPV are a model of insect host and pathogen interaction including invasion of the host by the pathogen, host response, and enhancement of host resistance. The antiviral capacity of silkworms can be improved by transgenic technology such as overexpression of an endogenous or exogenous antiviral gene, RNA interference of the BmNPV gene, or regulation of the immune pathway to inhibit BmNPV at different stages of infection. Antiviral capacity could be further increased by combining different methods. We discuss the future of an antiviral strategy in silkworm, including possible improvement of anti-BmNPV, the feasibility of constructing transgenic silkworms with resistance to multiple viruses, and the safety of transgenic silkworms. The silkworm model could provide a reference for disease control in other organisms.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Zhang J, He Q, Zhang CD, Chen XY, Chen XM, Dong ZQ, Li N, Kuang XX, Cao MY, Lu C, Pan MH. Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11. Antiviral Res 2014; 104:143-52. [PMID: 24486953 DOI: 10.1016/j.antiviral.2014.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major silkworm pathogen, causing substantial economic losses to the sericulture industry annually. We demonstrate a novel anti-BmNPV system expressing mature artificial microRNAs (amiRNAs) targeting the viral lef-11 gene. The mature amiRNAs inhibited the lef-11 gene in silkworm BmN-SWU1 cells. Antiviral assays demonstrated that mature amiRNAs silenced the gene and inhibited BmNPV proliferation efficiently. As constitutive overexpression of mature amiRNAs may induce acute cellular toxicity, we further developed a novel virus-induced amiRNA expression system. The amiRNA cassette is regulated by a baculovirus-induced fusion promoter. This baculovirus-induced RNA interference system is strictly regulated by virus infection, which functions in a negative feedback loop to activate the expression of mature amiRNAs against lef-11 and subsequently control inhibition of BmNPV replication. Our study advances the use of a regulatable amiRNA cassette as a safe and effective tool for research of basic insect biology and antiviral application.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qian He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Chun-Dong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiang-Yun Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xue-Mei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Na Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiu-Xiu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ming-Ya Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
16
|
Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2013; 34:729-743. [PMID: 23276883 DOI: 10.1016/j.fsi.2012.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Aquatic animal diseases are one of the most significant constraints to the development and management of aquaculture worldwide. As a result, measures to combat diseases of fish and shellfish have assumed a high priority in many aquaculture-producing countries. RNA interference (RNAi), a natural mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as a powerful tool not only to investigate the function of specific genes, but also to suppress infection or replication of many pathogens that cause severe economic losses in aquaculture. However, despite the enormous potential as a novel therapeutical approach, many obstacles must still be overcome before RNAi therapy finds practical application in aquaculture, largely due to the potential for off-target effects and the difficulties in providing safe and effective delivery of RNAi molecules in vivo. In the present review, we discuss the current knowledge of RNAi as an experimental tool, as well as the concerns and challenges ahead for the application of such technology to combat infectious disease of farmed aquatic animals.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Marine and Atmospheric Research, C/-CSIRO Livestock Industries, QBP, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
17
|
Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm, Bombyx mori. Antiviral Res 2013; 97:255-63. [DOI: 10.1016/j.antiviral.2012.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/20/2022]
|
18
|
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. INSECT SCIENCE 2013; 20:4-14. [PMID: 23955821 DOI: 10.1111/j.1744-7917.2012.01534.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.
Collapse
Affiliation(s)
- Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) that infects the silkworm, B. mori, accounts for >50% of silk cocoon crop losses globally. We speculated that simultaneous targeting of several BmNPV essential genes in transgenic silkworm would elicit a stable defense against the virus. We introduced into the silkworm germline the vectors carrying short sequences of four essential BmNPV genes in tandem, either in sense or antisense or in inverted-repeat arrangement. The transgenic silkworms carrying the inverted repeat-containing transgene showed stable protection against high doses of baculovirus infection. Further, the antiviral trait was incorporated to a commercially productive silkworm strain highly susceptible to BmNPV. This led to combining the high-yielding cocoon and silk traits of the parental commercial strain and a very high level of refractoriness (>75% survival rate as compared to <15% in nontransgenic lines) to baculovirus infection conferred by the transgene. We also observed impaired infectivity of the occlusion bodies derived from the transgenic lines as compared to the wild-type ones. Currently, large-scale exploitation of these transgenic lines is underway to bring about economic transformation of sericulture.
