1
|
Chen Y, Wen H, Li Y, Han Y, Tan J, Guo C, Cai C, Liu P, Peng Y, Liu Y, Wang X, Zeng S, Feng Z, Shen H. A multi-omics analysis reveals CLSPN is associated with prognosis, immune microenvironment and drug resistance in cancers. Biol Proced Online 2023; 25:16. [PMID: 37268895 PMCID: PMC10239117 DOI: 10.1186/s12575-023-00201-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Immunotherapy is effective only in limited patients. It is urgent to discover a novel biomarker to predict immune cells infiltration status and immunotherapy response of different cancers. CLSPN has been reported to play a pivotal role in various biological processes. However, a comprehensive analysis of CLSPN in cancers has not been conducted. METHODS To show the whole picture of CLSPN in cancers, a pan-cancer analysis was conducted in 9125 tumor samples across 33 cancer types by integrating transcriptomic, epigenomic and pharmacogenomics data. Moreover, the role of CLSPN in cancer was validated by CCK-8, EDU, colony formation and flow cytometry in vitro and tumor cell derived xenograft model in vivo. RESULTS CLSPN expression was generally upregulated in most cancer types and was significantly associated with prognosis in different tumor samples. Moreover, elevated CLSPN expression was closely correlated with immune cells infiltration, TMB (tumor mutational burden), MSI (microsatellite instability), MMR (mismatch repair), DNA methylation and stemness score across 33 cancer types. Enrichment analysis of functional genes revealed that CLSPN participated in the regulation of numerous signaling pathways involved in cell cycle and inflammatory response. The expression of CLSPN in LUAD patients were further analyzed at the single-cell level. Knockdown CLSPN significantly inhibited cancer cell proliferation and cell cycle related cyclin-dependent kinase (CDK) family and Cyclin family expression in LUAD (lung adenocarcinoma) both in vitro and in vivo experiments. Finally, we conducted structure-based virtual screening by modelling the structure of CHK1 kinase domain and Claspin phosphopeptide complex. The top five hit compounds were screened and validated by molecular docking and Connectivity Map (CMap) analysis. CONCLUSION Our multi-omics analysis offers a systematic understanding of the roles of CLSPN in pan-cancer and provides a potential target for future cancer treatment.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haicheng Wen
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Jones ML, Baris Y, Taylor MRG, Yeeles JTP. Structure of a human replisome shows the organisation and interactions of a DNA replication machine. EMBO J 2021; 40:e108819. [PMID: 34694004 PMCID: PMC8634136 DOI: 10.15252/embj.2021108819] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/01/2023] Open
Abstract
The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Å cryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.
Collapse
|
3
|
Arasu UT, Deen AJ, Pasonen-Seppänen S, Heikkinen S, Lalowski M, Kärnä R, Härkönen K, Mäkinen P, Lázaro-Ibáñez E, Siljander PRM, Oikari S, Levonen AL, Rilla K. HAS3-induced extracellular vesicles from melanoma cells stimulate IHH mediated c-Myc upregulation via the hedgehog signaling pathway in target cells. Cell Mol Life Sci 2020; 77:4093-4115. [PMID: 31820036 PMCID: PMC7532973 DOI: 10.1007/s00018-019-03399-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.
Collapse
Affiliation(s)
- Uma Thanigai Arasu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | - Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maciej Lalowski
- Faculty of Medicine, Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Facility, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Kärnä
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Härkönen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Centre for Drug Research, University of Helsinki, Helsinki, Finland
- EV Group and EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger JM, Botchan MR, Yardimci H, Costa A. Molecular Basis for ATP-Hydrolysis-Driven DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. Cell Rep 2020; 28:2673-2688.e8. [PMID: 31484077 PMCID: PMC6737378 DOI: 10.1016/j.celrep.2019.07.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 01/12/2023] Open
Abstract
In the eukaryotic replisome, DNA unwinding by the Cdc45-MCM-Go-Ichi-Ni-San (GINS) (CMG) helicase requires a hexameric ring-shaped ATPase named minichromosome maintenance (MCM), which spools single-stranded DNA through its central channel. Not all six ATPase sites are required for unwinding; however, the helicase mechanism is unknown. We imaged ATP-hydrolysis-driven translocation of the CMG using cryo-electron microscopy (cryo-EM) and found that the six MCM subunits engage DNA using four neighboring protomers at a time, with ATP binding promoting DNA engagement. Morphing between different helicase states leads us to suggest a non-symmetric hand-over-hand rotary mechanism, explaining the asymmetric requirements of ATPase function around the MCM ring of the CMG. By imaging of a higher-order replisome assembly, we find that the Mrc1-Csm3-Tof1 fork-stabilization complex strengthens the interaction between parental duplex DNA and the CMG at the fork, which might support the coupling between DNA translocation and fork unwinding. Vertical DNA movement through the MCM ring requires rotation inside the pore Structural asymmetries in MCM-DNA are captured during ATPase-powered translocation Asymmetric rotation explains selective ATPase site requirements for translocation The fork-stabilization complex strengthens parental-DNA engagement by the MCM
Collapse
Affiliation(s)
- Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Tatjana Petojevic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Nele Tamberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
5
|
Implications of CLSPN Variants in Cellular Function and Susceptibility to Cancer. Cancers (Basel) 2020; 12:cancers12092396. [PMID: 32847043 PMCID: PMC7565888 DOI: 10.3390/cancers12092396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
Claspin is a multifunctional protein that participates in physiological processes essential for cell homeostasis that are often defective in cancer, namely due to genetic changes. It is conceivable that Claspin gene (CLSPN) alterations may contribute to cancer development. Therefore, CLSPN germline alterations were characterized in sporadic and familial breast cancer and glioma samples, as well as in six cancer cell lines. Their association to cancer susceptibility and functional impact were investigated. Eight variants were identified (c.-68C>T, c.17G>A, c.1574A>G, c.2230T>C, c.2028+16G>A, c.3595-3597del, and c.3839C>T). CLSPN c.1574A>G (p.Asn525Ser) was significantly associated with breast cancer and was shown to cause partial exon skipping and decreased Claspin expression and Chk1 activation in a minigene splicing assay and in signalling experiments, respectively. CLSPN c.2028+16G>A was significantly associated with familial breast cancer and glioma, whereas c.2230T>C (p.Ser744Pro), was exclusively detected in breast cancer and glioma patients, but not in healthy controls. The remaining variants lacked a significant association with cancer. Nevertheless, the c.-68C>T promoter variant increased transcriptional activity in a luciferase assay. In conclusion, some of the CLSPN variants identified in the present study appear to modulate Claspin’s function by altering CLSPN transcription and RNA processing, as well as Chk1 activation.
