1
|
El Ghaleb Y, Flucher BE. Ca V3.3 Channelopathies. Handb Exp Pharmacol 2023; 279:263-288. [PMID: 36592228 DOI: 10.1007/164_2022_631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.
Collapse
Affiliation(s)
- Yousra El Ghaleb
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y. Structure, gating, and pharmacology of human Ca V3.3 channel. Nat Commun 2022; 13:2084. [PMID: 35440630 PMCID: PMC9019099 DOI: 10.1038/s41467-022-29728-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
The low-voltage activated T-type calcium channels regulate cellular excitability and oscillatory behavior of resting membrane potential which trigger many physiological events and have been implicated with many diseases. Here, we determine structures of the human T-type CaV3.3 channel, in the absence and presence of antihypertensive drug mibefradil, antispasmodic drug otilonium bromide and antipsychotic drug pimozide. CaV3.3 contains a long bended S6 helix from domain III, with a positive charged region protruding into the cytosol, which is critical for T-type CaV channel activation at low voltage. The drug-bound structures clearly illustrate how these structurally different compounds bind to the same central cavity inside the CaV3.3 channel, but are mediated by significantly distinct interactions between drugs and their surrounding residues. Phospholipid molecules penetrate into the central cavity in various extent to shape the binding pocket and play important roles in stabilizing the inhibitor. These structures elucidate mechanisms of channel gating, drug recognition, and actions, thus pointing the way to developing potent and subtype-specific drug for therapeutic treatments of related disorders. T-type calcium channels are implicated in many diseases. Here, multiple structures of CaV3.3 channel elucidate molecular mechanisms of T-type CaV channels activation at low voltage and interaction with different clinically used channel blockers.
Collapse
Affiliation(s)
- Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoya Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanli Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihao Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bo Huang
- StoneWise Ltd., 1708, Block B, No.19 Zhongguancun Street, Haidian District, Beijing, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
4
|
Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep. Sci Rep 2015; 5:17893. [PMID: 26647714 PMCID: PMC4673464 DOI: 10.1038/srep17893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023] Open
Abstract
Mammalian T-type Ca2+ channels are encoded by three separate genes (Cav3.1, 3.2, 3.3). These channels are reported to be sleep stabilizers important in the generation of the delta rhythms of deep sleep, but controversy remains. The identification of precise physiological functions for the T-type channels has been hindered, at least in part, by the potential for compensation between the products of these three genes and a lack of specific pharmacological inhibitors. Invertebrates have only one T-type channel gene, but its functions are even less well-studied. We cloned Ca-α1T, the only Cav3 channel gene in Drosophila melanogaster, expressed it in Xenopus oocytes and HEK-293 cells, and confirmed it passes typical T-type currents. Voltage-clamp analysis revealed the biophysical properties of Ca-α1T show mixed similarity, sometimes falling closer to Cav3.1, sometimes to Cav3.2, and sometimes to Cav3.3. We found Ca-α1T is broadly expressed across the adult fly brain in a pattern vaguely reminiscent of mammalian T-type channels. In addition, flies lacking Ca-α1T show an abnormal increase in sleep duration most pronounced during subjective day under continuous dark conditions despite normal oscillations of the circadian clock. Thus, our study suggests invertebrate T-type Ca2+ channels promote wakefulness rather than stabilizing sleep.
Collapse
|
5
|
Karmažínová M, Jašková K, Griac P, Perez-Reyes E, Lacinová Ľ. Contrasting the roles of the I-II loop gating brake in CaV3.1 and CaV3.3 calcium channels. Pflugers Arch 2015; 467:2519-27. [PMID: 26306541 DOI: 10.1007/s00424-015-1728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
Low-voltage-activated CaV3 channels are distinguished among other voltage-activated calcium channels by the most negative voltage activation threshold. The voltage dependence of current activation is virtually identical in all three CaV3 channels while the current kinetics of the CaV3.3 current is one order slower than that of the CaV3.1 and CaV3.2 channels. We have analyzed the voltage dependence and kinetics of charge (Q) movement in human recombinant CaV3.3 and CaV3.1 channels. The voltage dependence of voltage sensor activation (Qon-V) of the CaV3.3 channel was significantly shifted with respect to that of the CaV3.1 channel by +18.6 mV and the kinetic of Qon activation in the CaV3.3 channel was significantly slower than that of the CaV3.1 channel. Removal of the gating brake in the intracellular loop connecting repeats I and II in the CaV3.3 channel in the ID12 mutant channel shifted the Qon-V relation to a value even more negative than that for the CaV3.1 channel. The kinetic of Qon activation was not significantly different between ID12 and CaV3.1 channels. Deletion of the gating brake in the CaV3.1 channel resulted in a GD12 channel with the voltage dependence of the gating current activation significantly shifted toward more negative potentials. The Qon kinetic was not significantly altered. ID12 and GD12 mutants did not differ significantly in voltage dependence nor in the kinetic of voltage sensor activation. In conclusion, the putative gating brake in the intracellular loop connecting repeats I and II controls the gating current of the CaV3 channels. We suggest that activation of the voltage sensor in domain I is limiting both the voltage dependence and the kinetics of CaV3 channel activation.
