1
|
Jin H, Liu T, Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim Acta 2024; 191:105. [PMID: 38240894 PMCID: PMC10798921 DOI: 10.1007/s00604-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.
Collapse
Affiliation(s)
- Huihui Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Varghese A, Waheed SO, Gorantla K, DiCastri I, LaRouche C, Kaski B, Fields GB, Karabencheva-Christova TG. Catalytic Mechanism of Collagen Hydrolysis by Zinc(II)-Dependent Matrix Metalloproteinase-1. J Phys Chem B 2023; 127:9697-9709. [PMID: 37931179 PMCID: PMC10659029 DOI: 10.1021/acs.jpcb.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Human matrix metalloproteinase-1 (MMP-1) is a zinc(II)-dependent enzyme that catalyzes collagenolysis. Despite the availability of extensive experimental data, the mechanism of MMP-1-catalyzed collagenolysis remains poorly understood due to the lack of experimental structure of a catalytically productive enzyme-substrate complex of MMP-1. In this study, we apply molecular dynamics and combined quantum mechanics/molecular mechanics to reveal the reaction mechanism of MMP-1 based on a computationally modeled structure of the catalytically competent complex of MMP-1 that contains a large triple-helical peptide substrate. Our proposed mechanism involves the participation of an auxiliary (second) water molecule (wat2) in addition to the zinc(II)-coordinated water (wat1). The reaction initiates through a proton transfer to Glu219, followed by a nucleophilic attack by a zinc(II)-coordinated hydroxide anion nucleophile at the carbonyl carbon of the scissile bond, leading to the formation of a tetrahedral intermediate (IM2). The process continues with a hydrogen-bond rearrangement to facilitate proton transfer from wat2 to the amide nitrogen of the scissile bond and, finally, C-N bond cleavage. The calculations indicate that the rate-determining step is the water-mediated nucleophilic attack with an activation energy barrier of 22.3 kcal/mol. Furthermore, the calculations show that the hydrogen-bond rearrangement/proton-transfer step can proceed in a consecutive or concerted manner, depending on the conformation of the tetrahedral intermediate, with the consecutive mechanism being energetically preferable. Overall, the study reveals the crucial role of a second water molecule and the dynamics for effective MMP-1-catalyzed collagenolysis.
Collapse
Affiliation(s)
- Ann Varghese
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sodiq O. Waheed
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Koteswararao Gorantla
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Isabella DiCastri
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Ciara LaRouche
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Brendan Kaski
- Department
of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Gregg B. Fields
- Department
of Chemistry and Biochemistry and I-HEALTH, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | |
Collapse
|
3
|
Fuerst R, Choi JY, Knapinska AM, Cameron MD, Ruiz C, Delmas A, Sundrud MS, Fields GB, Roush WR. Development of a putative Zn2+-chelating but highly selective MMP-13 inhibitor. Bioorg Med Chem Lett 2022; 76:129014. [DOI: 10.1016/j.bmcl.2022.129014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
|
4
|
Tabuse H, Abe-Sato K, Kanazawa H, Yashiro M, Tamura Y, Kamitani M, Hitaka K, Gunji E, Mitani A, Kojima N, Oka Y. Discovery of Highly Potent and Selective Matrix Metalloproteinase-7 Inhibitors by Hybridizing the S1' Subsite Binder with Short Peptides. J Med Chem 2022; 65:13253-13263. [PMID: 36137271 DOI: 10.1021/acs.jmedchem.2c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-7 (MMP-7) has emerged as a protein playing important roles in both physiological and pathophysiological processes. Despite the growing interest in MMP-7 as a potential therapeutic target for diseases including cancer and fibrosis, potent and selective MMP-7 inhibitors have yet to be identified. Compound 1, previously reported by Edman and co-workers, binds to the S1' subsite of MMP-7, exhibiting moderate inhibitory activity and selectivity. To achieve both higher inhibitory activity and selectivity, we conceived hybridizing 1 with short peptides. The initially designed compound 6, which was a hybrid molecule between 1 and a tripeptide (Ala-Leu-Met) derived from an MMP-2-inhibitory peptide (APP-IP), showed enhanced MMP-7-inhibitory activity. Subsequent optimization of the peptide moiety led to the development of compound 18 with remarkable potency for MMP-7 and selectivity over other MMP subtypes.
Collapse
Affiliation(s)
- Hideaki Tabuse
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kumi Abe-Sato
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Harumi Kanazawa
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Miyoko Yashiro
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yunoshin Tamura
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Masafumi Kamitani
- Discovery Technologies Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Emi Gunji
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Akiko Mitani
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Naoki Kojima
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| | - Yusuke Oka
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan
| |
Collapse
|
5
|
Kim J, Yu AM, Kubelick KP, Emelianov SY. Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9. PHOTOACOUSTICS 2022; 25:100307. [PMID: 34703762 PMCID: PMC8521288 DOI: 10.1016/j.pacs.2021.100307] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays major roles in extracellular matrix (ECM) remodeling and membrane protein cleavage, suggesting a high correlation with cancer cell invasion and tumor metastasis. Here, we present a contrast agent based on a DNA aptamer that can selectively target human MMP-9 in the tumor microenvironment (TME) with high affinity and sensitivity. Surface modification of plasmonic gold nanospheres with the MMP-9 aptamer and its complementary sequences allows the nanospheres to aggregate in the presence of human MMP-9 through DNA displacement and hybridization. Aggregation of gold nanospheres enhances the optical absorption in the first near-infrared window (NIR-I) due to the plasmon coupling effect, thereby allowing us to detect the aggregated gold nanospheres within the TME via ultrasound-guided photoacoustic (US/PA) imaging. Selective and sensitive detection of human MMP-9 via US/PA imaging is demonstrated in solution of nanosensors with the pre-treatment of human MMP-9, in vitro in cell culture, and in vivo in a xenograft murine model of human breast cancer.
Collapse
Affiliation(s)
- Jinhwan Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony M. Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Kelsey P. Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stanislav Y. Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence to: School of Electrical & Computer Engineering, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix Metalloproteinases: A challenging paradigm of cancer management. Semin Cancer Biol 2017; 56:100-115. [PMID: 29155240 DOI: 10.1016/j.semcancer.2017.11.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are members of zinc-dependent endopeptidases implicated in a variety of physiological and pathological processes. Over the decades, MMPs have been studied for their role in cancer progression, migration, and metastasis. As a result, accumulated evidence of MMPs incriminating role has made them an attractive therapeutic target. Early generations of broad-spectrum MMP inhibitors exhibited potent inhibitory activities, which subsequently led to clinical trials. Unexpectedly, these trials failed to meet the desired goals, mainly due to the lack of efficacy, poor oral bioavailability, and toxicity. In this review, we discuss the regulatory role of MMPs in cancer progression, current strategies in targeting MMPs for cancer treatment including prodrug design and tumor imaging, and therapeutic value of MMPs as biomarkers in breast, lung, and prostate cancers.
