1
|
Zhang Y, Bharathi SS, Beck ME, Goetzman ES. The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase can be a source of mitochondrial hydrogen peroxide. Redox Biol 2019; 26:101253. [PMID: 31234015 PMCID: PMC6597861 DOI: 10.1016/j.redox.2019.101253] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022] Open
Abstract
Fatty acid oxidation (FAO)-driven H2O2 has been shown to be a major source of oxidative stress in several tissues and disease states. Here, we established that the mitochondrial flavoprotein long-chain acyl-CoA dehydrogenase (LCAD), which catalyzes a key step in mitochondrial FAO, directly produces H2O2in vitro by leaking electrons to oxygen. Kinetic analysis of recombinant human LCAD showed that it produces H2O2 15-fold faster than the related mitochondrial enzyme very long-chain acyl-CoA dehydrogenase (VLCAD), but 50-fold slower than a bona fide peroxisomal acyl-CoA oxidase. The rate of H2O2 formation by human LCAD is slow compared to its activity as a dehydrogenase (about 1%). However, expression of hLCAD in HepG2 cells is sufficient to significantly increase H2O2 in the presence of fatty acids. Liver mitochondria from LCAD−/− mice, but not VLCAD−/− mice, produce significantly less H2O2 during incubation with fatty acids. Finally, we observe highest LCAD expression in human liver, followed by kidney, lung, and pancreas. Based on our data, we propose that the presence of LCAD drives H2O2 formation in response to fatty acids in these tissues.
Collapse
Affiliation(s)
- Yuxun Zhang
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Sivakama S Bharathi
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Megan E Beck
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Eric S Goetzman
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
2
|
Erb TJ, Fuchs G, Alber BE. (2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Mol Microbiol 2009; 73:992-1008. [PMID: 19703103 DOI: 10.1111/j.1365-2958.2009.06837.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many organic substrates are metabolized via acetyl-coenzyme A (CoA) and enter central carbon metabolism at the level of this compound. We recently described the outlines of the ethylmalonyl-CoA pathway, a new acetyl-CoA assimilation strategy that operates in a number of bacteria such as Rhodobacter sphaeroides, Methylobacterium extorquens and streptomycetes and replaces the glyoxylate cycle. This new pathway involves a unique central reaction sequence catalysed by characteristic enzymes. Here, we identified and characterized (2S)-methylsuccinyl-CoA dehydrogenase from R. sphaeroides, a flavin adenine dinucleotide-containing enzyme that catalyses the last unknown step in the central part of the ethylmalonyl-CoA pathway, the oxidation of (2S)-methylsuccinyl-CoA to mesaconyl-(C1)-CoA. This enzyme is highly specific for its substrate and forms a distinct subgroup within the superfamily of flavin-dependent acyl-CoA dehydrogenases. Homology modelling and comparative sequence analyses with well-studied members of this superfamily identified amino acids that may contribute to the narrow substrate specificity of (2S)-methylsuccinyl-CoA dehydrogenase. The central part of the ethylmalonyl-CoA pathway was reconstituted in vitro using four recombinant enzymes. By this work, the ethylmalonyl-CoA pathway and its stereochemical course have been completely solved. This allowed defining the minimum set of enzymes necessary for its operation and to screen for further organisms following this acetyl-CoA assimilation strategy.
Collapse
Affiliation(s)
- Tobias J Erb
- Mikrobiologie, Institut für Biologie II, Schänzlestr 1, Albert-Ludwigs-Universität Freiburg, Freiburg i Br, Germany
| | | | | |
Collapse
|
3
|
Toogood HS, Leys D, Scrutton NS. Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes. FEBS J 2007; 274:5481-504. [PMID: 17941859 DOI: 10.1111/j.1742-4658.2007.06107.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.