Collapse
|
6
|
Yang CC, Kato H, Shindo M, Masai H. Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. eLife 2019; 8:50796. [PMID: 31889509 PMCID: PMC6996922 DOI: 10.7554/elife.50796] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 01/05/2023] Open
Abstract
Replication checkpoint is essential for maintaining genome integrity in response to various replication stresses as well as during the normal growth. The evolutionally conserved ATR-Claspin-Chk1 pathway is induced during replication checkpoint activation. Cdc7 kinase, required for initiation of DNA replication at replication origins, has been implicated in checkpoint activation but how it is involved in this pathway has not been known. Here, we show that Cdc7 is required for Claspin-Chk1 interaction in human cancer cells by phosphorylating CKBD (Chk1-binding-domain) of Claspin. The residual Chk1 activation in Cdc7-depleted cells is lost upon further depletion of casein kinase1 (CK1γ1), previously reported to phosphorylate CKBD. Thus, Cdc7, in conjunction with CK1γ1, facilitates the interaction between Claspin and Chk1 through phosphorylating CKBD. We also show that, whereas Cdc7 is predominantly responsible for CKBD phosphorylation in cancer cells, CK1γ1 plays a major role in non-cancer cells, providing rationale for targeting Cdc7 for cancer cell-specific cell killing.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroyuki Kato
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mayumi Shindo
- Protein Analyses Laboratory, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Rai R, Gu P, Broton C, Kumar-Sinha C, Chen Y, Chang S. The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function. Cell Rep 2019; 29:3708-3725.e5. [PMID: 31825846 PMCID: PMC7001145 DOI: 10.1016/j.celrep.2019.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/22/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.
Collapse
Affiliation(s)
- Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| | - Peili Gu
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Cayla Broton
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Tri-Institutional MD/PhD Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yong Chen
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Li L, Zhang Z. Recombinant expression and characterization of yeast Mrc1, a DNA replication checkpoint mediator. Prep Biochem Biotechnol 2019; 50:198-203. [PMID: 31755848 DOI: 10.1080/10826068.2019.1692216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Saccharomyces cerevisiae, Mrc1 (homolog of human Claspin and mediator of replication checkpoint) is not only a part of the replication machine, but also participates in the replication stress response when DNA replication is blocked by hydroxyurea. Since Mrc1 is expressed in a small amount in cells and has many proteins interacting with it as a mediator, it is difficult to obtain Mrc1 with high concentration and purity. This article reports the purification of a stable truncation of Mrc1 and the full length Mrc1. High concentration and high purity of Mrc1 was obtained and the three-dimensional structure of Mrc1 was analyzed, which is a ring with a hole in the center. At the same time, we found that Mrc1 has an interaction with Rad24-RFC a clamp loader in the replication checkpoint, and can form a complex with it, implying that we can assemble large replication checkpoint complexes in vitro. These results initially reveal the ring structure of Mrc1 and its interaction with Rad24-RFC in replication checkpoints in S. cerevisiae.