Collapse
Affiliation(s)
- Ali Alaseem
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Priya Dondapati
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
7
|
Choi JY, Fuerst R, Knapinska AM, Taylor AB, Smith L, Cao X, Hart PJ, Fields GB, Roush WR. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors. J Med Chem 2017; 60:5816-5825. [PMID: 28653849 DOI: 10.1021/acs.jmedchem.7b00514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.
Collapse
Affiliation(s)
- Jun Yong Choi
- Department of Chemistry, Scripps Florida , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Rita Fuerst
- Department of Chemistry, Scripps Florida , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University , Jupiter, Florida 33458, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University , Jupiter, Florida 33458, United States
| | - Xiaohang Cao
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - P John Hart
- Department of Biochemistry and Structural Biology and the X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio , San Antonio, Texas 78229, United States
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University , Jupiter, Florida 33458, United States
| | - William R Roush
- Department of Chemistry, Scripps Florida , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
8
|
Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur J Med Chem 2017; 129:72-109. [DOI: 10.1016/j.ejmech.2017.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
|
9
|
Miranda WE, Ngo VA, Valiente PA, Noskov SY. Improved QM/MM Linear-Interaction Energy Model for Substrate Recognition in Zinc-Containing Metalloenzymes. J Phys Chem B 2016; 120:7824-35. [PMID: 27448039 DOI: 10.1021/acs.jpcb.6b05628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the essential challenges in the description of receptor-drug interactions in the presence of various polyvalent cations (such as zinc, magnesium, or iron) is the accurate assessment of the electronic effects due to cofactor binding. The effects can range from partial electronic polarization of the proximal atoms in a receptor and bound substrate to long-range effects related to partial charge transfer and electronic delocalization effects between the cofactor and the drug. Here, we examine the role of the explicit account for electronic effects for a panel of small-molecule inhibitors binding to the zinc-aminopeptidase PfA-M1, an essential target for antimalarial drug development. Our study on PfA-M1:inhibitor interactions at the QM level reveals that the partial charge and proton transfer due to bound zinc ion are important mechanisms in the inhibitors' recognition and catalysis. The combination of classical MD simulations with a posteriori QM/MM corrections with novel DFTB parameters for the zinc cation and the linear-interaction energy (LIE) approach offers by far the most accurate estimates for the PfA-M1:inhibitor binding affinities, opening the door for future inhibitor design.
Collapse
Affiliation(s)
- Williams E Miranda
- Computational Biology and Biomolecular Dynamics Laboratory, Center for Protein Studies, Faculty of Biology, University of Havana , Havana, Cuba.,Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary , 2500 University Drive, BI-449, Calgary, Alberta T2N 1N4, Canada
| | - Van A Ngo
- Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary , 2500 University Drive, BI-449, Calgary, Alberta T2N 1N4, Canada
| | - Pedro A Valiente
- Computational Biology and Biomolecular Dynamics Laboratory, Center for Protein Studies, Faculty of Biology, University of Havana , Havana, Cuba
| | - Sergei Yu Noskov
- Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary , 2500 University Drive, BI-449, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Carlon A, Ravera E, Andrałojć W, Parigi G, Murshudov GN, Luchinat C. How to tackle protein structural data from solution and solid state: An integrated approach. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:54-70. [PMID: 26952192 DOI: 10.1016/j.pnmrs.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 05/17/2023]
Abstract
Long-range NMR restraints, such as diamagnetic residual dipolar couplings and paramagnetic data, can be used to determine 3D structures of macromolecules. They are also used to monitor, and potentially to improve, the accuracy of a macromolecular structure in solution by validating or "correcting" a crystal model. Since crystal structures suffer from crystal packing forces they may not be accurate models for the macromolecular structures in solution. However, the presence of real differences should be tested for by simultaneous refinement of the structure using both crystal and solution NMR data. To achieve this, the program REFMAC5 from CCP4 was modified to allow the simultaneous use of X-ray crystallographic and paramagnetic NMR data and/or diamagnetic residual dipolar couplings. Inconsistencies between crystal structures and solution NMR data, if any, may be due either to structural rearrangements occurring on passing from the solution to solid state, or to a greater degree of conformational heterogeneity in solution with respect to the crystal. In the case of multidomain proteins, paramagnetic restraints can provide the correct mutual orientations and positions of domains in solution, as well as information on the conformational variability experienced by the macromolecule.
Collapse
Affiliation(s)
- Azzurra Carlon
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Witold Andrałojć
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| | - Garib N Murshudov
- MRC Laboratory for Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Italy(1).
| |
Collapse
|
11
|
Lebel R, Lepage M. A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:187-210. [PMID: 24700747 DOI: 10.1002/cmmi.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
Metalloproteinases (MMPs), including MMP-2, play critical roles in tissue remodeling and are involved in a large array of pathologies, including cancer, arthritis and atherosclerosis. Their prognostic value warranted a large investment or resources in the development of noninvasive detection methods, based on probes for many current clinical and pre-clinical imaging modalities. However, the potential of imaging techniques is only matched by the complexity of the data they generate. This complexity must be properly assessed and accounted for in the early steps of probe design and testing in order to accurately determine the efficacy and efficiency of an imaging strategy. This review proposes basic rules for the evaluation of novel probes by addressing the specific case of MMP targeted probes.
Collapse
Affiliation(s)
- Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
12
|
Gupta SP. QSAR Studies on Hydroxamic Acids: A Fascinating Family of Chemicals with a Wide Spectrum of Activities. Chem Rev 2015; 115:6427-90. [DOI: 10.1021/cr500483r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Satya P. Gupta
- Department of Applied Sciences, National Institute of Technical Teachers’ Training and Research, Shamla
Hills, Bhopal-462002, India
| |
Collapse
|
13
|
Hitaoka S, Chuman H, Yoshizawa K. A QSAR study on the inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs based on molecular orbital calculations. Org Biomol Chem 2015; 13:793-806. [DOI: 10.1039/c4ob01843e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs is revealed using a comprehensive computational approach including docking simulations, molecular orbital calculations, and QSAR.