Collapse
|
20
|
Sarathi M, Simon MC, Venkatesan C, Thomas J, Ravi M, Madan N, Thiyagarajan S, Sahul Hameed AS. Efficacy of bacterially expressed dsRNA specific to different structural genes of white spot syndrome virus (WSSV) in protection of shrimp from WSSV infection. JOURNAL OF FISH DISEASES 2010; 33:603-607. [PMID: 20367736 DOI: 10.1111/j.1365-2761.2010.01157.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- M Sarathi
- Aquaculture Biotechnology Division, Department of Zoology, C.Abdul Hakeem College, Melvisharam, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Resistance to BmNPV of Transformation Cells Expressing Short <I>lef</I>-1 dsRNA*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Hebert CG, Valdes JJ, Bentley WE. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol Bioeng 2009; 104:390-9. [PMID: 19557836 PMCID: PMC10960971 DOI: 10.1002/bit.22411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
While traditional metabolic engineering generally relies on the augmentation of specific genes and pathways in order to increase the yield of target proteins, the advent of RNA interference (RNAi) as a biological tool has given metabolic engineers another tool capable of rationally altering the host cell's biological landscape in order to achieve a specific goal. Given its broad applicability and potent specificity, RNAi has the ability to suppress genes whose function is contrary to the desired phenotype. In this study, RNAi has been used to increase recombinant protein production in a Trichoplusia ni derived cell line (BTI-TN-5B1-4-High Five) using the Baculovirus Expression Vector System. The specific target investigated is Tn-caspase-1, a protease involved in apoptosis that is likely the principal effector caspase present in T. ni cells. Experiments were first conducted using in vitro synthesized dsRNA to verify silencing of Tn-capase-1 and increased protein production as a result. Subsequent experiments were conducted using a cell line stably expressing in vivo RNAi in the form of an inverted repeat that results in a hairpin upon transcription. Using this construct, Tn-caspase-1 transcript levels were decreased by 50% and caspase enzymatic activity was decreased by 90%. This cell line, designated dsTncasp-2, demonstrates superior viability under low nutrient culture conditions and resulted in as much as two times the protein yield when compared to standard High Five cells.
Collapse
Affiliation(s)
- Colin G. Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, Maryland 20742; telephone: 301-405-4321; fax: 301-314-9075; e-mail:
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
| | - James J. Valdes
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland
| | - William E. Bentley
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, Maryland 20742; telephone: 301-405-4321; fax: 301-314-9075; e-mail:
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, Maryland
| |
Collapse
|
23
|
Baculovirus DNA replication-specific expression factors trigger apoptosis and shutoff of host protein synthesis during infection. J Virol 2009; 83:11123-32. [PMID: 19706708 DOI: 10.1128/jvi.01199-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals.
Collapse
|
24
|
Wu YL, Chao YC. The establishment of a controllable expression system in baculovirus: stimulated overexpression of polyhedrin promoter by LEF-2. Biotechnol Prog 2009; 24:1232-40. [PMID: 19194936 DOI: 10.1002/btpr.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previously, controllable gene expression in baculovirus was not possible using an insect system. We found that this was due to a high background activation of minimal promoter by the viral polyhedrin upstream (pu) sequence. Here, by truncation of the pu sequence, regulatory gene expression was established through the tetracycline regulatory expression system. This novel system was used to test the stimulatory function of the polyhedrin promoter by the controlled expression of the late expression factor-2 (lef-2). To efficiently trace lef-2 expression and analyze suppression of this gene, the coding sequences of lef-2 and enhanced green fluorescent protein (egfp) were ligated together to generate a fusion protein, and an approximately 100-fold suppression of egfp-lef-2 expression was achieved by doxycycline treatment. A very low level expression of lef-2 was found to be sufficient for proper expression of polyhedrin promoter; however, progressively higher levels of lef-2 expression could stimulate much higher-than-original polyhedrin promoter expression in the viral genome. This system was found to exhibit significantly better suppression than the double-stranded RNA (dsRNA) strategy, and would be useful for expression of foreign or viral genes whose functions require the interaction of multiple and/or unknown baculovirus gene products.