Collapse
Affiliation(s)
- Lanjing Li
- First Affiliated Hospital of USTC, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhihui Zhang
- First Affiliated Hospital of USTC, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Azenha D, Lopes MC, Martins TC. Claspin: From replication stress and DNA damage responses to cancer therapy. DNA Repair (Amst) 2019; 115:203-246. [DOI: 10.1016/bs.apcsb.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Smits VAJ, Cabrera E, Freire R, Gillespie DA. Claspin – checkpoint adaptor and
DNA
replication factor. FEBS J 2018; 286:441-455. [DOI: 10.1111/febs.14594] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Veronique A. J. Smits
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Elisa Cabrera
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - Raimundo Freire
- Hospital Universitario de Canarias Unidad de Investigación La Laguna Tenerife Spain
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| | - David A. Gillespie
- Facultad de Medicina Instituto de Tecnologías Biomédicas Centro de Investigaciones Biomédicas de Canarias Universidad de La Laguna Tenerife Spain
| |
Collapse
|
11
|
Zhang ZX, Zhang J, Cao Q, Campbell JL, Lou H. The DNA Pol ϵ stimulatory activity of Mrc1 is modulated by phosphorylation. Cell Cycle 2017; 17:64-72. [PMID: 29157061 DOI: 10.1080/15384101.2017.1403680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
DNA replication checkpoint (Mec1-Mrc1-Rad53 in budding yeast) is an evolutionarily conserved surveillance system to ensure proper DNA replication and genome stability in all eukaryotes. Compared to its well-known function as a mediator of replication checkpoint, the exact role of Mrc1 as a component of normal replication forks remains relatively unclear. In this study, we provide in vitro biochemical evidence to support that yeast Mrc1 is able to enhance the activity of DNA polymerase ϵ (Pol ϵ), the major leading strand replicase. Mrc1 can selectively bind avidly to primer/template DNA bearing a single-stranded region, but not to double-stranded DNA (dsDNA). Mutations of the lysine residues within basic patch 1 (BP1) compromise both DNA binding and polymerase stimulatory activities. Interestingly, Mrc1-3D, a mutant mimicking phosphorylation by the Hog1/MAPK kinase during the osmotic stress response, retains DNA binding but not polymerase stimulation. The stimulatory effect is also abrogated in Mrc1 purified from cells treated with hydroxyurea (HU), which elicits replication checkpoint activation. Taken together with previous findings, these results imply that under unperturbed condition, Mrc1 has a DNA synthesis stimulatory activity, which can be eliminated via Mrc1 phosphorylation in response to replication and/or osmotic stresses.
Collapse
Affiliation(s)
- Zhong-Xin Zhang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Jingjing Zhang
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Qinhong Cao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| | - Judith L Campbell
- b Braun Laboratories , California Institute of Technology , Pasadena , CA 91125 , USA
| | - Huiqiang Lou
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health , State Key Laboratory of Agrobiotechnology , MOA Key Laboratory of Soil Microbiology , College of Biological Sciences , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
12
|
Azenha D, Lopes MC, Martins TC. Claspin functions in cell homeostasis-A link to cancer? DNA Repair (Amst) 2017; 59:27-33. [PMID: 28942358 DOI: 10.1016/j.dnarep.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Cancer remains one of the leading causes of mortality worldwide. Most cancers present high degrees of genomic instability. DNA damage and replication checkpoints function as barriers to halt cell cycle progression until damage is resolved, preventing the perpetuation of errors. Activation of these checkpoints is critically dependent on Claspin, an adaptor protein that mediates the phosphorylation of the effector kinase Chk1 by ATR. However, Claspin also performs other roles related to the protection and maintenance of cell and genome integrity. For instance, following DNA damage and checkpoint activation, Claspin bridges checkpoint responses to DNA repair or to apoptosis. During DNA replication, Claspin acts a sensor and couples DNA unwinding to strand polymerization, and may also indirectly regulate replication initiation at firing origins. As Claspin participates in several processes that are vital to maintenance of cell homeostasis, its function is tightly regulated at multiple levels. Nevertheless, little is known about its role in cancer. Accumulating evidence suggests that Claspin inactivation could be an essential event during carcinogenesis, indicating that Claspin may function as a tumour suppressor. In this review, we will examine the functions of Claspin and how its deregulation may contribute to cancer initiation and progression. To conclude, we will discuss means by which Claspin can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Diana Azenha
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| | - Maria Celeste Lopes
- Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal.
| | - Teresa C Martins
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Rua Larga, Faculdade de Medicina, Pólo I, 1º andar, 3004-504 Coimbra, Portugal; Instituto Português de Oncologia de Coimbra de Francisco Gentil, Av. Bissaya Barreto 98, Apartado 2005, 3000-651, Coimbra, Portugal.
| |
Collapse
|
13
|
Mrc1/Claspin: a new role for regulation of origin firing. Curr Genet 2017; 63:813-818. [DOI: 10.1007/s00294-017-0690-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
|
14
|
Lindsey-Boltz LA. Bringing It All Together: Coupling Excision Repair to the DNA Damage Checkpoint. Photochem Photobiol 2016; 93:238-244. [PMID: 27861980 DOI: 10.1111/php.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair and the ATR-mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair-checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair-checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF-ERCC1, XPG, TFIIH, RPA), the 5'-3' exonuclease EXO1, and the damage checkpoint proteins ATR-ATRIP and TopBP1. This coupled repair-checkpoint system was used to demonstrate that the ~30 nucleotide single-stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
15
|
Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, Fukatsu R, Fujisawa R, Sakimura K, Tsurimoto T, Masai H. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun 2016; 7:12135. [PMID: 27401717 PMCID: PMC4945878 DOI: 10.1038/ncomms12135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/03/2016] [Indexed: 11/09/2022] Open
Abstract
Claspin transmits replication stress signal from ATR to Chk1 effector kinase as a mediator. It also plays a role in efficient replication fork progression during normal growth. Here we have generated conditional knockout of Claspin and show that Claspin knockout mice are dead by E12.5 and Claspin knockout mouse embryonic fibroblast (MEF) cells show defect in S phase. Using the mutant cell lines, we report the crucial roles of the acidic patch (AP) near the C terminus of Claspin in initiation of DNA replication. Cdc7 kinase binds to AP and this binding is required for phosphorylation of Mcm. AP is involved also in intramolecular interaction with a N-terminal segment, masking the DNA-binding domain and a newly identified PIP motif, and Cdc7-mediated phosphorylation reduces the intramolecular interaction. Our results suggest a new role of Claspin in initiation of DNA replication during normal S phase through the recruitment of Cdc7 that facilitates phosphorylation of Mcm proteins. Claspin mediates the transmission of a replication-stress signal from ATR to Chk1 and is necessary for efficient fork progression. Here the authors demonstrate that the C-terminal acidic patch is important for this role due to its interaction with Cdc7.