Collapse
Affiliation(s)
- Seiji Hitaoka
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hiroshi Chuman
- Institute of Health Biosciences
- The University of Tokushima Graduate School
- Tokushima 770-8505
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
14
|
Fabre B, Ramos A, de Pascual-Teresa B. Targeting Matrix Metalloproteinases: Exploring the Dynamics of the S1′ Pocket in the Design of Selective, Small Molecule Inhibitors. J Med Chem 2014; 57:10205-19. [DOI: 10.1021/jm500505f] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Benjamin Fabre
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| | - Ana Ramos
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química
y Bioquímica, Facultad de Farmacia, Universidad CEU San Pablo, Urbanización Monteprincipe, 28668 Madrid, Spain
| |
Collapse
|
15
|
Fabre B, Filipiak K, Díaz N, Zapico JM, Suárez D, Ramos A, de Pascual-Teresa B. An Integrated Computational and Experimental Approach to Gaining Selectivity for MMP-2 within the Gelatinase Subfamily. Chembiochem 2014; 15:399-412. [DOI: 10.1002/cbic.201300698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Indexed: 12/27/2022]
|
16
|
Papp A, Szommer T, Barna L, Gyimesi G, Ferdinandy P, Spadoni C, Darvas F, Fujita T, Urge L, Dormán G. Enhanced hit-to-lead process using bioanalogous lead evolution and chemogenomics: application in designing selective matrix metalloprotease inhibitors. Expert Opin Drug Discov 2013; 2:707-23. [PMID: 23488960 DOI: 10.1517/17460441.2.5.707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The authors describe an innovative approach for designing novel inhibitors. This approach effectively integrates the emerging chemogenomics concept of target-family-based drug discovery with bioanalogous design strategies, including privileged structures, molecular frameworks as well as bioisosteric and bioanalogous/isofunctional modifications. The authors applied this method in the design of selective inhibitors of matrix metalloproteases (MMPs), also referred to as matrixins, on the basis of a unique analysis of the ligand-target knowledge base, the 'matrixinome'. For this analysis, the authors created an annotated MMP database containing ∼ 300 inhibitors with their published activity profile. The ligand space was then arranged into a lead evolution tree, where the substructural transformations in each virtual step led to marked changes in the activity pattern. This allowed subtype-specific privileged fragments to be extracted as well as modifications, which improve activity and/or selectivity. Furthermore, the compounds with the preferred activity profile were correlated with sequence homology as well as binding site similarity within the target family, thereby leading to the identification of substructural modifications that turn non-selective, biohomologous structures into selective inhibitors. The matrixinomic application of the authors' approach, therefore, provides an example of how the combination of ligand space knowledge with sequence-related data can radically improve the outcome of the lead optimisation process to achieve higher selectivity within a given target family.
Collapse
Affiliation(s)
- Akos Papp
- AMRI Hungary, Inc., Záhony utca 7, 1031 Budapest, Hungary +361 6666 129 ; +361 6666 110 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Villalta-Romero F, Gortat A, Herrera AE, Arguedas R, Quesada J, de Melo RL, Calvete JJ, Montero M, Murillo R, Rucavado A, Gutiérrez JM, Pérez-Payá E. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational Peptide design. ACS Med Chem Lett 2012; 3:540-3. [PMID: 24900507 DOI: 10.1021/ml300068r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/14/2012] [Indexed: 11/29/2022] Open
Abstract
The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP.
Collapse
Affiliation(s)
- Fabián Villalta-Romero
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
- Instituto Clodomiro Picado,
Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anna Gortat
- Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Rebeca Arguedas
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Javier Quesada
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | | | | | - Mavis Montero
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado,
Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado,
Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Enrique Pérez-Payá
- Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Instituto de Biomedicina, IBV-CSIC, E-46010 Valencia, Spain
| |
Collapse
|
18
|
Lebel R, Bonin MA, Zriba R, Radulska A, Neugebauer W, Lepage M. Impact of H-aggregation on activatable MMP-2-specific probes for optical imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:328-37. [DOI: 10.1002/cmmi.500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Réjean Lebel
- Département de médecine nucléaire et de radiobiologie; Centre d'imagerie moléculaire de Sherbrooke; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - Marc-André Bonin
- Département de médecine nucléaire et de radiobiologie; Centre d'imagerie moléculaire de Sherbrooke; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - Riadh Zriba
- Département de médecine nucléaire et de radiobiologie; Centre d'imagerie moléculaire de Sherbrooke; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - Adrianna Radulska
- Département de médecine nucléaire et de radiobiologie; Centre d'imagerie moléculaire de Sherbrooke; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - Witold Neugebauer
- Département de pharmacologie; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - Martin Lepage
- Département de médecine nucléaire et de radiobiologie; Centre d'imagerie moléculaire de Sherbrooke; Université de Sherbrooke; Sherbrooke; QC; Canada
| |
Collapse
|
19
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chakrabarti B, Bairagya HR, Mallik P, Mukhopadhyay BP, Bera AK. An Insight to Conserved Water Molecular Dynamics of Catalytic and Structural Zn+2ions in Matrix Metalloproteinase 13 of Human. J Biomol Struct Dyn 2011; 28:503-16. [DOI: 10.1080/07391102.2011.10508591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Zhou J, Tao P, Fisher JF, Shi Q, Mobashery S, Schlegel HB. QM/MM Studies of the Matrix Metalloproteinase 2 (MMP2) Inhibition Mechanism of (S)-SB-3CT and its Oxirane Analogue. J Chem Theory Comput 2010; 6:3580-3587. [PMID: 21076643 PMCID: PMC2976054 DOI: 10.1021/ct100382k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SB-3CT, (4-phenoxyphenylsulfonyl)methylthiirane, is a potent, mechanism-based inhibitor of the gelatinase sub-class of the matrix metalloproteinase (MMP) family of zinc proteases. The gelatinase MMPs are unusual in that there are several examples where both enantiomers of a racemic inhibitor have comparable inhibitory abilities. SB-3CT is one such example. Here, the inhibition mechanism of the MMP2 gelatinase by the (S)-SB-3CT enantiomer and its oxirane analogue is examined computationally, and compared to the mechanism of (R)-SB-3CT. Inhibition of MMP2 by (R)-SB-3CT was shown previously to involve enzyme-catalyzed C-H deprotonation adjacent to the sulfone, with concomitant opening by β-elimination of the sulfur of the three-membered thiirane ring. Similarly to the R enantiomer, (S)-SB-3CT was docked into the active site of MMP2, followed by molecular