Collapse
Affiliation(s)
- Yueh-Lung Wu
- Institute of Biotechnology, National Chung-Kung University, Tainan, Taiwan
| | | |
Collapse
|
25
|
La Fauce KA, Owens L. RNA interference reduces PmergDNV expression and replication in an in vivo cricket model. J Invertebr Pathol 2009; 100:111-5. [DOI: 10.1016/j.jip.2008.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/27/2008] [Indexed: 11/26/2022]
|
26
|
Transactivator IE1 is required for baculovirus early replication events that trigger apoptosis in permissive and nonpermissive cells. J Virol 2008; 83:262-72. [PMID: 18945761 DOI: 10.1128/jvi.01827-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immediate early viral protein IE1 is a potent transcriptional activator encoded by baculoviruses. Although the requirement of IE1 for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is well established, the functional roles of IE1 during infection are unclear. Here, we used RNA interference to ablate IE1, plus its splice variant IE0, and thereby define in vivo activities of these early proteins, including gene-specific regulation and induction of host cell apoptosis. Confirming an essential replicative role, simultaneous ablation of IE1 and IE0 by gene-specific double-stranded RNAs inhibited AcMNPV late gene expression, reduced yields of budded virus by more than 1,000-fold, and blocked production of occluded virus particles. Depletion of IE1 and IE0 had no effect on early expression of the envelope fusion protein gene gp64 but abolished early expression of the caspase inhibitor gene p35, which is required for prevention of virus-induced apoptosis. Thus, IE1 is a positive, gene-specific transactivator. Whereas an AcMNPV p35 deletion mutant caused widespread apoptosis in permissive Spodoptera frugiperda cells, ablation of IE1 and IE0 prevented this apoptosis. Silencing of ie-1 also prevented AcMNPV-induced apoptosis in nonpermissive Drosophila melanogaster cells. Thus, de novo synthesis of IE1 is required for virus-induced apoptosis. We concluded that IE1 causes apoptosis directly or contributes indirectly by promoting virus replication events that subsequently trigger cell death. This study reveals that IE1 is a gene-selective transcriptional activator which is required not only for expedition of virus multiplication but also for blocking of its own proapoptotic activity by upregulation of baculovirus apoptotic suppressors.
Collapse
|
27
|
Yang H, Fan W, Wei H, Zhang J, Zhou Z, Li J, Lin J, Ding N, Zhong B. Transgenic breeding of anti-Bombyx moriL. nuclear polyhedrosis virus silkwormBombyx mori. Acta Biochim Biophys Sin (Shanghai) 2008. [DOI: 10.1111/j.1745-7270.2008.00471.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Li TJ, Song JN, Kang K, Tong SS, Hu ZL, He TC, Zhang BQ, Zhang CQ. RNA interference-mediated gene silencing of vascular endothelial growth factor in colon cancer cells. World J Gastroenterol 2007; 13:5312-6. [PMID: 17879399 PMCID: PMC4171319 DOI: 10.3748/wjg.v13.i40.5312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To inhibit the expression of vascular endothelial growth factor (VEGF) in colon cancer cell line by RNA interference (RNAi).
METHODS: Followed the service of E-RNAi, we designed and constructed two kinds of shRNA expression vectors aiming at the VEGF gene, then transfected them into colon cancer HT29 cells by lipofectamineTM 2000. The level of VEGF mRNA was investigated by RT-PCR and Northern blotting. The protein expression of VEGF was observed by immunofluoresence staining and Western blotting.
