1
|
Caruso Bavisotto C, Provenzano A, Passantino R, Marino Gammazza A, Cappello F, San Biagio PL, Bulone D. Oligomeric State and Holding Activity of Hsp60. Int J Mol Sci 2023; 24:ijms24097847. [PMID: 37175554 PMCID: PMC10177986 DOI: 10.3390/ijms24097847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alessia Provenzano
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Rosa Passantino
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | | | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 90146 Palermo, Italy
| |
Collapse
|
2
|
Ricketts MD, Emptage RP, Blobel GA, Marmorstein R. The Heme-Regulated Inhibitor Kinase Requires Dimerization for Heme- Sensing Activity. J Biol Chem 2022; 298:102451. [PMID: 36063997 PMCID: PMC9520036 DOI: 10.1016/j.jbc.2022.102451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
The heme-regulated inhibitor (HRI) is a heme-sensing kinase that regulates mRNA translation in erythroid cells. In heme deficiency, HRI is activated to phosphorylate eukaryotic initiation factor 2α and halt production of globins, thus avoiding accumulation of heme-free globin chains. HRI is inhibited by heme via binding to one or two heme-binding domains within the HRI N-terminal and kinase domains. HRI has recently been found to inhibit fetal hemoglobin (HbF) production in adult erythroid cells. Depletion of HRI increases HbF production, presenting a therapeutically exploitable target for the treatment of patients with sickle cell disease or thalassemia, which benefit from elevated HbF levels. HRI is known to be an oligomeric enzyme that is activated through autophosphorylation, although the exact nature of the HRI oligomer, its relation to autophosphorylation, and its mode of heme regulation remain unclear. Here, we employ biochemical and biophysical studies to demonstrate that HRI forms a dimeric species that is not dependent on autophosphorylation, the C-terminal coiled-coil domain in HRI is essential for dimer formation, and dimer formation facilitates efficient autophosphorylation and activation of HRI. We also employ kinetic studies to demonstrate that the primary avenue by which heme inhibits HRI is through the heme-binding site within the kinase domain, and that this inhibition is relatively independent of binding of ATP and eukaryotic initiation factor 2α substrates. Together, these studies highlight the mode of heme inhibition and the importance of dimerization in human HRI heme-sensing activity.
Collapse
Affiliation(s)
- M Daniel Ricketts
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan P Emptage
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
3
|
Walker TE, Shirzadeh M, Sun HM, McCabe JW, Roth A, Moghadamchargari Z, Clemmer DE, Laganowsky A, Rye H, Russell DH. Temperature Regulates Stability, Ligand Binding (Mg 2+ and ATP), and Stoichiometry of GroEL-GroES Complexes. J Am Chem Soc 2022; 144:2667-2678. [PMID: 35107280 PMCID: PMC8939001 DOI: 10.1021/jacs.1c11341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.
Collapse
Affiliation(s)
- Thomas E. Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - He Mirabel Sun
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hays Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Sci Rep 2021; 11:18241. [PMID: 34521893 PMCID: PMC8440773 DOI: 10.1038/s41598-021-97657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022] Open
Abstract
The GroEL–GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL–GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.
Collapse
|
5
|
Caruso Bavisotto C, Alberti G, Vitale AM, Paladino L, Campanella C, Rappa F, Gorska M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front Mol Biosci 2020; 7:95. [PMID: 32582761 PMCID: PMC7289027 DOI: 10.3389/fmolb.2020.00095] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Jaworek MW, Möbitz S, Gao M, Winter R. Stability of the chaperonin system GroEL-GroES under extreme environmental conditions. Phys Chem Chem Phys 2020; 22:3734-3743. [PMID: 32010904 DOI: 10.1039/c9cp06468k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chaperonin system GroEL-GroES is present in all kingdoms of life and rescues proteins from improper folding and aggregation upon internal and external stress conditions, including high temperatures and pressures. Here, we set out to explore the thermo- and piezostability of GroEL, GroES and the GroEL-GroES complex in the presence of cosolvents, nucleotides and salts employing quantitative FTIR spectroscopy and small-angle X-ray scattering. Owing to its high biological relevance and lack of data, our focus was especially on the effect of pressure on the chaperonin system. The experimental results reveal that the GroEL-GroES complex is remarkably temperature stable with an unfolding temperature beyond 70 °C, which can still be slightly increased by compatible cosolutes like TMAO. Conversely, the pressure stability of GroEL and hence the GroEL-GroES complex is rather limited and much less than that of monomeric proteins. Whereas GroES is pressure stable up to ∼5 kbar, GroEl and the GroEl-GroES complex undergo minor structural changes already beyond 1 kbar, which can be attributed to a dissociation-induced conformational drift. Quite unexpectedly, no significant unfolding of GroEL is observed even up to 10 kbar, however, i.e., the subunits themselves are very pressure stable. As for the physiological relevance, the structural integrity of the chaperonin system is retained in a relatively narrow pressure range, from about 1 to 1000 bar, which is just the pressure range encountered by life on Earth.