dynamics simulation to prepare the complex for combined quantum mechanics and molecular mechanics (QM/MM) calculations. QM/MM calculations with B3LYP/6-311+G(d,p) for the QM part (46 atoms) and the AMBER force field for the MM part were used to compare the reaction of (S)-SB-3CT and its oxirane analogue in the active site of MMP2 (9208 atoms). These calculations show that the barrier for the proton abstraction coupled ring opening reaction of (S)-SB-3CT in the MMP2 active site is 4.4 kcal/mol lower than its oxirane analogue, and the ring opening reaction energy of (S)-SB-3CT is only 1.6 kcal/mol less exothermic than its oxirane analogue. Calculations also show that the protonation of the ring-opened products by water is thermodynamically much more favorable for the alkoxide obtained from the oxirane, than for the thiolate obtained from the thiirane. In contrast to (R)-SB-3CT and the R-oxirane analogue, the double bonds of the ring-opened products of (S)-SB-3CT and its S-oxirane analogue have the cis-configuration. Vibrational frequency and intrinsic reaction path calculations on a reduced size QM/MM model (2747 atoms) provide additional insight into the mechanism. These calculations yield 5.9 and 6.7 for the deuterium kinetic isotope effect for C-H bond cleavage in the transition state for the R and S enantiomers of SB-3CT, in good agreement with the experimental results.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Chemistry, Wayne State University, 5101 Cass Ave Detroit, Michigan 48202
| | - Peng Tao
- Department of Chemistry, Wayne State University, 5101 Cass Ave Detroit, Michigan 48202
| | - Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - H. Bernhard Schlegel
- Department of Chemistry, Wayne State University, 5101 Cass Ave Detroit, Michigan 48202
| |
Collapse
|
22
|
Giangreco I, Nicolotti O, Carotti A, De Carlo F, Gargano G, Bellotti R. Analysis of X-ray structures of matrix metalloproteinases via chaotic map clustering. BMC Bioinformatics 2010; 11:500. [PMID: 20932281 PMCID: PMC3098083 DOI: 10.1186/1471-2105-11-500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 10/08/2010] [Indexed: 01/13/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. With this in mind, the perception of the intimate relationships among diverse MMPs could be a solid basis for accelerated learning in designing new selective MMP inhibitors. In this regard, decrypting the latent molecular reasons in order to elucidate similarity among MMPs is a key challenge. Results We describe a pairwise variant of the non-parametric chaotic map clustering (CMC) algorithm and its application to 104 X-ray MMP structures. In this analysis electrostatic potentials are computed and used as input for the CMC algorithm. It was shown that differences between proteins reflect genuine variation of their electrostatic potentials. In addition, the analysis has been also extended to analyze the protein primary structures and the molecular shapes of the MMP co-crystallised ligands. Conclusions The CMC algorithm was shown to be a valuable tool in knowledge acquisition and transfer from MMP structures. Based on the variation of electrostatic potentials, CMC was successful in analysing the MMP target family landscape and different subsites. The first investigation resulted in rational figure interpretation of both domain organization as well as of substrate specificity classifications. The second made it possible to distinguish the MMP classes, demonstrating the high specificity of the S1' pocket, to detect both the occurrence of punctual mutations of ionisable residues and different side-chain conformations that likely account for induced-fit phenomena. In addition, CMC demonstrated a potential comparable to the most popular UPGMA (Unweighted Pair Group Method with Arithmetic mean) method that, at present, represents a standard clustering bioinformatics approach. Interestingly, CMC and UPGMA resulted in closely comparable outcomes, but often CMC produced more informative and more easy interpretable dendrograms. Finally, CMC was successful for standard pairwise analysis (i.e., Smith-Waterman algorithm) of protein sequences and was used to convincingly explain the complementarity existing between the molecular shapes of the co-crystallised ligand molecules and the accessible MMP void volumes.
Collapse
Affiliation(s)
- Ilenia Giangreco
- Dipartimento Farmaco-Chimico, University of Bari, via Orabona 4, Bari, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Dormán G, Cseh S, Hajdú I, Barna L, Kónya D, Kupai K, Kovács L, Ferdinandy P. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 2010; 70:949-64. [PMID: 20481653 DOI: 10.2165/11318390-000000000-00000] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Matrix metalloproteinases (MMPs) play an important role in tissue remodelling associated with various physiological and pathological processes, such as morphogenesis, angiogenesis, tissue repair, arthritis, chronic heart failure, chronic obstructive pulmonary disease, chronic inflammation and cancer metastasis. As a result, MMPs are considered to be viable drug targets in the therapy of these diseases. Despite the high therapeutic potential of MMP inhibitors (MMPIs), all clinical trials have failed to date, except for doxycycline for periodontal disease. This can be attributed to (i) poor selectivity of the MMPIs, (ii) poor target validation for the targeted therapy and (iii) poorly defined predictive preclinical animal models for safety and efficacy. Lessons from previous failures, such as recent discoveries of oxidative/nitrosative activation and phosphorylation of MMPs, as well as novel non-matrix related intra- and extracellular targets of MMP, give new hope for MMPI development for both chronic and acute diseases. In this article we critically review the major structural determinants of the selectivity and the milestones of past design efforts of MMPIs where 2-/3-dimensional structure-based methods were intensively applied. We also analyse the in vitro screening and preclinical/clinical pharmacology approaches, with particular emphasis on drawing conclusions on how to overcome efficacy and safety problems through better target validation and design of preclinical studies.
Collapse
|
24
|
Durrant JD, de Oliveira CAF, McCammon JA. Including receptor flexibility and induced fit effects into the design of MMP-2 inhibitors. J Mol Recognit 2010; 23:173-82. [PMID: 19882751 DOI: 10.1002/jmr.989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs) comprise a class of flexible proteins required for normal tissue remodeling. Overexpression of MMPs is associated with a wide range of pathophysiological processes, including vascular disease, multiple sclerosis, Alzheimer's disease, and cancer. Nearly all MMP inhibitors have failed in clinical trials, in part due to lack of specificity. Due to the highly dynamic molecular motions of the MMP-2 binding pockets, the rational drug design of MMP inhibitors has been very challenging. To address these challenges, in the current study we combine computer docking with molecular dynamics (MD) simulations in order to incorporate receptor-flexibility and induced-fit effects into the drug-design process. Our strategy identifies molecular fragments predicted to target multiple MMP-2 binding pockets.