RESULTS: We got two kinds of VEGF specific shRNA expression vectors which could efficiently inhibit the expression of VEGF in HT29 cells. RT-PCR, Northern blotting, immunofluoresence staining and Western blotting showed that inhibition rate for VEGF expression was up to 42%, 89%, 73% and 82%, respectively.
CONCLUSION: The expression of VEGF can be inhibited by RNA interference in HT29 cells.
Collapse
Affiliation(s)
- Tie-Jun Li
- Department in General Surgery, the First Affiliated Hospital, Chongqing University of Medical Science, Chongqing 400016, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp B, Prasad SV, Chavancy G, Couble P, Nagaraju J. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. INSECT MOLECULAR BIOLOGY 2007; 16:635-44. [PMID: 17894559 DOI: 10.1111/j.1365-2583.2007.00753.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi)-mediated viral inhibition has been used in a few organisms for eliciting viral resistance. In the present study, we report the use of RNAi in preventing baculovirus infection in a lepidopteran. We targeted the baculoviral immediate early-1 (ie-1) gene in both a transformed lepidopteran cell line and in the transgenic silkworm Bombyx mori L. Constitutive expression of double-stranded RNA was achieved by piggyBac-mediated transformation of Sf9 cell line with a transgene encoding double-stranded ie-1 RNA (dsie-1). Strong viral repression was seen at early stages of infection but subsequent recovery of viral proliferation was observed. In contrast, the same transgene inserted into the chromosomes of transgenic silkworms induced long-term inhibition of B. mori nucleopolyhedrovirus infection, with nearly 40% protection compared with nontransgenic animals. Protection was efficient at larval stages after oral infection with occlusion bodies or hemocoel injection of budded viruses. Virus injected pupae also displayed resistance. These results show that heritable RNAi can be used to protect silkworm strains from baculovirus infection.
Collapse
Affiliation(s)
- S Kanginakudru
- Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad, India
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Salem TZ, Maruniak JE. A universal transgene silencing approach in baculovirus–insect cell system. J Virol Methods 2007; 145:1-8. [PMID: 17548118 DOI: 10.1016/j.jviromet.2007.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 01/08/2023]
Abstract
Baculovirus-insect cell system (BICS) is considered one of the most efficient eukaryotic gene expression systems. This system has also been used for producing different recombinant baculoviruses with increased insect toxicity as potential biopesticides. Establishing a universal gene silencing (UGS) system is very important due to the increasing number of studies using RNA interference (RNAi) with BICS. In this work, the enhanced green fluorescent protein (EGFP) was used as the RNAi consistent target sequence located downstream of a depressant insect-neurotoxin gene, LqqIT2 used as a model of the gene of interest. Small interfering RNA (siRNA) and inverted repeats of EGFP gene (IR-EG) were examined in targeting the EGFP-LqqIT2 (EL)-fusion mRNA or LqqIT2-EGFP (LE)-bicistronic mRNA for degradation. Suppression efficiencies using these inducers were examined transiently and stably in uninfected and infected insect Sf9 cells. Moreover, RNAi showed persistence for 4 and 8 days in baculovirus-infected as well as uninfected Sf9 cells, respectively. Bicistronic RNA seems an efficient way to lower cost and effort of the gene silencing approach while maintaining the biological activity of the protein of interest when the RNAi is not in use.
Collapse
Affiliation(s)
- Tamer Z Salem
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA.
| | | |
Collapse
|
31
|
Quadt I, van Lent JWM, Knebel-Mörsdorf D. Studies of the silencing of baculovirus DNA binding protein. J Virol 2007; 81:6122-7. [PMID: 17376916 PMCID: PMC1900273 DOI: 10.1128/jvi.02768-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovirus-infected cells increased expression of LEF-3, LEF-4, and P35. In contrast, expression of the structural genes coding for P39 and polyhedrin was suppressed while expression of genes coding for P10 and GP64 was unaffected. In the absence of DBP, viral DNA replication sites were formed, indicating replication of viral DNA. Electron microscopy studies, however, revealed a loss of formation of polyhedra and virus envelopment, suggesting that the primary role of DBP is viral formation rather than viral DNA replication.