Collapse
Affiliation(s)
- Helen S Toogood
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
4
|
Mackenzie J, Pedersen L, Arent S, Henriksen A. Controlling Electron Transfer in Acyl-CoA Oxidases and Dehydrogenases. J Biol Chem 2006; 281:31012-20. [PMID: 16887802 DOI: 10.1074/jbc.m603405200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants produce a unique peroxisomal short chain-specific acyl-CoA oxidase (ACX4) for beta-oxidation of lipids. The short chain-specific oxidase has little resemblance to other peroxisomal acyl-CoA oxidases but has an approximately 30% sequence identity to mitochondrial acyl-CoA dehydrogenases. Two biochemical features have been linked to structural properties by comparing the structures of short chain-specific Arabidopsis thaliana ACX4 with and without a substrate analogue bound in the active site to known acyl-CoA oxidases and dehydrogenase structures: (i) a solvent-accessible acyl binding pocket is not required for oxygen reactivity, and (ii) the oligomeric state plays a role in substrate pocket architecture but is not linked to oxygen reactivity. The structures indicate that the acyl-CoA oxidases may encapsulate the electrons for transfer to molecular oxygen by blocking the dehydrogenase substrate interaction site with structural extensions. A small binding pocket observed adjoining the flavin adenine dinucleotide N5 and C4a atoms could increase the number of productive encounters between flavin adenine dinucleotide and O2.
Collapse
Affiliation(s)
- Jenny Mackenzie
- Biostructure Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | | | | | |
Collapse
|
5
|
Goetzman ES, He M, Nguyen TV, Vockley J. Functional analysis of acyl-CoA dehydrogenase catalytic residue mutants using surface plasmon resonance and circular dichroism. Mol Genet Metab 2006; 87:233-42. [PMID: 16376132 DOI: 10.1016/j.ymgme.2005.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/28/2005] [Accepted: 09/30/2005] [Indexed: 11/21/2022]
Abstract
The acyl-CoA dehydrogenases (ACDs) are a family of flavoenzymes involved in the metabolism of fatty acids and branched-chain amino acids. The ACDs share a similar structure and a common dehydrogenation mechanism in which a catalytic glutamate extracts a proton from an acyl-CoA substrate. The resulting charge-transfer complex subsequently passes electrons to electron-transferring flavoprotein (ETF). We previously generated catalytic residue mutants of human short-chain acyl-CoA dehydrogenase (SCAD) and isovaleryl-CoA dehydrogenase (IVD) that were difficult to characterize by traditional methods. In the present study, we developed a novel surface plasmon resonance-based assay to measure substrate binding to these mutants. Replacement of the catalytic glutamate in either SCAD or IVD with glycine resulted in a several-fold reduction in affinity for substrate. Circular dichroism studies substantiated our earlier findings that both SCAD E368G and IVD E254G are unable to form a charge-transfer complex with substrate/product. The CD spectra of IVD E254G also indicated a perturbation of the flavin environment, a finding supported by molecular modeling that predicted a shift in the conformation of a conserved tryptophan that lies in close proximity to the flavin. Lastly, competitive inhibition studies using the ETF fluorescence reduction assay suggested that SCAD E368G and IVD E254G do not effectively compete with the wild-type enzymes for the physiological electron acceptor ETF.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
6
|
Toogood HS, van Thiel A, Scrutton NS, Leys D. Stabilization of Non-productive Conformations Underpins Rapid Electron Transfer to Electron-transferring Flavoprotein. J Biol Chem 2005; 280:30361-6. [PMID: 15975918 DOI: 10.1074/jbc.m505562200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7RH, Leicester United Kingdom
| | | | | | | |
Collapse
|
7
|
Abstract
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
8
|
Toogood HS, van Thiel A, Basran J, Sutcliffe MJ, Scrutton NS, Leys D. Extensive Domain Motion and Electron Transfer in the Human Electron Transferring Flavoprotein·Medium Chain Acyl-CoA Dehydrogenase Complex. J Biol Chem 2004; 279:32904-12. [PMID: 15159392 DOI: 10.1074/jbc.m404884200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|