Collapse
Affiliation(s)
- Jacob D Durrant
- Biomedical Sciences Program, University of California San Diego, La Jolla, California 92093-0365, USA
| | | | | |
Collapse
|
25
|
Tao P, Fisher JF, Shi Q, Mobashery S, Schlegel HB. Matrix metalloproteinase 2 (MMP2) inhibition: DFT and QM/MM studies of the deprotonation-initialized ring-opening reaction of the sulfoxide analogue of SB-3CT. J Phys Chem B 2010; 114:1030-7. [PMID: 20039633 DOI: 10.1021/jp909327y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
(4-Phenoxyphenylsulfonyl)methylthiirane (SB-3CT) is the selective inhibitor of matrix metalloproteinase 2 (MMP2). The inhibition mechanism of MMP2 by SB-3CT involves C-H deprotonation with concomitant opening of the three-membered heterocycle. In this study, the energetics of the deprotonation-induced ring-opening of (4-phenoxyphenylsulfinyl)methylthiirane, the sulfoxide analogue of SB-3CT, are examined computationally using DFT and QM/MM calculations. A model system, 2-(methylsulfinylmethyl)thiirane, is used to study the stereoelectronic and conformational effects of reaction barriers in methanol. For the model system in methanol solution (using the polarizable continuum model), the reaction barriers range from 17 to 23 kcal/mol with significant stereoelectronic effects. However, the lowest barriers of the (R,R) and (S,R) diastereomers are similar. Two diastereomers of the sulfoxide analogue of SB-3CT are studied in the active site of MMP2 by QM/MM methods with an accurate partial charge fitting procedure. The ring-opening reactions of these two diastereomers have similar reaction energetics. Both are exothermic from the reactant to the ring-opening product (thiolate). The protonation of the thiolate by a water molecule is endothermic in both cases. However, the deprotonation/ring-opening barriers in the MMP2 active site using QM/MM methods for the (R,R) and (S,R) inhibitions are quite different (23.3 and 28.5 kcal/mol, respectively). The TSs identified in QM/MM calculations were confirmed by vibrational frequency analysis and following the reaction path. The (R,R) diastereomer has a hydrogen bond between the sulfoxide oxygen and the backbone NH of Leu191, while the (S,R) has a hydrogen bond between the sulfoxide oxygen and a water molecule. The dissimilar strengths of these hydrogen bonds as well as minor differences in the TS structures contribute to the difference between the barriers. Compared to SB-3CT, both diastereomers of the sulfoxide analogue have higher reaction barriers and have less exothermic reaction energies. This agrees well with the experiments, where SB-3CT is a more effective inhibitor of MMP2 than its sulfoxide analogue.
Collapse
Affiliation(s)
- Peng Tao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
26
|
Tao P, Fisher JF, Shi Q, Vreven T, Mobashery S, Schlegel HB. Matrix metalloproteinase 2 inhibition: combined quantum mechanics and molecular mechanics studies of the inhibition mechanism of (4-phenoxyphenylsulfonyl)methylthiirane and its oxirane analogue. Biochemistry 2009; 48:9839-47. [PMID: 19754151 DOI: 10.1021/bi901118r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inhibition mechanism of matrix metalloproteinase 2 (MMP2) by the selective inhibitor (4-phenoxyphenylsulfonyl)methylthiirane (SB-3CT) and its oxirane analogue is investigated computationally. The inhibition mechanism involves C-H deprotonation with concomitant opening of the three-membered heterocycle. SB-3CT was docked into the active site of MMP2, followed by molecular dynamics simulation to prepare the complex for combined quantum mechanics and molecular mechanics (QM/MM) calculations. QM/MM calculations with B3LYP/6-311+G(d,p) for the QM part and the AMBER force field for the MM part were used to examine the reaction of these two inhibitors in the active site of MMP2. The calculations show that the reaction barrier for transformation of SB-3CT is 1.6 kcal/mol lower than its oxirane analogue, and the ring-opening reaction energy of SB-3CT is 8.0 kcal/mol more exothermic than that of its oxirane analogue. Calculations also show that protonation of the ring-opened product by water is thermodynamically much more favorable for the alkoxide obtained from the oxirane than for the thiolate obtained from the thiirane. A six-step partial charge fitting procedure is introduced for the QM/MM calculations to update atomic partial charges of the quantum mechanics region and to ensure consistent electrostatic energies for reactants, transition states, and products.
Collapse
Affiliation(s)
- Peng Tao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
27
|
Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009. [PMID: 19597572 DOI: 10.3390/md7020071.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
|
28
|
Zhang C, Kim SK. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009; 7:71-84. [PMID: 19597572 PMCID: PMC2707034 DOI: 10.3390/md7020071] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
- *Author to whom corresponding author; E-mail:
; Tel: +82-51-629-7097, Fax: +82-51-629-7099
| |
Collapse
|
29
|
Levin J, Giese A, Boetzel K, Israel L, Högen T, Nübling G, Kretzschmar H, Lorenzl S. Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp Neurol 2008; 215:201-8. [PMID: 19022250 DOI: 10.1016/j.expneurol.2008.10.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 01/09/2023]
Abstract
Recent evidence indicates that protein aggregation and in particular the formation of toxic protein oligomers is a key mechanism in synucleinopathies such as Parkinson's disease (PD). Post mortem brain tissue studies as well as animal studies furthermore suggest that matrix metalloproteinases (MMPs) are also involved in the pathogenesis of PD. We used confocal single molecule spectroscopy to characterize the influence of MMPs and other proteases on the aggregation of alpha-synuclein. These studies were complemented by the characterization of alpha-synuclein fragment patterns generated by these proteases using gel electrophoresis and mass spectrometry. Limited digestion by MMP-1 and MMP-3, but not by MMP-9, increased the tendency of alpha-synuclein to aggregate. Proteinase K and Trypsin did not increase the level of de novo aggregation of alpha-synuclein. SDS-PAGE as well as MALDI-ToF analysis of limitedly digested alpha-synuclein demonstrate that all proteases generate different fragments of alpha-synuclein. We provide mass spectrometry data of proteolytic alpha-synuclein fragments and propose specific cleavage sites for MMP-1 and MMP-9 in alpha-synuclein. We furthermore found four additional cleavage sites of MMP-3 that had not been described previously. In order to increase aggregation of alpha-synuclein, specific cleavage between the highly charged C-terminal domain and the aggregation-prone NAC domain of alpha-synuclein seems to be crucial. Our findings obtained in vitro in a well-characterized model of pathological alpha-synuclein aggregation indicate that MMP-1 and MMP-3 may also influence pathogenesis of PD in vivo by generation of specific aggregation-enhancing alpha-synuclein fragments resulting from limited proteolysis.
Collapse
Affiliation(s)
- Johannes Levin
- Neurologische Klinik, Klinikum Grosshadern, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem 2008; 2:152-71. [PMID: 17163561 DOI: 10.1002/cmdc.200600204] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of metalloproteins are important medicinal targets for conditions ranging from pathogenic infections to cancer. Many but not all of these metalloproteins contain a zinc(II) ion in the protein active site. Small-molecule inhibitors of these metalloproteins are designed to bind directly to the active site metal ions. In this review several metalloproteins of interest are discussed, including matrix metalloproteinases (MMPs), histone deacetylases (HDACs), anthrax lethal factor (LF), and others. Different strategies that have been employed to design effective inhibitors against these proteins are described, with an effort to highlight the strengths and drawbacks of each approach. An emphasis is placed on examining the bioinorganic chemistry of these metal active sites and how a better understanding of the coordination chemistry in these systems may lead to improved inhibitors. It is hoped that this review will help inspire medicinal, biological, and inorganic chemists to tackle this important problem by considering all aspects of metalloprotein inhibitor design.