Collapse
Affiliation(s)
- Ilja Quadt
- Department of Neurology and Center for Biochemistry, Joseph-Stelzmann-Strasse 52, D-50931 Köln, Germany
| | | | | |
Collapse
|
32
|
Robalino J, Bartlett TC, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA and antiviral immunity in marine shrimp: inducible host mechanisms and evidence for the evolution of viral counter-responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:539-47. [PMID: 17109960 DOI: 10.1016/j.dci.2006.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/09/2006] [Accepted: 08/14/2006] [Indexed: 05/12/2023]
Abstract
Double-stranded RNA (dsRNA) is a common virus-associated molecular pattern and a potent inducer of antiviral responses in many organisms. While it is clear that the specific RNA interference (RNAi) response, a phenomenon triggered by dsRNA, serves antiviral functions in invertebrates, innate (non-specific) antiviral immune reactions induced by dsRNA (e.g. the Interferon response) have long been thought to be restricted to vertebrates. Recent work in an underappreciated experimental model, the penaeid shrimp, is challenging these traditional distinctions, by demonstrating the existence of both innate (non sequence-specific) and RNAi-related (sequence-specific) antiviral phenomena in crustacea. Here we discuss the evidence for this bivalent role of dsRNA in the initiation of antiviral responses in shrimp, and present new data that suggest that the antiviral functions of the shrimp RNAi machinery have imposed selective pressures on an evolving viral pathogen. These findings open the door for the discovery of novel mechanisms of innate immunity, and provide a basis for the future development of strategies to control viral diseases in the commercially important penaeid shrimp.
Collapse
Affiliation(s)
- Javier Robalino
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Fort, Johnson Road, Charleston, SC 29412, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
34
|
Yodmuang S, Tirasophon W, Roshorm Y, Chinnirunvong W, Panyim S. YHV-protease dsRNA inhibits YHV replication in Penaeus monodon and prevents mortality. Biochem Biophys Res Commun 2006; 341:351-6. [PMID: 16426575 DOI: 10.1016/j.bbrc.2005.12.186] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Yellow head virus infects cultured shrimps and causes severe mortality resulting in a great economic loss. Haemolymph injection of dsRNA(pro) corresponding to the protease motif of YHV genome resulted in a complete inhibition of YHV replication. The effect of dsRNA lasted for at least 5 days. Injecting sequence-unrelated dsRNA(gfp) or dsRNA(TSV-pol) also resulted in an inhibition of YHV replication but at a comparatively much less extent. Shrimp mortality was monitored for 10 days when more than 90% shrimps receiving no dsRNA died within 8 dpi. However, those receiving dsRNA(pro) showed no mortality. A partial mortality was observed among the shrimps receiving dsRNA(gfp) or dsRNA(TSV-pol). Thus, Penaeus monodon possesses the sequence-specific protection to YHV infection, most likely through the RNAi pathway, in addition to sequence-independent protection. It gives a new notion that dsRNA induction of antiviral immunity in shrimp goes through two pathways, sequence-independent and sequence-dependent.
Collapse
Affiliation(s)
- Supansa Yodmuang
- The Institute of Molecular Biology and Genetics, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | | | | | | | | |
Collapse
|
35
|
Lin CC, Hsu JTA, Huang KL, Tang HK, Lai YK. Stable RNA Interference in Spodoptera frugiperda Cells by a DNA Vector-based Method. Biotechnol Lett 2006; 28:271-7. [PMID: 16555012 DOI: 10.1007/s10529-005-5530-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 11/22/2005] [Accepted: 11/25/2005] [Indexed: 10/24/2022]
Abstract
Double-stranded RNA (dsRNA)-mediated interference (RNAi) is a powerful tool for silencing of gene expression in many organisms. To establish a DNA vector-based method for stable RNAi in Spodoptera frugiperda cells (Sf9), we created a stably transfected Sf9 cell line to express large dsRNA fragment targeting to silence the firefly luciferase gene (luc). The luc dsRNA specifically and stably suppressed the baculovirus-mediated luciferase expression. Thus, gene silencing in Sf9 cells was achieved using DNA vectors similar to the facile design described in this study.