Collapse
Affiliation(s)
- Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
Puri S, Chaudhuri TK. Inter and intra-subunit interactions at the subunit interface of chaperonin GroEL are essential for its stability and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:331-343. [PMID: 30661519 DOI: 10.1016/j.bbapap.2018.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Chaperonin GroEL helps in the folding of substrate proteins under normal and stress conditions. Although it remains stable and functional during stress conditions, the quantitative estimation of stability parameters and the specific amino-acid residues playing a role in its stability are not known in sufficient detail. The reason for poor understanding is its large size, multimeric nature, and irreversible unfolding process. The X-ray crystal structure reveals that equatorial domain forms almost all intra and inter-subunit interactions for assembly of GroEL. Considering all these facts, we adopted alternate strategies to use monomeric GroEL, native GroEL and equatorial domain mutants (GroELK4E/GroELD523K/GroELD473C) to study the assembly and stability of GroEL. Loss of inter-subunit interaction involving K4 residue of one subunit and E59, I60, E61, I62 residues of adjacent subunit due to K4E mutation affect the oligomerization efficiency of GroEL subunits while the equilibrium unfolding studies on wild-type monomeric GroEL, native GroEL, and the selected mutants together demonstrate that intra-subunit interactions involving K4 and D523 of the same subunit play a critical role in the thermodynamic stability of both native and monomeric GroEL without affecting the oligomerization of subunits. The stability order between the GroELwild-type(M) and its variants is GroELwild-type(M) ≥ GroELD473C(M)˃GroELD523K(M)˃GroELK4E.
Collapse
Affiliation(s)
- Sarita Puri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
8
|
Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase. Arch Biochem Biophys 2017; 637:21-30. [PMID: 29138095 DOI: 10.1016/j.abb.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 01/06/2023]
Abstract
The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon.
Collapse
|
9
|
Pace SE, Joshi SB, Esfandiary R, Stadelman R, Bishop SM, Middaugh CR, Fisher MT, Volkin DB. The Use of a GroEL-BLI Biosensor to Rapidly Assess Preaggregate Populations for Antibody Solutions Exhibiting Different Stability Profiles. J Pharm Sci 2017; 107:559-570. [PMID: 29037466 DOI: 10.1016/j.xphs.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 11/29/2022]
Abstract
An automated method using biotinylated GroEL-streptavidin biosensors with biolayer interferometry (GroEL-BLI) was evaluated to detect the formation of transiently formed, preaggregate species in various pharmaceutically relevant monoclonal antibody (mAb) samples. The relative aggregation propensity of various IgG1 and IgG4 mAbs was rank ordered using the GroEL-BLI biosensor method, and the least stable IgG4 mAb was subjected to different stresses including elevated temperatures, acidic pH, and addition of guanidine HCl. The GroEL-BLI biosensor detects mAb preaggregate formation mostly before, or sometimes concomitantly with, observing soluble aggregates and subvisible particles using size-exclusion chromatography and microflow imaging, respectively. A relatively unstable bispecific antibody (Bis-3) was shown to bind the GroEL biosensor even at low temperatures (25°C). During thermal stress (50°C, 1 h), increased Bis-3 binding to GroEL-biosensors was observed prior to aggregation by size-exclusion chromatography or microflow imaging. Transmission electron microscopy analysis of Bis-3 preaggregate GroEL complexes revealed, in some cases, potential hydrophobic interaction sites between the Fc domain of the Bis-3 and GroEL protein. The automated BLI method not only enables detection of transiently formed preaggregate species that initiate protein aggregation pathways but also permits rapid mAb formulation stability assessments at low volumes and low protein concentrations.