Collapse
Affiliation(s)
- Mária Karmažínová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia
| | - Katarína Jašková
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Ivanka pri Dunaji, Slovakia
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ľubica Lacinová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34, Bratislava, Slovakia.
| |
Collapse
|
6
|
Albéri L, Lintas A, Kretz R, Schwaller B, Villa AEP. The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. J Neurophysiol 2013; 109:2827-41. [PMID: 23486206 DOI: 10.1152/jn.00375.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The reticular thalamic nucleus (RTN) of the mouse is characterized by an overwhelming majority of GABAergic neurons receiving afferences from both the thalamus and the cerebral cortex and sending projections mainly on thalamocortical neurons. The RTN neurons express high levels of the "slow Ca(2+) buffer" parvalbumin (PV) and are characterized by low-threshold Ca(2+) currents, I(T). We performed extracellular recordings in ketamine/xylazine anesthetized mice in the rostromedial portion of the RTN. In the RTN of wild-type and PV knockout (PVKO) mice we distinguished four types of neurons characterized on the basis of their firing pattern: irregular firing (type I), medium bursting (type II), long bursting (type III), and tonically firing (type IV). Compared with wild-type mice, we observed in the PVKOs the medium bursting (type II) more frequently than the long bursting type and longer interspike intervals within the burst without affecting the number of spikes. This suggests that PV may affect the firing properties of RTN neurons via a mechanism associated with the kinetics of burst discharges. Ca(v)3.2 channels, which mediate the I(T) currents, were more localized to the somatic plasma membrane of RTN neurons in PVKO mice, whereas Ca(v)3.3 expression was similar in both genotypes. The immunoelectron microscopy analysis showed that Ca(v)3.2 channels were localized at active axosomatic synapses, thus suggesting that the differential localization of Ca(v)3.2 in the PVKOs may affect bursting dynamics. Cross-correlation analysis of simultaneously recorded neurons from the same electrode tip showed that about one-third of the cell pairs tended to fire synchronously in both genotypes, independent of PV expression. In summary, PV deficiency does not affect the functional connectivity between RTN neurons but affects the distribution of Ca(v)3.2 channels and the dynamics of burst discharges of RTN cells, which in turn regulate the activity in the thalamocortical circuit.
Collapse
Affiliation(s)
- Lavinia Albéri
- Unit of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Kovács K, SÃk A, Ricketts C, Timofeev I. Subcellular distribution of low-voltage activated T-type Ca2+ channel subunits (Cav3.1 and Cav3.3) in reticular thalamic neurons of the cat. J Neurosci Res 2010; 88:448-60. [DOI: 10.1002/jnr.22200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Bartels P, Behnke K, Michels G, Groner F, Schneider T, Henry M, Barrett PQ, Kang HW, Lee JH, Wiesen MHJ, Matthes J, Herzig S. Structural and biophysical determinants of single Ca(V)3.1 and Ca(V)3.2 T-type calcium channel inhibition by N(2)O. Cell Calcium 2009; 46:293-302. [PMID: 19783046 DOI: 10.1016/j.ceca.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/02/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
We investigated the biophysical mechanism of inhibition of recombinant T-type calcium channels Ca(V)3.1 and Ca(V)3.2 by nitrous oxide (N(2)O). To identify functionally important channel structures, chimeras with reciprocal exchange of the N-terminal domains I and II and C-terminal domains III and IV were examined. In whole-cell recordings N(2)O significantly inhibited Ca(V)3.2, and - less pronounced - Ca(V)3.1. A Ca(V)3.2-prevalent inhibition of peak currents was also detected in cell-attached multi-channel patches. In cell-attached patches containing < or = 3 channels N(2)O reduced average peak current of Ca(V)3.2 by decreasing open probability and open time duration. Effects on Ca(V)3.1 were smaller and mediated by a reduced fraction of sweeps containing channel activity. Without drug, single Ca(V)3.1 channels were significantly less active than Ca(V)3.2. Chimeras revealed that domains III and IV control basal gating properties. Domains I and II, in particular a histidine residue within Ca(V)3.2 (H191), are responsible for the subtype-prevalent N(2)O inhibition. Our study demonstrates the biophysical (open times, open probability) and structural (domains I and II) basis of action of N(2)O on Ca(V)3.2. Such a fingerprint of single channels can help identifying the molecular nature of native channels. This is exemplified by a characterization of single channels expressed in human hMTC cells as functional homologues of recombinant Ca(V)3.1.