Collapse
Affiliation(s)
- Faith E Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
31
|
Huxley-Jones J, Foord SM, Barnes MR. Drug discovery in the extracellular matrix. Drug Discov Today 2008; 13:685-94. [PMID: 18583179 DOI: 10.1016/j.drudis.2008.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/30/2022]
Abstract
The extracellular matrix (ECM) is an organised mesh of secreted proteins that provides structure, organisation and orientation to tissues and influences a spectrum of cell behaviours of direct relevance to disease and drug discovery. Many drugs currently in development target components of the ECM, yet most drug discovery teams perceive the ECM as a barrier to efficacious drug action, rather than a therapeutic target. Here we review current therapeutic approaches and consider potentially novel druggable opportunities to target the ECM, taking into account the factors that make it both unique and challenging, including its evolutionary history and innate multi-dimensional complexity.
Collapse
Affiliation(s)
- Julie Huxley-Jones
- Computational Biology, Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | |
Collapse
|
32
|
Agrawal A, Romero-Perez D, Jacobsen JA, Villarreal FJ, Cohen SM. Zinc-binding groups modulate selective inhibition of MMPs. ChemMedChem 2008; 3:812-20. [PMID: 18181119 PMCID: PMC2836234 DOI: 10.1002/cmdc.200700290] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 12/29/2022]
Abstract
The need for selective matrix metalloproteinase (MMP) inhibition is of interest because of the range of pathologies mediated by different MMP isoforms. The development of more selective MMP inhibitors (MMPi) may help to overcome some of the undesired side effects that have hindered the clinical success of these compounds. In an effort to devise new approaches to selective inhibitors, herein we describe several novel MMPi and show that their selectivity is dependent on the nature of the zinc-binding group (ZBG). This is in contrast to most current MMPi, which obtain isoform selectivity solely from the peptidomimetic backbone portion of the compound. In the present study, six different hydroxypyrone and hydroxypyridinone ZBGs were appended to a common biphenyl backbone and the inhibition efficiency of each inhibitor was determined in vitro (IC(50) values) against MMP-1, -2, -3, -7, -8, -9, -12, and -13. The results show that the selectivity profile of each inhibitor is different as a result of the various ZBGs. Computational modeling studies were used to explain some trends in the observed selectivity profiles. To assess the importance of the ZBG in a biological model, two of the semiselective, potent MMPi (and one control) were evaluated using an isolated perfused rat heart system. Hearts were subjected to ischemia reperfusion injury, and recovery of contractile function was examined. In this model, only one of the two MMPi showed significant and sustained heart recovery, demonstrating that the choice of ZBG can have a significant effect in a relevant pathophysiological endpoint.
Collapse
Affiliation(s)
- Arpita Agrawal
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Diego Romero-Perez
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Jennifer A. Jacobsen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Francisco J. Villarreal
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| |
Collapse
|
33
|
Hayashi R, Jin X, Cook GR. Synthesis and evaluation of novel heterocyclic MMP inhibitors. Bioorg Med Chem Lett 2007; 17:6864-70. [PMID: 18029173 PMCID: PMC2574968 DOI: 10.1016/j.bmcl.2007.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 11/23/2022]
Abstract
A variety of novel heterocyclic compounds were synthesized and evaluated for MMP inhibition. Broad spectrum inhibition of MMPs 1, 2, 9, and 12 was found with pyridinone-based compounds while N-heterocyclic triazoles and tetrazoles were largely ineffective. A highly selective tetrazole inhibitor for MMP-2 was discovered.
Collapse
Affiliation(s)
- Ryuji Hayashi
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| | - Xiaomin Jin
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| | - Gregory R. Cook
- Center for Protease Research, Department of Chemistry and Molecular Biology, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
34
|
Khandelwal A, Balaz S. QM/MM linear response method distinguishes ligand affinities for closely related metalloproteins. Proteins 2007; 69:326-39. [PMID: 17607744 PMCID: PMC2896063 DOI: 10.1002/prot.21500] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Design of selective ligands for closely related targets is becoming one of the most important tasks in the drug development. New tools, more precise than fast scoring functions and less demanding than sophisticated Free Energy Perturbation methods, are necessary to help accomplish this goal. The methods of intermediate complexity, characterizing individual contributions to the binding energy, have been an area of intense research in the past few years. Our recently developed quantum mechanical/molecular mechanical (QM/MM) modification of the Linear Response (LR) method describes the binding free energies as the sum of empirically weighted contributions of the QM/MM interaction energies and solvent-accessible surface areas for the time-averaged structures of hydrated complexes, obtained by molecular dynamics (MD) simulations. The method was applied to published data on 27 inhibitors of matrix metalloproteinase-3 (MMP-3). The two descriptors explained 90% of variance in the inhibition constants with RMSE of 0.245 log units. The QM/MM treatment is indispensable for characterization of the systems lacking suitable force-field expressions. In this case, it provided characteristics of H-bonds of the inhibitors to Glu202, charges of binding site atoms, and accurate coordination geometries of the ligands to catalytic zinc. The geometries were constrained during the MD simulations, which characterized conformational flexibility of the complexes and helped in the elucidation of the binding differences for related compounds. A comparison of the presented QM/MM LR results with those previously published for inhibition of MMP-9 by the same set of ligands showed that the QM/MM LR approach was able to distinguish subtle differences in binding affinities for MMP-3 and MMP-9, which did not exceed one order of magnitude. This precision level makes the approach a useful tool for design of selective ligands to similar targets, because the results can be safely extrapolated to maximize selectivity.
