1
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Utility of High Resolution NMR Methods to Probe the Impact of Chemical Modifications on Higher Order Structure of Monoclonal Antibodies in Relation to Antigen Binding. Pharm Res 2019; 36:130. [DOI: 10.1007/s11095-019-2652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
|
3
|
Giles AR, Sims JJ, Turner KB, Govindasamy L, Alvira MR, Lock M, Wilson JM. Deamidation of Amino Acids on the Surface of Adeno-Associated Virus Capsids Leads to Charge Heterogeneity and Altered Vector Function. Mol Ther 2018; 26:2848-2862. [PMID: 30343890 DOI: 10.1016/j.ymthe.2018.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Post-translational modification of the adeno-associated virus capsids is a poorly understood factor in the development of these viral vectors into pharmaceutical products. Here we report the extensive capsid deamidation of adeno-associated virus serotype 8 and seven other diverse adeno-associated virus serotypes, with supporting evidence from structural, biochemical, and mass spectrometry approaches. The extent of deamidation at each site depended on the vector's age and multiple primary-sequence and three-dimensional structural factors. However, the extent of deamidation was largely independent of the vector recovery and purification conditions. We demonstrate the potential for deamidation to impact transduction activity and, moreover, correlate an early time point loss in vector activity to rapidly progressing spontaneous deamidation at several adeno-associated virus 8 asparagines. We explore mutational strategies that stabilize side-chain amides, improving vector transduction and reducing the lot-to-lot molecular variability that presents a key concern in biologics manufacturing. This study illuminates a previously unknown aspect of adeno-associated virus capsid heterogeneity and highlights its importance in the development of these vectors for gene therapy.
Collapse
Affiliation(s)
- April R Giles
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin B Turner
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lakshmanan Govindasamy
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mauricio R Alvira
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin Lock
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Kaur G, Guruprasad K, Temple BRS, Shirvanyants DG, Dokholyan NV, Pati PK. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids 2018; 50:79-94. [PMID: 29071531 PMCID: PMC6492275 DOI: 10.1007/s00726-017-2491-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Kunchur Guruprasad
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Brenda R S Temple
- R. L. Juliano Structural Bioinformatics Core Facility, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David G Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
5
|
Huang LJ, Chiang CW, Lee YW, Wang TF, Fong CC, Chen SH. Characterization and comparability of stress-induced oxidation and deamidation on vulnerable sites of etanercept products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:189-197. [PMID: 27237733 DOI: 10.1016/j.jchromb.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
An etanercept biosimilar, TuNEX(®), was compared to the innovator drug, Enbrel(®), for its reaction to stress-induced oxidation and deamidation, which may affect drug efficacy. A tryptic peptide map of both etanercept products was generated by liquid chromatography (LC) using mass spectrometry (MS) and ultraviolet (UV) spectrophotometry detection methods. The sequence of each modified or non-modified peptide peak was assigned based on accurate measurement of the mass of the protein and analysis utilizing tandem MS. Similar profiles of intrinsic oxidation on methionine (M) and deamidation on asparagine (N) were obtained for the two products, regardless of a two-amino acid (AA) residue variance in the heavy chain (Fc) between them. The level of oxidative stress exerted by tert-butyl hydroperoxide (tBHP), and alkaline stress exerted by a pH 10.4 solution, was examined using an LC-UV method. The results indicated that TuNEX(®) demonstrated a similar stress-induced modification profile compared to that of Enbrel(®). For both products, oxidative stress increased the oxidation from an intrinsically low (0-6.9%) to moderate or high (42-100%) level for almost all M residues (M30, M174, M187, M223, M272, and M448); alkaline stress increased the deamidation level of N404 from a low (0.0 or 1.7%) to moderate (19-26%) level. Based the results of a cell-based bioactivity assay, TuNEX(®) also exhibited a similar level of bioactivity as Enbrel(®) in unstressed, oxidative-stressed, or alkaline-stressed conditions. The bioactivity of both products remained unaltered by oxidative stress but was reduced by alkali stress. In conclusion, our data indicated that TuNEX(®) exhibits a similar chemical stress profile as that of Enbrel(®) in terms of oxidation and deamidation as well as bioactivity.