Collapse
Affiliation(s)
- Peter Bartels
- Department of Pharmacology, University of Cologne, 50931 Koeln, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang C, Bosch MA, Rick EA, Kelly MJ, Rønnekleiv OK. 17Beta-estradiol regulation of T-type calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 2009; 29:10552-62. [PMID: 19710308 PMCID: PMC2774467 DOI: 10.1523/jneurosci.2962-09.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/22/2009] [Accepted: 07/20/2009] [Indexed: 11/21/2022] Open
Abstract
T-type calcium channels are responsible for generating low-threshold spikes that facilitate burst firing and neurotransmitter release in neurons. Gonadotropin-releasing hormone (GnRH) neurons exhibit burst firing, but the underlying conductances are not known. Previously, we found that 17beta-estradiol (E2) increases T-type channel expression and excitability of hypothalamic arcuate nucleus neurons. Therefore, we used ovariectomized oil- or E2-treated EGFP (enhanced green fluorescent protein)-GnRH mice to explore the expression and E2 regulation of T-type channels in GnRH neurons. Based on single-cell reverse transcriptase-PCR and real-time PCR quantification of the T-type channel alpha(1) subunits, we found that all three subunits were expressed in GnRH neurons, with expression levels as follows: Cav3.3 > or = Cav3.2 > Cav3.1. The mRNA expression of the three subunits was increased with surge-inducing levels of E2 during the morning. During the afternoon, Cav3.3 mRNA expression remained elevated, whereas Cav3.1 and Cav3.2 were decreased. The membrane estrogen receptor agonist STX increased the expression of Cav3.3 but not Cav3.2 in GnRH neurons. Whole-cell patch recordings in GnRH neurons revealed that E2 treatment significantly augmented T-type current density at both time points and increased the rebound excitation during the afternoon. Although E2 regulated the mRNA expression of all three subunits in GnRH neurons, the increased expression combined with the slower inactivation kinetics of the T-type current indicates that Cav3.3 may be the most important for bursting activity associated with the GnRH/LH (luteinizing hormone) surge. The E2-induced increase in mRNA expression, which depends in part on membrane-initiated signaling, leads to increased channel function and neuronal excitability and could be a mechanism by which E2 facilitates burst firing and cyclic GnRH neurosecretion.
Collapse
Affiliation(s)
| | | | | | | | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology
- Department of Anesthesiology and Perioperative Medicine, and
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
10
|
Kang HW, Park JY, Lee JH. Distinct contributions of different structural regions to the current kinetics of the Cav3.3 T-type Ca2+ channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2740-8. [DOI: 10.1016/j.bbamem.2008.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
11
|
Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E. I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One 2008; 3:e2976. [PMID: 18714336 PMCID: PMC2495038 DOI: 10.1371/journal.pone.0002976] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 07/26/2008] [Indexed: 11/25/2022] Open
Abstract
The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cavβ subunits and plays significant roles in channel function, including trafficking the α1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (−30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3.
Collapse
Affiliation(s)
- Joel P Baumgart
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | | | | | | | | |
Collapse
|
12
|
Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells. J Neurosci 2008; 28:1625-39. [PMID: 18272683 DOI: 10.1523/jneurosci.3906-07.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.