Collapse
Affiliation(s)
- Akash Khandelwal
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND 58105, USA
| | - Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
35
|
Nicolotti O, Miscioscia TF, Leonetti F, Muncipinto G, Carotti A. Screening of Matrix Metalloproteinases Available from the Protein Data Bank: Insights into Biological Functions, Domain Organization, and Zinc Binding Groups. J Chem Inf Model 2007; 47:2439-48. [DOI: 10.1021/ci700119r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Orazio Nicolotti
- Dipartimento Farmaco-Chimico, University of Bari, via Orabona 4, I-70125 Bari, Italy
| | | | - Francesco Leonetti
- Dipartimento Farmaco-Chimico, University of Bari, via Orabona 4, I-70125 Bari, Italy
| | - Giovanni Muncipinto
- Dipartimento Farmaco-Chimico, University of Bari, via Orabona 4, I-70125 Bari, Italy
| | - Angelo Carotti
- Dipartimento Farmaco-Chimico, University of Bari, via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
36
|
Uttamchandani M, Wang J, Li J, Hu M, Sun H, Chen KYT, Liu K, Yao SQ. Inhibitor Fingerprinting of Matrix Metalloproteases Using a Combinatorial Peptide Hydroxamate Library. J Am Chem Soc 2007; 129:7848-58. [PMID: 17539636 DOI: 10.1021/ja070870h] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the inhibitor fingerprints of seven matrix metalloproteases, representing all five established families of this important class of enzymes, against a highly diversified small-molecule library. A total of 1400 peptide hydroxamates were individually prepared by systematically permuting both natural and unnatural amino acids across the P1', P2', and P3' positions, thereby generating an inhibitor library with three-pronged structural diversity. High-throughput screenings were efficiently conducted in microtiter plate format, providing a rapid and quantitative determination of inhibitor potency across the panel of enzymes. Despite similarities in substrate preferences and structural homologies within this class of enzymes, our findings revealed distinct patterns of inhibition for each MMP against varied chemical scaffolds. The resulting inhibitor fingerprints readily facilitated the identification of inhibitors with good potency as well as desirable selectivity, potentially minimizing adverse effects when developing such leads into candidate drugs. The strategy also offers a novel method for the functional classification of matrix metalloproteases, on the basis of the characteristic profiles obtained using the diverse set of inhibitors. This approach thus paves the way forward in lead identification by providing a rapid and quantitative method for selectivity screening at the outset of the drug discovery process.
Collapse
Affiliation(s)
- Mahesh Uttamchandani
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ. Snapshots of the Reaction Mechanism of Matrix Metalloproteinases. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200603100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ. Snapshots of the Reaction Mechanism of Matrix Metalloproteinases. Angew Chem Int Ed Engl 2006; 45:7952-5. [PMID: 17096442 DOI: 10.1002/anie.200603100] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Mannino C, Nievo M, Machetti F, Papakyriakou A, Calderone V, Fragai M, Guarna A. Synthesis of bicyclic molecular scaffolds (BTAa): An investigation towards new selective MMP-12 inhibitors. Bioorg Med Chem 2006; 14:7392-403. [PMID: 16899369 DOI: 10.1016/j.bmc.2006.07.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Starting from 3-aza-6,8-dioxa-bicyclo[3.2.1]octane scaffold (BTAa) a virtual library of molecules was generated and screened in silico against the crystal structure of the Human Macrophage Metalloelastase (MMP-12). The molecules obtaining high score were synthesized and the affinity for the catalytic domain of MMP-12 was experimentally proved by NMR experiments. A BTAa scaffold 20 having a N-hydroxyurea group in position 3 and a p-phenylbenzylcarboxy amide in position 7 showed a fair inhibition potency (IC50 = 149 microM) for MMP-12 and some selectivity towards five different MMPs. These results, taken together with the X-ray structure of the adduct between MMP-12, the inhibitor 20 and the acetohydroxamic acid (AHA), suggest that bicyclic scaffold derivatives may be exploited for the design of new selective matrix metalloproteinase inhibitors (MMPIs).
Collapse
Affiliation(s)
- Claudia Mannino
- Department of Organic Chemistry U. Schiff, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Overall CM, Kleifeld O. Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 2006; 94:941-6. [PMID: 16538215 PMCID: PMC2361222 DOI: 10.1038/sj.bjc.6603043] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/08/2006] [Accepted: 02/10/2006] [Indexed: 01/07/2023] Open
Abstract
The failure of matrix metalloproteinase (MMP) inhibitor drug clinical trials in cancer was partly due to the inadvertent inhibition of MMP antitargets that counterbalanced the benefits of MMP target inhibition. We explore how MMP inhibitor drugs might be developed to achieve potent selectivity for validated MMP targets yet therapeutically spare MMP antitargets that are critical in host protection.
Collapse
Affiliation(s)
- C M Overall
- CBCRA Program in Breast Cancer Metastasis, Department of Oral Biological & Medical Sciences, The UBC Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
41
|
Abstract
The search for an MMP inhibitor with anticancer efficacy is a nearly three-decade endeavor. This inhibitor is yet to be found. The reasons for this failure include shortcomings in the chemistry of these compounds (including broad MMP sub-type selectivity, metabolic lability, and toxicity) as well as the emerging, and arguably extraordinary, complexity of MMP cell (and cancer) biology. Together these suggest that the successful anticancer inhibitor must possess MMP selectivity against the MMP subtype whose involvement is critical, yet highly temporally (with respect to metastatic progression) and mechanistically (with respect to matrix degradation) regulated. This review summarizes the progression of chemical structure and mechanistic thinking toward these objectives, with emphasis on the disappointment, the perseverance, and the resilient optimism that such an inhibitor is there to be discovered.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | |
Collapse
|
42
|
Overall CM, Kleifeld O. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6:227-39. [PMID: 16498445 DOI: 10.1038/nrc1821] [Citation(s) in RCA: 930] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The matrix metalloproteinases (MMPs) mediate homeostasis of the extracellular environment. They have multiple signalling activities that are commonly altered during tumorigenesis and that might serve as intervention points for anticancer drugs. However, there are many criteria to consider in validating MMPs as drug targets and for the development of MMP inhibitors. The inhibition of some MMPs could have pro-tumorigenic effects (making them anti-targets), counterbalancing the benefits of target inhibition. These effects might partially account for the failure of MMP inhibitors in clinical trials. What are the major challenges in MMP target validation and MMP-inhibitor-drug development?
Collapse
Affiliation(s)
- Christopher M Overall
- University of British Columbia Centre for Blood Research, CBCRA Program in Breast Cancer Metastasis, Department of Oral Biological & Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| | | |
Collapse
|
43
|
Pirard B, Matter H. Matrix Metalloproteinase Target Family Landscape: A Chemometrical Approach to Ligand Selectivity Based on Protein Binding Site Analysis. J Med Chem 2005; 49:51-69. [PMID: 16392792 DOI: 10.1021/jm050363f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To gain insight into the structural determinants for the matrix metalloproteinase (MMP) family, we characterized the binding sites of 56 MMP structures and one TACE (tumor necrosis factor alpha converting enzyme) structure using molecular interaction fields (MIFs). These MIFs were produced by two approaches: the GRID force field and the knowledge-based potential DrugScore. The subsequent statistical analysis using consensus principal component analysis (CPCA) for the entire binding site and each subpockets revealed both approaches to encode similar information about discriminating regions. However, the relative importance of the probes varied between both approaches. The CPCA models provided the following ranking of the six subpockets based on the opportunity for selective interactions with different MMPs: S1' > S2, S3, S3' > S1, S2'. The interpretation of these models agreed with experimental binding modes inferred from crystal structures or docking.