Collapse
Affiliation(s)
- Li-Juan Huang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Yu-Wen Lee
- Mycenax Biotech Inc, Jhunan, Miaoli, Taiwan
| | - Tzu-Fan Wang
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 2012; 519:194-201. [PMID: 22005392 PMCID: PMC3271142 DOI: 10.1016/j.abb.2011.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
The liver enzyme phenylalanine hydroxylase is responsible for conversion of excess phenylalanine in the diet to tyrosine. Phenylalanine hydroxylase is activated by phenylalanine; this activation is inhibited by the physiological reducing substrate tetrahydrobiopterin. Phosphorylation of Ser16 lowers the concentration of phenylalanine for activation. This review discusses the present understanding of the molecular details of the allosteric regulation of the enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, TX 78229-3900, USA.
| |
Collapse
|
7
|
|
8
|
Cerreto M, Cavaliere P, Carluccio C, Amato F, Zagari A, Daniele A, Salvatore F. Natural phenylalanine hydroxylase variants that confer a mild phenotype affect the enzyme's conformational stability and oligomerization equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:1435-45. [PMID: 21820508 DOI: 10.1016/j.bbadis.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
Abstract
Hyperphenylalaninemias are genetic diseases prevalently caused by mutations in the phenylalanine hydroxylase (PAH) gene. The wild-type PAH enzyme is a homotetramer regulated by its substrate, cofactor and phosphorylation. We reproduced a full-length wild-type protein and seven natural full-length PAH variants, p.I65M, p.N223Y, p.R297L, p.F382L, p.K398N, p.A403V, and p.Q419R, and analyzed their biochemical and biophysical behavior. All mutants exhibited reduced enzymatic activity, namely from 38% to 69% of wild-type activity. Biophysical characterization was performed by size-exclusion chromatography, light scattering and circular dichroism. In the purified wild-type PAH, we identified the monomer in equilibrium with the dimer and tetramer. In most mutants, the equilibrium shifted toward the dimer and most tended to form aggregates. All PAH variants displayed different biophysical behaviors due to loss of secondary structure and thermal destabilization. Specifically, p.F382L was highly unstable at physiological temperature. Moreover, using confocal microscopy with the number and brightness technique, we studied the effect of BH4 addition directly in living human cells expressing wild-type PAH or p.A403V, a mild mutant associated with BH4 responsiveness in vivo. Our results demonstrate that BH4 addition promotes re-establishment of the oligomerization equilibrium, thus indicating that the dimer-to-tetramer shift in pA403V plays a key role in BH4 responsiveness. In conclusion, we show that the oligomerization process and conformational stability are altered by mutations that could affect the physiological behavior of the enzyme. This endorses the hypothesis that oligomerization and folding defects of PAH variants are the most common causes of HPAs, particularly as regards mild human phenotypes.
Collapse
|
9
|
Leandro J, Leandro P, Flatmark T. Heterotetrameric forms of human phenylalanine hydroxylase: Co-expression of wild-type and mutant forms in a bicistronic system. Biochim Biophys Acta Mol Basis Dis 2011; 1812:602-12. [DOI: 10.1016/j.bbadis.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/19/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
|
10
|
Sabareesh V, Sarkar P, Sardesai AA, Chatterji D. Identifying N60D mutation in ω subunit of Escherichia coli RNA polymerase by bottom-up proteomic approach. Analyst 2010; 135:2723-9. [DOI: 10.1039/c0an00130a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Development of a comprehensive multidimensional liquid chromatography system with tandem mass spectrometry detection for detailed characterization of recombinant proteins. J Chromatogr A 2008; 1189:183-95. [DOI: 10.1016/j.chroma.2007.11.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/12/2007] [Accepted: 11/09/2007] [Indexed: 11/21/2022]
|
12
|
Martinez A, Calvo AC, Teigen K, Pey AL. Rescuing Proteins of Low Kinetic Stability by Chaperones and Natural Ligands: Phenylketonuria, a Case Study. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:89-134. [DOI: 10.1016/s0079-6603(08)00603-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Stroop SD. A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:830-6. [PMID: 17294517 DOI: 10.1002/rcm.2901] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A modified peptide mapping strategy using electrospray time-of-flight mass spectrometry with high-performance liquid chromatography (HPLC/MS) provides an improved measure of deamidation by performing proteolytic digestion at low temperature (4 degrees C), low pH (6.0) and in organic solvent (> or =10% acetonitrile). HPLC resolution of the native (N) and deamidated (D) peptides is achieved, and the ratio of ion counts is converted into percent deamidation. The percent deamidation is established for a reference lot using a time course of digestion (24-120 h) and extrapolation to time zero. Test samples are compared against the reference lot to quantitate changes in site-specific deamidation. A recombinant purified protein (antigen A) having a single labile Asn-Gly site is analyzed using this strategy. The N and D peptides from an endoproteinase Lys C (Lys C) digestion (pH 6, 4 degrees C) resolve to near homogeneity on HPLC which results in equivalent percent deamidation when calculated by either UV or ion counts. Deamidation increases with time and pH of proteolysis. Lys C peptide maps of antigen A and bovine serum albumin (BSA) digested at pH 5-8 are comparable. A Lys C digestion time course of a reference lot of antigen A extrapolates to 18% deamidation of the Asn-Gly site at time zero. This strategy may be generally applicable to protease-protein combinations for improved accuracy in measuring site-specific deamidation by peptide mapping LC/MS.