Collapse
Affiliation(s)
- Chi-Chun Yang
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahiro Suzuki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shiori Yamakawa
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Syuzi Uno
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Ai Ishii
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Satoshi Yamazaki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Rino Fukatsu
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Ryo Fujisawa
- Department of Biology, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 4-6-1 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
16
|
Hao J, de Renty C, Li Y, Xiao H, Kemp MG, Han Z, DePamphilis ML, Zhu W. And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J 2015; 34:2096-110. [PMID: 26082189 DOI: 10.15252/embj.201488016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And-1, a replisome component, acts together with ATR to activate Chk1. And-1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And-1 to accumulate at the damage sites, where And-1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And-1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And-1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR-And-1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.
Collapse
Affiliation(s)
- Jing Hao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Michael G Kemp
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Zhiyong Han
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| |
Collapse
|
17
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
18
|
Abstract
In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered.
Collapse
Affiliation(s)
- Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295
| |
Collapse
|
19
|
Broderick R, Rainey MD, Santocanale C, Nasheuer HP. Cell cycle-dependent formation of Cdc45-Claspin complexes in human cells is compromized by UV-mediated DNA damage. FEBS J 2013; 280:4888-902. [PMID: 23910567 DOI: 10.1111/febs.12465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The replication factor Cdc45 has essential functions in the initiation and elongation steps of eukaryotic DNA replication and plays an important role in the intra-S-phase checkpoint. Its interactions with other replication proteins during the cell cycle and after intra-S-phase checkpoint activation are only partially characterized. In the present study, we show that the C terminal part of Cdc45 may mediate its interactions with Claspin. The interactions of human Cdc45 with the three replication factors Claspin, replication protein A and DNA polymerase δ are maximal during the S phase. Following UVC-induced DNA damage, Cdc45-Claspin complex formation is reduced, whereas the binding of Cdc45 to replication protein A is not affected. We also show that treatment of cells with UCN-01 and phosphatidylinositol 3-kinase-like kinase inhibitors does not rescue the UV-induced destabilization of Cdc45-Claspin interactions, suggesting that the loss of the interaction between Cdc45 and Claspin occurs upstream of ataxia telangiectasia and Rad 3-related activation in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Ronan Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | | | | | | |
Collapse
|
20
|
Uno S, You Z, Masai H. Purification of replication factors using insect and mammalian cell expression systems. Methods 2012; 57:214-21. [PMID: 22800621 DOI: 10.1016/j.ymeth.2012.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022] Open
Abstract
Purification of factors for DNA replication in an amount sufficient for detailed biochemical characterization is essential to elucidating its mechanisms. Insect cell expression systems are commonly used for purification of the factors proven to be difficult to deal with in bacteria. We describe first the detailed protocols for purification of mammalian Mcm complexes including the Mcm2/3/4/5/6/7 heterohexamer expressed in insect cells. We then describe a convenient and economical system in which large-sized proteins and multi-factor complexes can be transiently overexpressed in human 293T cells and be rapidly purified in a large quantity. We describe various expression vectors and detailed methods for transfection and purification of various replication factors which have been difficult to obtain in a sufficient amount in other systems. Availability of efficient methods to overproduce and purify the proteins that have been challenging would facilitate the enzymatic analyses of the processes of DNA replication.
Collapse
Affiliation(s)
- Shuji Uno
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
21
|
Qu M, Yang B, Tao L, Yates JR, Russell P, Dong MQ, Du LL. Phosphorylation-dependent interactions between Crb2 and Chk1 are essential for DNA damage checkpoint. PLoS Genet 2012; 8:e1002817. [PMID: 22792081 PMCID: PMC3390401 DOI: 10.1371/journal.pgen.1002817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022] Open
Abstract
In response to DNA damage, the eukaryotic genome surveillance system activates a checkpoint kinase cascade. In the fission yeast Schizosaccharomyces pombe, checkpoint protein Crb2 is essential for DNA damage-induced activation of downstream effector kinase Chk1. The mechanism by which Crb2 mediates Chk1 activation is unknown. Here, we show that Crb2 recruits Chk1 to double-strand breaks (DSBs) through a direct physical interaction. A pair of conserved SQ/TQ motifs in Crb2, which are consensus phosphorylation sites of upstream kinase Rad3, is required for Chk1 recruitment and activation. Mutating both of these motifs renders Crb2 defective in activating Chk1. Tethering Crb2 and Chk1 together can rescue the SQ/TQ mutations, suggesting that the main function of these phosphorylation sites is promoting interactions between Crb2 and Chk1. A 19-amino-acid peptide containing these SQ/TQ motifs is sufficient for Chk1 binding in vitro when one of the motifs is phosphorylated. Remarkably, the same peptide, when tethered to DSBs by fusing with either recombination protein Rad22/Rad52 or multi-functional scaffolding protein Rad4/Cut5, can rescue the checkpoint defect of crb2Δ. The Rad22 fusion can even bypass the need for Rad9-Rad1-Hus1 (9-1-1) complex in checkpoint activation. These results suggest that the main role of Crb2 and 9-1-1 in DNA damage checkpoint signaling is recruiting Chk1 to sites of DNA lesions.