Collapse
Affiliation(s)
- Bernard Pirard
- Science and Medical Affairs, Chemical Sciences, Drug Design, Aventis Pharma Deutschland GmbH, a Company of the Sanofi-Aventis Group, D-65926 Frankfurt am Main, Germany.
| | | |
Collapse
|
44
|
Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem 2005; 48:5437-47. [PMID: 16107143 PMCID: PMC2896055 DOI: 10.1021/jm049050v] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To alleviate the problems in the receptor-based design of metalloprotein ligands due to inadequacies in the force-field description of coordination bonds, a four-tier approach was devised. Representative ligand-metalloprotein interaction energies are obtained by subsequent application of (1) docking with metal-binding-guided selection of modes, (2) optimization of the ligand-metalloprotein complex geometry by combined quantum mechanics and molecular mechanics (QM/MM) methods, (3) conformational sampling of the complex with constrained metal bonds by force-field-based molecular dynamics (MD), and (4) a single point QM/MM energy calculation for the time-averaged structures. The QM/MM interaction energies are, in a linear combination with the desolvation-characterizing changes in the solvent-accessible surface areas, correlated with experimental data. The approach was applied to structural correlation of published binding free energies of a diverse set of 28 hydroxamate inhibitors to zinc-dependent matrix metalloproteinase 9 (MMP-9). Inclusion of steps 3 and 4 significantly improved both correlation and prediction. The two descriptors explained 90% of variance in inhibition constants of all 28 inhibitors, ranging from 0.08 to 349 nM, with the average unassigned error of 0.318 log units. The structural and energetic information obtained from the time-averaged MD simulation results helped understand the differences in binding modes of related compounds.
Collapse
Affiliation(s)
- Akash Khandelwal
- Department of Pharmaceutical Sciences and Center for Protease Research, North Dakota State University, Fargo, ND 58105, USA
| | - Viera Lukacova
- Department of Pharmaceutical Sciences and Center for Protease Research, North Dakota State University, Fargo, ND 58105, USA
| | - Dogan Comez
- Department of Mathematics, North Dakota State University, Fargo, ND 58105, USA
| | - Daniel M. Kroll
- Department of Physics, North Dakota State University, Fargo, ND 58105, USA
| | - Soumyendu Raha
- Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA
| | - Stefan Balaz
- Department of Pharmaceutical Sciences and Center for Protease Research, North Dakota State University, Fargo, ND 58105, USA
- CORRESPONDING AUTHOR FOOTNOTE: Stefan Balaz, North Dakota State University, College of Pharmacy, Sudro Hall Rm 8, Fargo, ND-58105; phone 701-231-7749; fax 701-231-8333; e-mail
| |
Collapse
|
45
|
Fragai M, Nativi C, Richichi B, Venturi C. Design In Silico, Synthesis and Binding Evaluation of a Carbohydrate-Based Scaffold for Structurally Novel Inhibitors of Matrix Metalloproteinases. Chembiochem 2005; 6:1345-9. [PMID: 15977273 DOI: 10.1002/cbic.200400456] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Agricultural Biotechnology (DIBA), University of Florence, Via Sacconi 6, 50019 Sesto Fiorentino FI, Italy
| | | | | | | |
Collapse
|
46
|
Lukacova V, Zhang Y, Kroll DM, Raha S, Comez D, Balaz S. A comparison of the binding sites of matrix metalloproteinases and tumor necrosis factor-alpha converting enzyme: implications for selectivity. J Med Chem 2005; 48:2361-70. [PMID: 15801829 PMCID: PMC2896057 DOI: 10.1021/jm0491703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MMPs and TACE (ADAM-17) assume independent, parallel, or opposite pathological roles in cancer, arthritis, and several other diseases. For therapeutic purposes, selective inhibition of individual MMPs and TACE is required in most cases due to distinct roles in diseases and the need to preserve activities in normal states. Toward this goal, we compared force-field interaction energies of five ubiquitous inhibitor atoms with flexible binding sites of 24 known human MMPs and TACE. The results indicate that MMPs 1-3, 10, 11, 13, 16, and 17 have at least one subsite very similar to TACE. S3 subsite is the best target for development of specific TACE inhibitors. Specific binding to TACE compared to most MMPs is promoted by placing a negatively charged ligand part at the bottom of S2 subsite, at the entrance of S1' subsite, or the part of S3' subsite that is close to catalytic zinc. Numerous other clues, consistent with available experimental data, are provided for design of selective inhibitors.
Collapse
Affiliation(s)
- Viera Lukacova
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105
| | - Yufen Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105
| | - Daniel M. Kroll
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105
| | - Soumyendu Raha
- Department of Computer Science, North Dakota State University, Fargo, North Dakota 58105
| | - Dogan Comez
- Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105
| | - Stefan Balaz
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105
| |
Collapse
|
47
|
Bertini I, Calderone V, Cosenza M, Fragai M, Lee YM, Luchinat C, Mangani S, Terni B, Turano P. Conformational variability of matrix metalloproteinases: beyond a single 3D structure. Proc Natl Acad Sci U S A 2005; 102:5334-9. [PMID: 15809432 PMCID: PMC556229 DOI: 10.1073/pnas.0407106102] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures of the catalytic domain of matrix metalloproteinase 12 in the presence of acetohydroxamic acid and N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid have been solved by x-ray diffraction in the crystalline state at 1.0 and 1.3-A resolution, respectively, and compared with the previously published x-ray structure at 1.2-A resolution of the adduct with batimastat. The structure of the N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid adduct has been solved by NMR in solution. The three x-ray structures and the solution structure are similar but not identical to one another, the differences being sizably higher in the loops. We propose that many of the loops show a dynamical behavior in solution on a variety of time scales. Different conformations of some flexible regions of the protein can be observed as "frozen" in different crystalline environments. The mobility in solution studied by NMR reveals conformational equilibria in accessible time scales, i.e., from 10(-5) s to ms and more. Averaging of some residual dipolar couplings is consistent with further motions down to 10(-9) s. Finally, local thermal motions of each frozen conformation in the crystalline state at 100 K correlate well with local motions on the picosecond time scale. Flexibility/conformational heterogeneity in crucial parts of the catalytic domain is a rule rather than an exception in matrix metalloproteinases, and its extent may be underestimated by inspection of one x-ray structure. Backbone flexibility may play a role in the difficulties encountered in the design of selective inhibitors, whereas it may be a requisite for substrate binding and broad substrate specificity.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (Centro di Risonanze Magnetiche), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khandelwal A, Lukacova V, Kroll D, Çömez D, Raha S, Balaz S. Simulation-Based Predictions of Binding Affinities of Matrix Metalloproteinase Inhibitors. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/qsar.200430896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|