Collapse
|
13
|
The effects of S4 segments on the voltage-dependence of inactivation for Cav3.1 calcium channels. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Hamid J, Peloquin JB, Monteil A, Zamponi GW. Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 2006; 143:717-28. [PMID: 16996222 DOI: 10.1016/j.neuroscience.2006.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/24/2022]
Abstract
We have investigated the channel structural determinants that underlie the difference in gating properties of Cav3.1 and Cav3.3 T-type channels, by creating a series of chimeric channel constructs in which the major transmembrane domains were swapped. The chimeras were then expressed in tsA-201 cells and subjected to whole cell patch clamp analysis. Our data reveal that domains I and IV are major determinants of the half-activation potential. Substitution of domain IV was the most important determinant of activation time constant and time constant for recovery from inactivation, with domains I and II mediating a smaller role. In contrast, the carboxy terminal region did not appear to be involved. Determinants of the time constant for inactivation could not be localized to a specific transmembrane domain, but the concomitant substitution of domains I+IV was able to partially confer the inactivation kinetics among the two wild type channels. Our data indicate that the domain IV region mediates an important role in T-type channel activation, whereas multiple channel structural determinants appear to control T-type channel inactivation.
Collapse
Affiliation(s)
- J Hamid
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Canada T2N 4N1
| | | | | | | |
Collapse
|
15
|
Talavera K, Nilius B. Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels. Pflugers Arch 2006; 453:189-201. [PMID: 16955311 DOI: 10.1007/s00424-006-0129-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/30/2006] [Accepted: 06/22/2006] [Indexed: 12/19/2022]
Abstract
One of the most distinctive features of T-type Ca(2+) channels is their fast inactivation. Recent structure-function studies indicate that the rate of macroscopic inactivation of these channels is influenced by several structural components, including intracellular linkers, transmembrane segments, and pore loops. The macroscopic inactivation of T-type channels is partially coupled to activation. It is therefore possible that changes in the rate of macroscopic inactivation after alteration in the structure of these channels might actually result from changes in activation kinetics. In this study, we use kinetic simulations to illustrate how the alteration of the rate of channel activation may lead to changes in the rate of macroscopic inactivation. By examining data pooled from several structure-function studies we demonstrate that gating modifications induced by alteration in the channel structure unveils a correlation between the time constants of macroscopic inactivation and activation. This analysis underscores the relevance of considering the inactivation-activation coupling when analyzing the structural determinants of T-type channel inactivation. Furthermore, we demonstrate that slow-inactivating mutants, with modifications in the IIIS6 segment and the proximal C terminus, display significant alterations in the voltage dependencies of activation and deactivation with respect to the wild type channel Ca(V)3.1. Our results indicate that common structures, most likely the S6 transmembrane segments, are involved in the conformational changes occurring during both channel activation and inactivation.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratorium voor Fysiologie, KU Leuven, Campus Gasthuisberg, LEUVEN, Belgium.
| | | |
Collapse
|
16
|
Ivanov AI, Calabrese RL. Graded inhibitory synaptic transmission between leech interneurons: assessing the roles of two kinetically distinct low-threshold Ca currents. J Neurophysiol 2006; 96:218-34. [PMID: 16641379 DOI: 10.1152/jn.01093.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In leeches, two pairs of reciprocally inhibitory heart interneurons that form the core oscillators of the pattern-generating network for heartbeat possess both high- and low-threshold (HVA and LVA) Ca channels. LVA Ca current has two kinetically distinct components (one rapidly activating/inactivating, ICaF, and another slowly activating/inactivating, ICaS) that mediate graded transmission, generate plateau potentials driving burst formation, and modulate spike-mediated transmission between heart interneurons. Here we used different stimulating protocols and inorganic Ca channel blockers to separate the effects of ICaF and ICaS on graded synaptic transmission and determine their interaction and relative efficacy. Ca2+ entering by ICaF channels is more efficacious in mediating release than that entering by ICaS channels. The rate of Ca2+ entry by LVA Ca channels appears to be as critical as the amount of delivered Ca2+ for synaptic transmission. LVA Ca currents and associated graded transmission were selectively blocked by 1 mM Ni2+, leaving spike-mediated transmission unaffected. Nevertheless, 1 mM Ni2+ affected homosynaptic enhancement of spike-mediated transmission that depends on background Ca2+ provided by LVA Ca channels. Ca2+ provided by both ICaF and ICaS depletes a common pool of readily releasable synaptic vesicles. The balance between availability of vesicles and Ca2+ concentration and its time course determine the strength of inhibitory transmission between heart interneurons. We argue that Ca2+ from multichannel domains arising from ICaF channels, clustered near but not directly associated with the release trigger, and Ca2+ radially diffusing from generally distributed ICaS channels interact at common release sites to mediate graded transmission.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