Collapse
Affiliation(s)
- Steven D Stroop
- GlaxoSmithKline Biologics, 19204 North Creek Parkway, Bothell, WA 98011, USA.
| |
Collapse
|
14
|
Singh S, Aziz MA, Khandelwal P, Bhat R, Bhatnagar R. The osmoprotectants glycine and its methyl derivatives prevent the thermal inactivation of protective antigen of Bacillus anthracis. Biochem Biophys Res Commun 2004; 316:559-64. [PMID: 15020254 DOI: 10.1016/j.bbrc.2004.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Indexed: 11/22/2022]
Abstract
Protective antigen (PA) is the main immunogenic constituent of all vaccines against anthrax. It is known to lose its biological activity even at 37 degrees C. Its thermolabile nature has, thus, remained a cause of concern as even transient exposure of the vaccine to higher temperature could compromise its efficacy. Various types of cosolvent excipients have been used to stabilize a number of proteins with variable success. However, no comprehensive and systematic study to stabilize anthrax PA molecule using this approach has ever been undertaken. We have carried out a systematic study on the effect of osmoprotectants like glycine and its methyl derivatives, sarcosine, dimethylglycine, and betaine, on the thermostability of PA. The thermal stability of PA was found to be highly sensitive to pH with maxima at pH 7.9. All the cosolvent additives used were able to enhance the thermal stability of PA as inferred from an increase in T(1/2) values, the temperature at which 50% activity was retained during short-term incubation. Glycine was found to be the best stabilizer, while the ability of its methyl derivatives to stabilize PA decreased with an increase in the number of substituted methyl groups suggesting perturbation of hydrophobic interactions. On extended incubation at 40 degrees C the half-life of PA thermal inactivation increased more than four times in the presence of glycine. Thus, glycine could be used as an effective stabilizer to enhance the shelf life of recombinant vaccine against anthrax.
Collapse
Affiliation(s)
- Samer Singh
- Centre for Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
15
|
Stokka AJ, Carvalho RN, Barroso JF, Flatmark T. Probing the role of crystallographically defined/predicted hinge-bending regions in the substrate-induced global conformational transition and catalytic activation of human phenylalanine hydroxylase by single-site mutagenesis. J Biol Chem 2004; 279:26571-80. [PMID: 15060071 DOI: 10.1074/jbc.m400879200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phenylalanine hydroxylase (PAH) is generally considered to undergo a large and reversible conformational transition upon l-Phe binding, which is closely linked to the substrate-induced catalytic activation of this hysteretic enzyme. Recently, several crystallographically solvent-exposed hinge-bending regions including residues 31-34, 111-117, 218-226, and 425-429 have been defined/predicted to be involved in the intra-protomer propagation of the substrate-triggered molecular motions generated at the active site. On this basis, single-site mutagenesis of key residues in these regions of the human PAH tetramer was performed in the present study, and their functional impact was measured by steady-state kinetics and the global conformational transition as assessed by surface plasmon resonance and intrinsic tryptophan fluorescence spectroscopy. A strong correlation (r(2) = 0.93-0.96) was observed between the l-Phe-induced global conformational transition and V(max) values for wild-type human PAH and the mutant forms K113P, N223D, N426D, and N32D, in contrast to the substitution T427P, which resulted in a tetrameric form with no kinetic cooperativity. Furthermore, the flexible intra-domain linker region (residues 31-34) seems to be involved in a more local conformational change, and the biochemical/biophysical properties of the G33A/G33V mutant forms support a key function of this residue in the positioning of the autoregulatory sequence (residues 1-30) and thus in the regulation of the solvent and substrate access to the active site. The mutant forms revealed a variably reduced global conformational stability compared with wild-type human PAH, as measured by thermal denaturation and limited proteolysis.
Collapse
Affiliation(s)
- Anne Jorunn Stokka
- Section of Biochemistry and Molecular Biology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|
16
|
Solstad T, Carvalho RN, Andersen OA, Waidelich D, Flatmark T. Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:929-38. [PMID: 12603326 DOI: 10.1046/j.1432-1033.2003.03455.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.
Collapse
Affiliation(s)
- Therese Solstad
- Department of Biochemistry and Molecular Biology, Proteomic Unit, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
17
|
Solstad T, Stokka AJ, Andersen OA, Flatmark T. Studies on the regulatory properties of the pterin cofactor and dopamine bound at the active site of human phenylalanine hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:981-90. [PMID: 12603331 DOI: 10.1046/j.1432-1033.2003.03471.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities.
Collapse
Affiliation(s)
- Therese Solstad
- Department of Biochemistry and Molecular Biology, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | |
Collapse
|