Collapse
Affiliation(s)
- Chih-Chien Lin
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | |
Collapse
|
36
|
Westenberg M, Heinhuis B, Zuidema D, Vlak JM. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus. Virus Res 2005; 114:133-9. [PMID: 16043253 DOI: 10.1016/j.virusres.2005.06.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 06/10/2005] [Accepted: 06/20/2005] [Indexed: 01/25/2023]
Abstract
White spot syndrome virus (WSSV) is a major disease in crustaceans, particularly shrimp, due to the current intensity of aquaculture practices. Novel strategies including vaccination to control this virus would be highly desirable. However, invertebrates lack a true adaptive immune response system and seem to rely on various innate immune responses. An alternative and more specific approach to counteract WSSV infections in shrimp could be by the exploitation of RNA interference. As long dsRNA molecules induce a general, sequence-independent anti-viral immunity in shrimp [Robalino, J., Browdy, C.L., Prior, S., Metz, A., Parnell, P., Gross, P., Warr, G., 2004. J. Virol. 78, 10442-10448], it was investigated whether shorter 21 nt siRNAs with homology to the WSSV vp15 and vp28 genes would give a sequence-specific interference response in the shrimp Penaeus monodon. Vp28 siRNAs as well as nonspecific control gfp siRNAs were able to specifically and efficiently silence their homologous genes in a heterologous baculovirus insect cell expression system. However, in shrimps no such a specific effect was observed. Shrimp injected with vp15 or vp28 siRNAs before WSSV challenge gave a significantly lower mortality rate, but not significantly different when shrimps were injected with gfp siRNA. Thus, large dsRNA molecules as well as siRNAs induce a sequence-independent anti-viral immunity when injected in shrimp.
Collapse
Affiliation(s)
- Marcel Westenberg
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Robalino J, Bartlett T, Shepard E, Prior S, Jaramillo G, Scura E, Chapman RW, Gross PS, Browdy CL, Warr GW. Double-stranded RNA induces sequence-specific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virol 2005; 79:13561-71. [PMID: 16227276 PMCID: PMC1262564 DOI: 10.1128/jvi.79.21.13561-13571.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.
Collapse
Affiliation(s)
- Javier Robalino
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Ft. Johnson Road, Charleston, South Carolina 29412, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takabatake Y, Isaka Y, Mizui M, Kawachi H, Shimizu F, Ito T, Hori M, Imai E. Exploring RNA interference as a therapeutic strategy for renal disease. Gene Ther 2005; 12:965-73. [PMID: 15729369 DOI: 10.1038/sj.gt.3302480] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The short synthetic interfering RNA duplexes (siRNAs) can selectively suppress gene expression in somatic mammalian cells without nonselective toxic effects of double-stranded RNA (dsRNA). However, a selective in vivo delivery of siRNA transfer has not been reported in kidney. Here, we investigated whether injection of synthetic siRNAs via renal artery followed by electroporation could be effective and therapeutic in silencing specific gene in glomerulus. We investigated the effect of siRNA in rat cultured mesangial cells (MCs) and showed that siRNA sequence-specific suppression of transgene expression was over a 1000-fold more potent than that by antisense oligodeoxynucleotide (ASODN). Transfection of siRNA targeting luciferase into rat kidneys significantly inhibited expression of a cotransfected luciferase expression vector in vivo. The delivery of siRNA targeting enhanced green fluorescent protein (EGFP) in the transgenic 'green' rat reduced endogenous EGFP expression, mainly in glomerular MCs. Furthermore, RNAi targeting against TGF-beta1 significantly suppressed TGF-beta1 mRNA and protein expression, thereby ameliorated the progression of matrix expansion in experimental glomerulonephritis. In addition, vector-based RNAi also inhibited TGF-beta1 expression in vitro and in vivo. In conclusion, siRNA-directed TGF-beta1 silencing may be of therapeutic value in the prevention and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Y Takabatake
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine (A8), Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells. RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently, small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.