17
|
Kang HW, Park JY, Jeong SW, Kim JA, Moon HJ, Perez-Reyes E, Lee JH. A Molecular Determinant of Nickel Inhibition in Cav3.2 T-type Calcium Channels. J Biol Chem 2006; 281:4823-30. [PMID: 16377633 DOI: 10.1074/jbc.m510197200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular cloning studies have revealed that heterogeneity of T-type Ca2+ currents in native tissues arises from the three isoforms of Ca(v)3 channels: Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3. From pharmacological analysis of the recombinant T-type channels, low concentrations (<50 microM) of nickel were found to selectively block the Ca(v)3.2 over the other isoforms. To date, however, the structural element(s) responsible for the nickel block on the Ca(v)3.2 T-type Ca2+ channel remain unknown. Thus, we constructed chimeric channels between the nickel-sensitive Ca(v)3.2 and the nickel-insensitive Ca(v)3.1 to localize the region interacting with nickel. Systematic assaying of serial chimeras suggests that the region preceding domain I S4 of Ca(v)3.2 contributes to nickel block. Point mutations of potential nickel-interacting sites revealed that H191Q in the S3-S4 loop of domain I significantly attenuated the nickel block of Ca(v)3.2, mimicking the nickel-insensitive blocking potency of Ca(v)3.1. These findings indicate that His-191 in the S3-S4 loop is a critical residue conferring nickel block to Ca(v)3.2 and reveal a novel role for the S3-S4 loop to control ion permeation through T-type Ca2+ channels.
Collapse
Affiliation(s)
- Ho-Won Kang
- Department of Life Science, Interdisciplinary Program of Biotechnology, Sogang University, Shinsu-dong, Seoul 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Li J, Stevens L, Wray D. Molecular regions underlying the activation of low- and high-voltage activating calcium channels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:1017-29. [PMID: 15924245 DOI: 10.1007/s00249-005-0487-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/06/2005] [Indexed: 11/29/2022]
Abstract
We have studied two aspects of calcium channel activation. First, we investigated the molecular regions that are important in determining differences in activation between low- and high-voltage activated channels. For this, we made chimeras between the low-voltage activating Ca(V)3.1 channel and the high-voltage activating Ca(V)1.2 channel. Chimeras were expressed in oocytes, and calcium channel currents recorded by voltage clamp. For domain I, we found that the molecular region that is important in determining the voltage dependence of activation comprises the pore regions S5-P as well as P-S6, but surprisingly not the voltage sensor S1-S4 region, which might have been expected to play a major part. By contrast, the smaller, but still significant, modulating effects of domain II on activation properties were due to effects involving both S1-S4 and S5-S6 but not the I/II linker. Second, during channel activation we studied movement of the S4 segment in domain I of one of the chimeras, using cysteine-scanning mutagenesis. The reagent parachloromercuribenzensulfonate inhibited currents for mutants V263, A265, L266 and A268, but not for F269 and V271, and voltage dependence of inhibition for residue V263 indicated S4 movement, which occurred before channel opening. The data indicate movement outwards upon depolarisation so as to expose amino acids up to residue 268 in S4.
Collapse
Affiliation(s)
- Junying Li
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
19
|
Brette F, Leroy J, Le Guennec JY, Sallé L. Ca2+ currents in cardiac myocytes: Old story, new insights. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:1-82. [PMID: 16503439 DOI: 10.1016/j.pbiomolbio.2005.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Calcium is a ubiquitous second messenger which plays key roles in numerous physiological functions. In cardiac myocytes, Ca2+ crosses the plasma membrane via specialized voltage-gated Ca2+ channels which have two main functions: (i) carrying depolarizing current by allowing positively charged Ca2+ ions to move into the cell; (ii) triggering Ca2+ release from the sarcoplasmic reticulum. Recently, it has been suggested than Ca2+ channels also participate in excitation-transcription coupling. The purpose of this review is to discuss the physiological roles of Ca2+ currents in cardiac myocytes. Next, we describe local regulation of Ca2+ channels by cyclic nucleotides. We also provide an overview of recent studies investigating the structure-function relationship of Ca2+ channels in cardiac myocytes using heterologous system expression and transgenic mice, with descriptions of the recently discovered Ca2+ channels alpha(1D) and alpha(1E). We finally discuss the potential involvement of Ca2+ currents in cardiac pathologies, such as diseases with autoimmune components, and cardiac remodeling.
Collapse
Affiliation(s)
- Fabien Brette
- School of Biomedical Sciences, University of Leeds, Worsley Building Leeds, LS2 9NQ, UK.
| | | | | | | |
Collapse
|