Collapse
Affiliation(s)
- Meng Qu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.
Collapse
|
23
|
Lee Y, Shull ERP, Frappart PO, Katyal S, Enriquez-Rios V, Zhao J, Russell HR, Brown EJ, McKinnon PJ. ATR maintains select progenitors during nervous system development. EMBO J 2012; 31:1177-89. [PMID: 22266795 DOI: 10.1038/emboj.2011.493] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/19/2011] [Indexed: 01/09/2023] Open
Abstract
The ATR (ATM (ataxia telangiectasia mutated) and rad3-related) checkpoint kinase is considered critical for signalling DNA replication stress and its dysfunction can lead to the neurodevelopmental disorder, ATR-Seckel syndrome. To understand how ATR functions during neurogenesis, we conditionally deleted Atr broadly throughout the murine nervous system, or in a restricted manner in the dorsal telencephalon. Unexpectedly, in both scenarios, Atr loss impacted neurogenesis relatively late during neural development involving only certain progenitor populations. Whereas the Atr-deficient embryonic cerebellar external germinal layer underwent p53- (and p16(Ink4a/Arf))-independent proliferation arrest, other brain regions suffered apoptosis that was partially p53 dependent. In contrast to other organs, in the nervous system, p53 loss did not worsen the outcome of Atr inactivation. Coincident inactivation of Atm also did not affect the phenotype after Atr deletion, supporting non-overlapping physiological roles for these related DNA damage-response kinases in the brain. Rather than an essential general role in preventing replication stress, our data indicate that ATR functions to monitor genomic integrity in a selective spatiotemporal manner during neurogenesis.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grandin N, Bailly A, Charbonneau M. Activation of Mrc1, a mediator of the replication checkpoint, by telomere erosion. Biol Cell 2012; 97:799-814. [PMID: 15760303 DOI: 10.1042/bc20040526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In budding yeast, the loss of either telomere sequences (in telomerase-negative cells) or telomere capping (in mutants of two telomere end-protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. RESULTS We report that in telomerase-negative (tlc1Delta) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end-protection proteins (cdc13-1 yku70Delta). In telomerase-negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA-damage-induced cell-cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53-Mrc1 complex in tlc1Delta rad9Delta cells, Mrc1 did not mediate the cell-cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. CONCLUSIONS These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53-Rad9-mediated cell-cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53-Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.
Collapse
Affiliation(s)
- Nathalie Grandin
- IFR128 BioSciences Gerland, UMR CNRS no. 5161, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | | | | |
Collapse
|
25
|
Yoshimura A, Akita M, Hosono Y, Abe T, Kobayashi M, Yamamoto KI, Tada S, Seki M, Enomoto T. Functional relationship between Claspin and Rad17. Biochem Biophys Res Commun 2011; 414:298-303. [PMID: 21945441 DOI: 10.1016/j.bbrc.2011.09.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/25/2023]
Abstract
Claspin was originally identified as a Check1 (Chk1)-interacting protein. Claspin and Rad17 are reportedly involved in the DNA damage-induced phosphorylation of Chk1, a hallmark of checkpoint activation. To understand the cellular functions of Claspin and the functional relationship between Claspin and Rad17, we generated Claspin(-/-) and Claspin(-/-)/RAD17(-) cells using chicken DT40 cells, which contain an exogenously introduced Claspin that can be suppressed by the addition of doxycycline (Dox). In the presence of Dox, Claspin(-/-) cells ceased growth within 2 days, leading to cell death. In addition, a remarkable reduction in the rate of DNA elongation was observed in Claspin-depleted cells, suggesting that Claspin plays a critical role in DNA replication in the absence of exogenous stress. When cells were exposed to methyl methanesulfonate (MMS), a DNA damaging agent, RAD17(-) cells showed a greater defect in checkpoint activation than Claspin(-/-) cells as monitored by progression of cell cycle and phosphorylation of Chk1. Knocking out RAD17 gene showed almost no additive effects on cell death and DNA elongation rates in Claspin-depleted cells.
Collapse
Affiliation(s)
- Akari Yoshimura
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yilmaz S, Sancar A, Kemp MG. Multiple ATR-Chk1 pathway proteins preferentially associate with checkpoint-inducing DNA substrates. PLoS One 2011; 6:e22986. [PMID: 21829571 PMCID: PMC3146532 DOI: 10.1371/journal.pone.0022986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/08/2011] [Indexed: 12/02/2022] Open
Abstract
The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses.