Collapse
Affiliation(s)
- Fischer L TAN
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101 China
| | - James Q YIN
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101 China
| |
Collapse
|
40
|
Bonvin M, Marti D, Wyder S, Kojic D, Annaheim M, Lanzrein B. Cloning, characterization and analysis by RNA interference of various genes of the Chelonus inanitus polydnavirus. J Gen Virol 2005; 86:973-983. [PMID: 15784890 DOI: 10.1099/vir.0.80833-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Successful parasitism of some endoparasitic wasps depends on an obligately symbiotic association with polydnaviruses. These unique viruses have a segmented genome consisting of circles of double-stranded (ds) DNA and do not replicate in the parasitized host. They are produced in the wasp's ovary and injected into the host along with the egg. Chelonus inanitus is an egg–larval parasitoid; its polydnavirus (CiV) has been shown to protect the parasitoid larva from the host's immune system and to induce developmental arrest in the prepupal stage. The genome of CiV consists of at least 10–12 segments and five have been sequenced up to now. Here, the complete (CiV12g2) or partial (CiV12g1, CiV16.8g1) cloning of three new CiV genes is reported. All three occur only on one viral segment and have no similarity to other known polydnavirus genes, with the exception of a high similarity of CiV12g1 to CiV14g1 and CiV12g2 to CiV14g2. Furthermore, the first attempt of in vivo application of RNA interference to study the function of polydnavirus genes is shown. Injection of dsRNA of two late- and one early- and late-expressed CiV genes into CiV/venom-containing host eggs partially rescued last-instar larvae from developmental arrest. Injection of the same dsRNAs into parasitized eggs partially reduced parasitoid survival, mainly by preventing the successful emergence of the parasitoid from the host. These viral genes thus seem to be involved in inducing developmental arrest and in keeping the cuticle soft, which appears to be necessary for parasitoid emergence and host feeding.
Collapse
Affiliation(s)
- Marianne Bonvin
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Dorothee Marti
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Stefan Wyder
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Dejan Kojic
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Marc Annaheim
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Beatrice Lanzrein
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
41
|
Flores-Jasso CF, Valdes VJ, Sampieri A, Valadez-Graham V, Recillas-Targa F, Vaca L. Silencing structural and nonstructural genes in baculovirus by RNA interference. Virus Res 2004; 102:75-84. [PMID: 15068883 DOI: 10.1016/j.virusres.2004.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review several aspects of RNAi and gene silencing with baculovirus. We show that the potency of RNAi in Spodoptera frugiperda (Sf21) insect cells correlates well with the efficiency of transfection of the siRNA. Using a fluorescein-labeled siRNA we found that the siRNA localized in areas surrounding the endoplasmic reticulum (ER). Both long (700 nucleotides long) and small ( approximately 25 nucleotides long) interfering RNAs were equally effective in initiating RNA interference (RNAi), and the duration of the interfering effect was indistinguishable. Even though RNAi in Sf21 cells is very effective, in vitro experiments show that these cells fragment the long dsRNA into siRNA poorly, when compared to HEK cells. Finally, we show that in vivo inhibition of baculovirus infection with dsRNA homologous to genes that are essential for baculovirus infectivity depends strongly on the amount of dsRNA used in the assays. Five hundred nanogram of dsRNA directly injected into the haemolymph of insects prevent animal death to over 95%. In control experiments, over 96% of insects not injected with dsRNA or injected with an irrelevant dsRNA died within a week. These results demonstrate the efficiency of dsRNA for in vivo prevention of a viral infection by virus that is very cytotoxic and lytic in animals.