Collapse
Affiliation(s)
- Samantha E Pace
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Reza Esfandiary
- Department of Formulation Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Robert Stadelman
- Department of Cell Culture and Fermentation Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - Steven M Bishop
- Department of Formulation Sciences, MedImmune, One MedImmune Way, Gaithersburg, Maryland 20878
| | - C R Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160.
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
10
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
11
|
Kimura Y, Kasuga S, Unno M, Furusawa T, Osoegawa S, Sasaki Y, Ohno T, Wang-Otomo ZY. The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c' from the thermophilic purple sulfur bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2015; 124:19-29. [PMID: 25519852 DOI: 10.1007/s11120-014-0069-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
A soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy. In the oxidized forms, D131K and D131G mutants exhibited denaturing temperatures significantly lower than that of the recombinant control Cyt c'. In contrast, R129K and R129A mutants denatured at nearly identical temperatures with the control Cyt c', indicating that the C-terminal D131 is an important residue maintaining the enhanced thermal stability of Tch. tepidum Cyt c'. The control Cyt c' and all of the mutants increased their thermal stability upon the reduction. Interestingly, D131K exhibited narrow DSC curves and unusual thermodynamic parameters in both redox states. The RR spectra of the control Cyt c' exhibited characteristic bands at 1,635 and 1,625 cm(-1), ascribed to intermediate spin (IS) and high spin (HS) states, respectively. The IS/HS distribution was differently affected by the D131 and R129 mutations and pH changes. Furthermore, R129 mutants suggested the lowering of their redox potentials. These results strongly indicate that the D131 and R129 residues play significant roles in maintaining the thermal stability and modulating the local heme environment of Tch. tepidum Cyt c'.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Pey AL, Mesa-Torres N, Chiarelli LR, Valentini G. Structural and energetic basis of protein kinetic destabilization in human phosphoglycerate kinase 1 deficiency. Biochemistry 2013; 52:1160-70. [PMID: 23336698 DOI: 10.1021/bi301565m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinetic destabilization is a common feature of many human genetic diseases. Human phosphoglycerate kinase 1 (PGK1) deficiency is a rare genetic disease caused by mutations in the PGK1 protein, which often shows reduced kinetic stability. In this work, we have performed an in-depth characterization of the thermal stability of the wild type and four disease-causing mutants (I47N, L89P, E252A, and T378P) of human PGK1. PGK1 thermal denaturation is a process under kinetic control, and it is described well by a two-state irreversible denaturation model. Kinetic analysis of differential scanning calorimetry profiles shows that the disease-causing mutations decrease PGK1 kinetic stability from ~5-fold (E252A) to ~100000-fold (L89P) compared to that of wild-type PGK1, and in some cases, mutant enzymes are denatured on a time scale of a few minutes at physiological temperature. We show that changes in protein kinetic stability are associated with large differences in enthalpic and entropic contributions to denaturation free energy barriers. It is also shown that the denaturation transition state becomes more nativelike in terms of solvent exposure as the protein is destabilized by mutations (Hammond effect). Unfolding experiments with urea further suggest a scenario in which the thermodynamic stability of PGK1 at least partly determines its kinetic stability. ATP and ADP kinetically stabilize PGK1 enzymes, and kinetic stabilization is nucleotide- and mutant-selective. Overall, our data provide insight into the structural and energetic basis underlying the low kinetic stability displayed by some mutants causing human PGK1 deficiency, which may have important implications for the development of native state kinetic stabilizers for the treatment of this disease.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| | | | | | | |
Collapse
|
14
|
Skjaerven L, Muga A, Reuter N, Martinez A. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Proteins 2012; 80:2333-46. [PMID: 22576372 DOI: 10.1002/prot.24113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/09/2022]
Abstract
The molecular chaperone, GroEL, essential for correct protein folding in E. coli, is composed of 14 identical subunits organized in two interacting rings, each providing a folding chamber for non-native substrate proteins. The oligomeric assembly shows positive cooperativity within each ring and negative cooperativity between the rings. Although it is well known that ATP and long-range allosteric interactions drive the functional cycle of GroEL, an atomic resolution view of how ligand binding modulates conformational adaptations over long distances remains a major challenge. Moreover, little is known on the relation between equilibrium dynamics at physiological temperatures and the allosteric transitions in GroEL. Here we present multiple all-atom molecular dynamics simulations of the GroEL-GroES assemblies at different stages of the functional cycle. Combined with an extensive analysis of the complete set of experimentally available structures, principal component analysis and conformer plots, we provide an explicit evaluation of the accessible conformational space of unliganded GroEL. Our results suggest the presence of pre-existing conformers at the equatorial domain level, and a shift of the conformational ensemble upon ATP-binding. At the inter-ring interface the simulations capture a remarkable offset motion of helix D triggered by ATP-binding to the folding active ring. The reorientation of helix D, previously only observed upon GroES association, correlates with a change of the internal dynamics in the opposite ring. This work contributes to the understanding of the molecular mechanisms in GroEL and highlights the ability of all-atom MD simulations to model long-range structural changes and allosteric events in large systems.