Collapse
Affiliation(s)
- Seçil Yilmaz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael G. Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Uno S, Masai H. Efficient expression and purification of human replication fork-stabilizing factor, Claspin, from mammalian cells: DNA-binding activity and novel protein interactions. Genes Cells 2011; 16:842-56. [DOI: 10.1111/j.1365-2443.2011.01535.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Lindsey-Boltz LA, Sancar A. Tethering DNA damage checkpoint mediator proteins topoisomerase IIbeta-binding protein 1 (TopBP1) and Claspin to DNA activates ataxia-telangiectasia mutated and RAD3-related (ATR) phosphorylation of checkpoint kinase 1 (Chk1). J Biol Chem 2011; 286:19229-36. [PMID: 21502314 PMCID: PMC3103301 DOI: 10.1074/jbc.m111.237958] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/14/2011] [Indexed: 01/04/2023] Open
Abstract
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.
Collapse
Affiliation(s)
- Laura A. Lindsey-Boltz
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
29
|
Abstract
Claspin is a mediator of the ATR-dependent DNA replication checkpoint in human cells and also promotes DNA replication fork progression and stability. Though Claspin has been shown to bind DNA and co-immunoprecipitate with other replication fork-associated proteins, the specific protein-protein and protein-DNA interactions that are important for Claspin function are not known. We therefore purified several domains of human Claspin and then tested for direct interactions of these fragments with several replication fork-associated proteins and with DNA. Our data show that the N terminus of Claspin binds to the replicative helicase co-factor Cdc45, the Timeless protein and a branched, replication fork-like DNA structure. In contrast, the C terminus of Claspin associates with DNA polymerase epsilon and Rad17-Replication Factor C (RFC). We conclude that multiple protein-DNA and protein-protein interactions may be important for Claspin function during DNA replication and DNA replication checkpoint signaling.
Collapse
Affiliation(s)
- Ozdemirhan Serçin
- University of North Carolina School of Medicine, Chapel Hill, NC USA
| | | |
Collapse
|
30
|
Tanaka T, Yokoyama M, Matsumoto S, Fukatsu R, You Z, Masai H. Fission yeast Swi1-Swi3 complex facilitates DNA binding of Mrc1. J Biol Chem 2010; 285:39609-22. [PMID: 20924116 DOI: 10.1074/jbc.m110.173344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication fork protection complex Swi1-Swi3 and replication checkpoint mediator Mrc1 are required for maintenance of replication fork integrity during the course of DNA replication in the fission yeast Schizosaccharomyces pombe. These proteins play crucial roles in stabilizing stalled forks and activating replication checkpoint signaling pathways. Although they are conserved replication fork components, precise biochemical roles of these proteins are not known. Here we purified Mrc1 and Swi1-Swi3 proteins and show that these proteins bind to DNA independently but synergistically in vitro. Mrc1 binds preferentially to arrested fork or D-loop-like structures, although the affinity is relatively low, whereas the Swi1-Swi3 complex binds to double-stranded DNA with higher affinity. In the presence of a low concentration of Swi1-Swi3, Mrc1 generates a novel ternary complex and binds to various types of DNA with higher affinity. Moreover, purified Mrc1 and Swi1-Swi3 physically interact with each other, and this interaction is lost by mutations in the known DNA binding domain of Mrc1 (K235E,K236E). The interaction is also lost in a mutant form of Swi1 (E662K) that is specifically defective in polar fork arrest at a site called RTS1 and causes sensitivity to genotoxic agents, although the DNA binding affinity of Swi1-Swi3 is not affected by this mutation. As expected, the synergistic effect of the Swi1-Swi3 on DNA binding of Mrc1 is also lost by these mutations affecting the interaction between Mrc1 and Swi1-Swi3. Our results reveal an aspect of molecular interactions that may play an important role in replication pausing and fork stabilization.
Collapse
Affiliation(s)
- Taku Tanaka
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
32
|
Kemp MG, Akan Z, Yilmaz S, Grillo M, Smith-Roe SL, Kang TH, Cordeiro-Stone M, Kaufmann WK, Abraham RT, Sancar A, Unsal-Kaçmaz K. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 2010; 285:16562-71. [PMID: 20233725 DOI: 10.1074/jbc.m110.110304] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gold DA, Dunphy WG. Drf1-dependent kinase interacts with Claspin through a conserved protein motif. J Biol Chem 2010; 285:12638-46. [PMID: 20190277 DOI: 10.1074/jbc.m109.077370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Dbf4/Drf1-dependent kinase (DDK) is required for the initiation of DNA replication in eukaryotes. Another protein, Claspin, mediates the activation of a cellular checkpoint response to stalled replication forks and is also a regulator of replication. In this study, we found that DDK phosphorylates Claspin in vitro and forms a nuclear complex containing Cdc7, Drf1, and Claspin in Xenopus egg extracts. In addition, purified Claspin and DDK are capable of a direct in vitro interaction. We identified a conserved binding site on Claspin required for its interaction with DDK. This site corresponds to the first of two sequence repeats in the Chk1-binding domain of Claspin. Furthermore, we have established that two amino acids in this motif, Asp(861) and Gln(866), are essential for the interaction between Claspin and DDK. We found that mutant forms of Claspin incapable of interacting with DDK are still able to associate with and activate Chk1 in response to DNA replication blockages. However, Claspin-depleted egg extracts that have been reconstituted with these mutants of Claspin undergo DNA replication more slowly. These findings suggest that the interaction of DDK with Claspin mediates a checkpoint-independent function of Claspin related to DNA replication.
Collapse
Affiliation(s)
- Daniel A Gold
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
34
|
Lindsey-Boltz LA, Serçin O, Choi JH, Sancar A. Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. J Biol Chem 2009; 284:33107-14. [PMID: 19828454 DOI: 10.1074/jbc.m109.064485] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins.We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.