Collapse
Affiliation(s)
- C Fabian Flores-Jasso
- Departamento de Biología Celular, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Mexico, D.F. 04510, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
43
|
Agrawal N, Malhotra P, Bhatnagar RK. siRNA-directed silencing of transgene expressed in cultured insect cells. Biochem Biophys Res Commun 2004; 320:428-34. [PMID: 15219846 DOI: 10.1016/j.bbrc.2004.05.184] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) has emerged as a powerful tool to rapidly analyze gene functions in a wide variety of eukaryotic organisms as well as in cultured cell lines. We demonstrate here that RNAi can be applied to study the function of a transgene expressed in an insect cell line (Spodoptera frugiperda, Sf21). The aminopeptidase N gene (apn) targeted for silencing in the present study was isolated from the midgut of Spodoptera litura larvae and expressed in Sf21 cells using baculovirus expression system. The recombinant APN protein expressed at the surface of Sf21 cells was shown to interact with insecticidal crystal protein, Cry1C, by in vitro experiments. The exogenous addition/transfection of APN dsRNA or siRNA in the cultured cells resulted in partial/complete inhibition of expression of apn leading to the loss of toxin binding to the transgene expressing cells. These experiments highlighted the usefulness of RNAi as a tool to study the function of an expressed transgene in insect cell line and to study the specificity of receptor-ligand interaction.
Collapse
Affiliation(s)
- Neema Agrawal
- International Center for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | |
Collapse
|
44
|
Abstract
RNA interference (RNAi) is a double-stranded RNA (dsRNA)-triggered mechanism for suppressing gene expression, which is conserved in evolution and has emerged as a powerful tool to study gene function. Rotaviruses, the leading cause of severe diarrhea in young children, are formed by three concentric layers of protein, and a genome composed of 11 segments of dsRNA. Here, we show that the RNAi machinery can be triggered to silence rotavirus gene expression by sequence-specific short interfering RNAs (siRNAs). RNAi is also useful for the study of the virus-cell interactions, through the silencing of cellular genes that are potentially important for the replication of the virus. Interestingly, while the translation of mRNAs is readily stopped by the RNAi machinery, the viral transcripts involved in virus genome replication do not seem to be susceptible to RNAi. Since gene silencing by RNAi is very efficient and specific, this system could become a novel therapeutic approach for rotavirus and other virus infections, once efficient methods for in vivo delivery of siRNAs are developed. Although the use of RNAi as an antiviral therapeutic tool remains to be demonstrated, there is no doubt that this technology will influence drastically the way postgenomic virus research is conducted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
45
|
Lingor P, Michel U, Bähr M. The Long Processes of Short Interfering RNAs – RNA Interference and Its Implications in Neuronal Cells. NEURODEGENER DIS 2004; 1:3-8. [PMID: 16908968 DOI: 10.1159/000076664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 09/02/2003] [Indexed: 11/19/2022] Open
Abstract
Reverse genetics has been greatly advanced by the discovery of RNA interference (RNAi). This intracellular RNA-mediated gene silencing pathway is partially conserved from plants to mammals and offers a new powerful tool for the analysis of gene function. We give a brief overview of the discovery of RNAi, the underlying mechanisms and probable intrinsic roles of the pathway. Recent reports utilizing RNAi for gene silencing approaches in neuronal cells are reviewed and possible delivery techniques for small interfering RNA/double-stranded RNA are discussed.
Collapse
Affiliation(s)
- Paul Lingor
- S2-Laboratory, Department of Neurology, Faculty of Medicine, University of Göttingen, Göttingen, Germany.
| | | | | |
Collapse
|
46
|
Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67:657-85. [PMID: 14665679 PMCID: PMC309050 DOI: 10.1128/mmbr.67.4.657-685.2003] [Citation(s) in RCA: 782] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes.
Collapse
Affiliation(s)
- Neema Agrawal
- International Center for Genetic Engineering and Biotechnology, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Haasnoot J, Cupac D, Berkhout B. Inhibition of virus replication by RNA interference. J Biomed Sci 2003. [DOI: 10.1007/bf02256311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|