Collapse
Affiliation(s)
- Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
15
|
Jurkowski W, Kułaga T, Roterman I. Geometric parameters defining the structure of proteins--relation to early-stage folding step. J Biomol Struct Dyn 2011; 29:79-104. [PMID: 21696227 DOI: 10.1080/07391102.2011.10507376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two geometrical parameters describing the structure of a polypeptide: V-dihedral angle between two sequential peptide bond planes and R-radius of curvature are used for structural classification of polypeptide structure in proteins. The relation between these two parameters was the basis for the definition of the conformational sub-space for early-stage structural forms. The cluster analysis of V and lnR, applied to the selected proteins of well-defined secondary structure (according to DSSP classification) and to proteins without any introductory classified analysis, revealed that several of the discriminated groups of proteins agree with the assumed model of early-stage conformational sub-space. This analysis shows that protein structures may be represented in VR space instead of Phi, Psi angles space, thus lowering the conformational space dimensionality. The VR model allows classification of traditional secondary structure elements as well as different Random Coil motifs, which broadens the range of recognized structural categories (compared to standard secondary structure elements).
Collapse
Affiliation(s)
- W Jurkowski
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Department of Bioinformatics and Telemedicine, Lazarza 16, 31-530 Krakow, Poland
| | | | | |
Collapse
|
16
|
Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N. The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 2011; 412:192-203. [PMID: 21802426 DOI: 10.1016/j.jmb.2011.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis expresses two proteins (Cpn60.1 and Cpn60.2) that belong to the chaperonin (Cpn) family of heat shock proteins. Studies have shown that the two proteins have different functional roles in the bacterial life cycle and that Cpn60.2 is essential for cell viability and may be involved in M. tuberculosis pathogenicity. Cpn60.2 does not form a tetradecameric double ring, which is typical of other Cpns. We have determined the crystal structure of recombinant Cpn60.2 to 2.8 Å resolution by molecular replacement; the asymmetric unit (AU) contains a dimer, which is consistent with size-exclusion high-performance liquid chromatography and dynamic light-scattering measurements of the soluble recombinant protein. However, we suggest that the actual Cpn60.2 dimer may be different from that identified within the AU on the basis of surface contact stability, solvation free-energy gain, and functional aspects. Unlike the dimer found in the AU, which is formed through apical domain interactions, the dimeric form we propose here provides a free apical domain that is required for normal chaperone activity and may be involved in M. tuberculosis association with macrophages and arthrosclerosis plaque formation. Here we describe in detail the structural aspects that lead to Cpn60.2 dimer formation and prevent the formation of heptameric rings and tetradecameric double rings.