Collapse
Affiliation(s)
- Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | | |
Collapse
|
36
|
Claspin is involved in S-phase checkpoint induced by benzo(a)pyrene in 16HBE cells. Toxicol In Vitro 2009; 23:880-6. [DOI: 10.1016/j.tiv.2009.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/06/2009] [Accepted: 05/13/2009] [Indexed: 12/20/2022]
|
37
|
Gao D, Inuzuka H, Korenjak M, Tseng A, Wu T, Wan L, Kirschner M, Dyson N, Wei W. Cdh1 regulates cell cycle through modulating the claspin/Chk1 and the Rb/E2F1 pathways. Mol Biol Cell 2009; 20:3305-16. [PMID: 19477924 DOI: 10.1091/mbc.e09-01-0092] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
APC/Cdh1 is a major cell cycle regulator and its function has been implicated in DNA damage repair; however, its exact role remains unclear. Using affinity purification coupled with mass spectrometry, we identified Claspin as a novel Cdh1-interacting protein and further demonstrated that Claspin is a novel Cdh1 ubiquitin substrate. As a result, inactivation of Cdh1 leads to activation of the Claspin/Chk1 pathway. Previously, we demonstrated that Rb interacts with Cdh1 to influence its ability to degrade Skp2. Here, we report that Cdh1 reciprocally regulates the Rb pathway through competing with E2F1 to bind the hypophosphorylated form of Rb. Although inactivation of Cdh1 in HeLa cells, with defective p53/Rb pathways, led to premature S phase entry, acute depletion of Cdh1 in primary human fibroblasts resulted in premature senescence. Acute loss of many other major tumor suppressors, including PTEN and VHL, also induces premature senescence in a p53- or Rb-dependent manner. Similarly, we showed that inactivation of the p53/Rb pathways by overexpression of SV40 LT-antigen partially reversed Cdh1 depletion-induced growth arrest. Therefore, loss of Cdh1 is only beneficial to cells with abnormal p53 and Rb pathways, which helps explain why Cdh1 loss is not frequently found in many tumors.
Collapse
Affiliation(s)
- Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The checkpoint mediator protein Claspin facilitates the phosphorylation and activation of Chk1 by ATR and thus is required for efficient DNA replication. However, the physical association of Claspin homologues with replication factors and forks suggests that it might have additional functions in controlling DNA replication. DNA combing was used to examine the functions of Chk1 and Claspin at individual forks and to determine whether Claspin functions independently of Chk1. We find that Claspin, like Chk1, regulates fork stability and density in unperturbed cells. As expected, Chk1 regulates origin firing predominantly by controlling Cdk2-Cdc25 function. By contrast, Claspin functions independently of the Cdc25-Cdk2 pathway in mammalian cells. The findings support a model in which Claspin plays a role regulating replication fork stability that is independent of its function in mediating Chk1 phosphorylation.
Collapse
Affiliation(s)
- Jennifer Scorah
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
39
|
Petermann E, Helleday T, Caldecott KW. Claspin promotes normal replication fork rates in human cells. Mol Biol Cell 2008; 19:2373-8. [PMID: 18353973 PMCID: PMC2397295 DOI: 10.1091/mbc.e07-10-1035] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/05/2008] [Accepted: 03/10/2008] [Indexed: 01/25/2023] Open
Abstract
The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.
Collapse
Affiliation(s)
- Eva Petermann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom.
| | | | | |
Collapse
|
40
|
Erkko H, Pylkäs K, Karppinen SM, Winqvist R. Germline alterations in the CLSPN gene in breast cancer families. Cancer Lett 2008; 261:93-7. [PMID: 18077083 DOI: 10.1016/j.canlet.2007.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 06/13/2007] [Accepted: 11/06/2007] [Indexed: 11/15/2022]
Abstract
About 5-10% of breast cancer is thought to be due to an inherited disease predisposition. Currently known genes account for less than half of the hereditary cases. Claspin, a tumor suppressor protein encoded by the CLSPN gene, is involved in monitoring of replication and sensoring of DNA damage and cooperates with CHK1 and BRCA1. Association with certain cell proliferation stimulatory features has also been described. Many previously identified susceptibility factors act in similar functional pathways as claspin, suggesting possible involvement of CLSPN in heritable breast cancer susceptibility. Here we have screened affected index cases from 125 Finnish cancer families for germline defects in CLSPN using conformation sensitive gel electrophoresis (CSGE) and direct sequencing. Altogether seven different sequence changes were observed, but none of them appeared to associate with breast cancer susceptibility. To our knowledge, this is the first study reporting the mutation screening of the CLSPN gene in familial breast cancer cases.
