1
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Andresen C, Niklasson M, Cassman Eklöf S, Wallner B, Lundström P. Biophysical characterization of the calmodulin-like domain of Plasmodium falciparum calcium dependent protein kinase 3. PLoS One 2017; 12:e0181721. [PMID: 28746405 PMCID: PMC5528832 DOI: 10.1371/journal.pone.0181721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe.
Collapse
Affiliation(s)
- Cecilia Andresen
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Markus Niklasson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Cassman Eklöf
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Division of Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Mohanta TK, Mohanta N, Mohanta YK, Bae H. Genome-Wide Identification of Calcium Dependent Protein Kinase Gene Family in Plant Lineage Shows Presence of Novel D-x-D and D-E-L Motifs in EF-Hand Domain. FRONTIERS IN PLANT SCIENCE 2015; 6:1146. [PMID: 26734045 PMCID: PMC4690006 DOI: 10.3389/fpls.2015.01146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 05/04/2023]
Abstract
Calcium ions are considered ubiquitous second messengers in eukaryotic signal transduction pathways. Intracellular Ca(2+) concentration are modulated by various signals such as hormones and biotic and abiotic stresses. Modulation of Ca(2+) ion leads to stimulation of calcium dependent protein kinase genes (CPKs), which results in regulation of gene expression and therefore mediates plant growth and development as well as biotic and abiotic stresses. Here, we reported the CPK gene family of 40 different plant species (950 CPK genes) and provided a unified nomenclature system for all of them. In addition, we analyzed their genomic, biochemical and structural conserved features. Multiple sequence alignment revealed that the kinase domain, auto-inhibitory domain and EF-hands regions of regulatory domains are highly conserved in nature. Additionally, the EF-hand domains of higher plants were found to contain four D-x-D and two D-E-L motifs, while lower eukaryotic plants had two D-x-D and one D-x-E motifs in their EF-hands. Phylogenetic analysis showed that CPK genes are clustered into four different groups. By studying the CPK gene family across the plant lineage, we provide the first evidence of the presence of D-x-D motif in the calcium binding EF-hand domain of CPK proteins.
Collapse
Affiliation(s)
- Tapan K. Mohanta
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Nibedita Mohanta
- Department Of Biotechnology, North Orissa UniversityBaripada, India
| | | | - Hanhong Bae
- School of Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
4
|
A New Assay Based on Fluorescence Resonance Energy Transfer to Determine the Binding Affinity of Bcl-xLInhibitors. Biosci Biotechnol Biochem 2014; 72:1936-9. [DOI: 10.1271/bbb.70735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. TRENDS IN PLANT SCIENCE 2014; 19:79-89. [PMID: 24342084 PMCID: PMC3932502 DOI: 10.1016/j.tplants.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, QC G1V 4C7, Canada.
| |
Collapse
|
6
|
Musial-Siwek M, Rusch SL, Kendall DA. Probing the affinity of SecA for signal peptide in different environments. Biochemistry 2006; 44:13987-96. [PMID: 16229488 PMCID: PMC3094106 DOI: 10.1021/bi050882k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.
Collapse
Affiliation(s)
| | | | - Debra A. Kendall
- To whom correspondence should be addressed: Department of Molecular and Cell Biology, 91 N. Eagleville Rd., University of Connecticut, Storrs, CT 06269-3125. Phone: (860) 486-1891. Fax: (860) 486-4331.
| |
Collapse
|
7
|
Weljie AM, Gagné SM, Vogel HJ. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha. Biochemistry 2004; 43:15131-40. [PMID: 15568805 DOI: 10.1021/bi048751r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.
Collapse
Affiliation(s)
- Aalim M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
8
|
Weljie AM, Vogel HJ. Unexpected structure of the Ca2+-regulatory region from soybean calcium-dependent protein kinase-alpha. J Biol Chem 2004; 279:35494-502. [PMID: 15155727 DOI: 10.1074/jbc.m311520200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are an extensive class of multidomain Ca(2+)-regulated enzymes from plants and protozoa. In vivo the so-called calmodulin-like domain (CLD) of CDPK binds intramolecularly to the junction domain (JD), which exhibits both kinase-inhibitory and CLD binding properties. Here we report the high resolution solution structure of the calcium-regulatory region from soybean CDPK-alpha determined in the presence of a peptide encompassing the JD. The structure of both lobes of CLD resembles that of related helix-loop-helix Ca(2+)-binding proteins. NMR chemical shift mapping studies demonstrate that the JD induces significant structural changes in isolated Ca(2+)-CLD, particularly the C-terminal domain, although a stable complex is not formed. A CLD solution structure calculated on the basis of NMR data and long range fluorescence resonance energy transfer distances reveals an activated state with both lobes positioned side by side, similar to calcineurin B rather than calmodulin, highlighting the possible pitfall of assigning function purely from sequence information.
Collapse
Affiliation(s)
- Aalim M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. N. W., Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|