Collapse
Affiliation(s)
- Anat Shahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
17
|
Owenius R, Jarl A, Jonsson BH, Carlsson U, Hammarström P. GroEL-induced topological dislocation of a substrate protein β-sheet core: a solution EPR spin-spin distance study. J Chem Biol 2010; 3:127-39. [PMID: 21479077 DOI: 10.1007/s12154-010-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022] Open
Abstract
The Hsp60-type chaperonin GroEL assists in the folding of the enzyme human carbonic anhydrase II (HCA II) and protects it from aggregation. This study was aimed to monitor conformational rearrangement of the substrate protein during the initial GroEL capture (in the absence of ATP) of the thermally unfolded HCA II molten-globule. Single- and double-cysteine mutants were specifically spin-labeled at a topological breakpoint in the β-sheet rich core of HCA II, where the dominating antiparallel β-sheet is broken and β-strands 6 and 7 are parallel. Electron paramagnetic resonance (EPR) was used to monitor the GroEL-induced structural changes in this region of HCA II during thermal denaturation. Both qualitative analysis of the EPR spectra and refined inter-residue distance calculations based on magnetic dipolar interaction show that the spin-labeled positions F147C and K213C are in proximity in the native state of HCA II at 20 °C (as close as ∼8 Å), and that this local structure is virtually intact in the thermally induced molten-globule state that binds to GroEL. In the absence of GroEL, the molten globule of HCA II irreversibly aggregates. In contrast, a substantial increase in spin-spin distance (up to >20 Å) was observed within minutes, upon interaction with GroEL (at 50 and 60 °C), which demonstrates a GroEL-induced conformational change in HCA II. The GroEL binding-induced disentanglement of the substrate protein core at the topological break-point is likely a key event for rearrangement of this potent aggregation initiation site, and hence, this conformational change averts HCA II misfolding.
Collapse
|
18
|
Williams TA, Codoñer FM, Toft C, Fares MA. Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet 2009; 26:47-51. [PMID: 20036437 DOI: 10.1016/j.tig.2009.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Bacterial chaperonins are essential to cell viability and have a role in endosymbiosis, which leads to increased biological complexity. However, the extent to which chaperonins promote ecological innovation is unknown. We screened 622 bacterial genomes for genes encoding chaperonins, and found archaeal-like chaperonins in bacteria that inhabit archaeal ecological niches. We found that chaperonins encoded in pathogenic bacteria are the most functionally divergent. We identified the molecular basis of the dramatic structural changes in mitochondrial GROEL, a highly derived chaperonin gene. Our analysis suggests that chaperonins are important capacitors of evolutionary and ecological change.
Collapse
Affiliation(s)
- Tom A Williams
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
19
|
Katayama H, McGill M, Kearns A, Brzozowski M, Degner N, Harnett B, Kornilayev B, Matković-Calogović D, Holyoak T, Calvet JP, Gogol EP, Seed J, Fisher MT. Strategies for folding of affinity tagged proteins using GroEL and osmolytes. ACTA ACUST UNITED AC 2008; 10:57-66. [PMID: 19082872 DOI: 10.1007/s10969-008-9053-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
Obtaining a proper fold of affinity tagged chimera proteins can be difficult. Frequently, the protein of interest aggregates after the chimeric affinity tag is cleaved off, even when the entire chimeric construct is initially soluble. If the attached protein is incorrectly folded, chaperone proteins such as GroEL bind to the misfolded construct and complicate both folding and affinity purification. Since chaperonin/osmolyte mixtures facilitate correct folding from the chaperonin, we explored the possibility that we could use this intrinsic binding reaction to advantage to refold two difficult-to-fold chimeric constructs. In one instance, we were able to recover activity from a properly folded construct after the construct was released from the chaperonin in the presence of osmolytes. As an added advantage, we have also found that this method involving chaperonins can enable researchers to decide (1) if further stabilization of the folded product is required and (2) if the protein construct in question will ever be competent to fold with osmolytes.
Collapse
Affiliation(s)
- Hiroo Katayama
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chaperone function in organic co-solvents: experimental characterization and modeling of a hyperthermophilic chaperone subunit from Methanocaldococcus jannaschii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:368-78. [PMID: 18154740 DOI: 10.1016/j.bbapap.2007.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 10/25/2007] [Accepted: 11/16/2007] [Indexed: 11/21/2022]
Abstract
Molecular chaperones play a central role in maintaining protein structure within a cell. Previously, we determined that the gene encoding a molecular chaperone, a thermosome, from the hyperthermophilic archaeon Methanocaldococcus jannaschii is upregulated upon lethal heat shock. We have recombinantly expressed this thermosome (rTHS) and show here that it is both stable and fully functional in aqueous solutions containing water-miscible organic co-solvents. Based on circular dichroism the secondary structure of rTHS was not affected by one-hour exposures to a variety of co-solvents including 30% v/v acetonitrile (ACN) and 50% methanol (MeOH). By contrast, the secondary structure of a mesophilic homologue, GroEL/GroES (GroE), was substantially disrupted. rTHS reduced the aggregation of ovalbumin and citrate synthase in 30% ACN, assisted refolding of citrate synthase upon solvent-inactivation, and stabilized citrate synthase and glutamate dehydrogenase in the direct presence of co-solvents. Apparent total turnover numbers of these enzymes in denaturing solutions increased by up to 2.5-fold in the presence of rTHS. Mechanistic models are proposed to help ascertain specific conditions that could enhance or limit organic solvent-induced chaperone activity. These models suggest that thermodynamic stability and the reversibility of enzyme unfolding play key roles in the effectiveness of enzyme recovery by rTHS.
Collapse
|
21
|
Sot B, von Germar F, Mäntele W, Valpuesta JM, Taneva SG, Muga A. Ionic interactions at both inter-ring contact sites of GroEL are involved in transmission of the allosteric signal: a time-resolved infrared difference study. Protein Sci 2005; 14:2267-74. [PMID: 16081650 PMCID: PMC2253480 DOI: 10.1110/ps.051469605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The biological activity of the double-ring chaperonin GroEL is regulated by complex allosteric interactions, which include positive intra-ring and negative inter-ring cooperativity. To further characterize inter-ring communication, the nucleotide-induced absorbance changes in the vibrational spectrum of the chaperonin GroEL, of two single-point mutants suppressing one inter-ring ionic contact (E461K and E434K) and of a single-ring version of this protein, were investigated by time-resolved infrared difference spectroscopy. Interaction of the nucleotide with the proteins was triggered by its photochemical release from a biologically inactive caged precursor [P3-1-(2-nitro) phenylethyl nucleotide]. The results indicate that (1) ATP binding to the protein induces a conformational change that affects concomitantly both intra-ring and inter-ring communication, and (2) the experimental absorbance changes are sensitive to the double-ring structure of the protein. The characterization of the single-point, inter-ring mutants demonstrates that ionic interactions at both contact sites are involved in the transmission of the allosteric signal. However, both mutations have different effects on the inter-ring interface. While that of E461K still retains ionic contacts sensitive to ATP binding, E434K shows spectroscopic features similar to those of the single-ring version of the protein, therefore suggesting that electrostatic interactions at these contact sites contribute differently to the stability of the inter-ring interface.
Collapse
Affiliation(s)
- Begoña Sot
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Risal D, Gourinath S, Himmel DM, Szent-Györgyi AG, Cohen C. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci U S A 2004; 101:8930-5. [PMID: 15184651 PMCID: PMC428449 DOI: 10.1073/pnas.0403002101] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural studies of myosin have indicated some of the conformational changes that occur in this protein during the contractile cycle, and we have now observed a conformational change in a bound nucleotide as well. The 3.1-A x-ray structure of the scallop myosin head domain (subfragment 1) in the ADP-bound near-rigor state (lever arm =45 degrees to the helical actin axis) shows the diphosphate moiety positioned on the surface of the nucleotide-binding pocket, rather than deep within it as had been observed previously. This conformation strongly suggests a specific mode of entry and exit of the nucleotide from the nucleotide-binding pocket through the so-called "front door." In addition, using a variety of scallop structures, including a relatively high-resolution 2.75-A nucleotide-free near-rigor structure, we have identified a conserved complex salt bridge connecting the 50-kDa upper and N-terminal subdomains. This salt bridge is present only in crystal structures of muscle myosin isoforms that exhibit a strong reciprocal relationship (also known as coupling) between actin and nucleotide affinity.
Collapse
Affiliation(s)
- Dipesh Risal
- Rosenstiel Basic Medical Sciences Research Center, MS 029, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|