Collapse
Affiliation(s)
- Hannele Erkko
- Department of Clinical Genetics, Oulu University Hospital, University of Oulu, P.O. Box 24, FIN-90029 OYS, Finland
| | | | | | | |
Collapse
|
41
|
Rodríguez-Bravo V, Guaita-Esteruelas S, Salvador N, Bachs O, Agell N. Different S/M checkpoint responses of tumor and non tumor cell lines to DNA replication inhibition. Cancer Res 2008; 67:11648-56. [PMID: 18089794 DOI: 10.1158/0008-5472.can-07-3100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell cycle checkpoint abrogation, especially the inhibition of Chk1 in combination with DNA-damaging treatments, has been proposed as a promising way of sensitizing cancer cells. However, less is known about the possibility to selectively affect tumor cells when they are treated with agents that block DNA synthesis in combination with replication checkpoint inhibitors. Here, we present clear insights in the different responses of tumor and non-transformed cells to the inhibition of DNA replication with hydroxyurea in combination with checkpoint abrogation via inhibition of Ataxia telangiectasia-mutated- (ATM) and Rad3-related/ATM (ATR/ATM) and Chk1 kinases. Interestingly, we find that non-transformed cell lines activate ATR/ATM- and Chk1-independent pathways in response to replication inhibition to prevent mitotic entry with unreplicated DNA. In contrast, tumor cell lines such as HCT116 and HeLa cells rely entirely on Chk1 activity for a proper response to replication inhibitors. Our results show that p38 is activated in response to hydroxyurea treatment and collaborates with Chk1 to prevent mitotic entry in non-transformed cell lines by maintaining cyclin B1/Cdk1 complexes inactive. Furthermore, DNA replication arrest down-regulates cyclin B1 promoter activity in non-transformed cells, but not in tumor cells in a Chk1- and p38-independent way. Thus, our data show that non-transformed cells present a more robust DNA replication checkpoint response compared with tumor cells that involves activation of the p38 pathway. We show that some of these responses to replication block can be lost in tumor cells, causing a defective checkpoint and providing a rationale for tumor-selective effects of combined therapies.
Collapse
Affiliation(s)
- Verónica Rodríguez-Bravo
- Departament de Biologia Cellular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Rodríguez-Bravo V, Guaita-Esteruelas S, Florensa R, Bachs O, Agell N. Chk1- and claspin-dependent but ATR/ATM- and Rad17-independent DNA replication checkpoint response in HeLa cells. Cancer Res 2007; 66:8672-9. [PMID: 16951182 DOI: 10.1158/0008-5472.can-05-4443] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When DNA synthesis is inhibited, DNA replication checkpoint is activated to prevent mitosis entry without fully replicated DNA. In Xenopus, caffeine-sensitive kinases [ataxia telangiectasia mutated (ATM) and ATM-related protein (ATR)] are essential in this checkpoint response, but in mammal cells an ATR/ATM-independent checkpoint response to DNA synthesis inhibition exists. Using HeLa cells, which have a caffeine-insensitive checkpoint response, we have analyzed here which molecules known to be involved in the DNA replication checkpoint participate in the caffeine-insensitive response. When DNA synthesis was inhibited in the presence of UCN01 or after knocking down Chk1 expression [Chk1 small interfering RNA (siRNA)], HeLa cells entered into aberrant mitosis. Consequently, Chk1 is essential for both the ATR/ATM-dependent and ATR/ATM-independent checkpoint response in HeLa cells. Neither wortmannin, Ly294002, nor SB202190 abrogated the caffeine-insensitive checkpoint response, indicating that DNA-PK and p38 alpha,beta are not involved in the ATR/ATM-independent Chk1 activation upon DNA synthesis inhibition. Using siRNA to knock down Rad17 and claspin, two molecules involved in sensing stalled replication forks, we also showed that claspin but not Rad17 is essential for the ATR/ATM-independent checkpoint response. Inhibition of DNA synthesis in HeLa cells led to a decrease in cyclin B1 protein accumulation that was abrogated when UCN01 was added or when claspin was knocked down. We conclude that upon DNA synthesis inhibition, Chk1 can be activated in a claspin-dependent manner independently of ATR and ATM, leading to cyclin B1 down-regulation and providing the cells of an additional mechanism to inhibit mitosis entry.
Collapse
Affiliation(s)
- Verónica Rodríguez-Bravo
- Departament de Biologia Cellular i Anatomia Patològica, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Errico A, Costanzo V, Hunt T. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc Natl Acad Sci U S A 2007; 104:14929-34. [PMID: 17846426 PMCID: PMC1975688 DOI: 10.1073/pnas.0706347104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Tipin and its interacting partner Tim1 (Timeless) form a complex at replication forks that plays an important role in the DNA damage checkpoint response. Here we identify Xenopus laevis Tipin as a substrate for cyclin E/cyclin-dependent kinases 2 that is phosphorylated in interphase and undergoes further phosphorylation upon entry into mitosis. During unperturbed DNA replication, the Tipin/Tim1 complex is bound to chromatin, and we were able to detect interactions between Tipin and the MCM helicase. Depletion of Tipin from Xenopus extracts did not significantly impair normal replication but substantially blocked the ability of stalled replication forks to recover after removal of a block imposed by aphidicolin. Tipin-depleted extracts also showed defects in the activation of Chk1 in response to aphidicolin, probably because of a failure to load the checkpoint mediator protein Claspin onto chromatin.
Collapse
Affiliation(s)
- Alessia Errico
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Vincenzo Costanzo
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Tim Hunt
- Clare Hall Laboratories, Cancer Research UK, South Mimms, Hertfordshire EN6 3LD, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K, De Wolf-Peeters C, Christiaens MR, Michiels L, Bouillon R, Verstuyf A. The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas. Cancer Res 2007; 67:6574-81. [PMID: 17638866 DOI: 10.1158/0008-5472.can-06-3545] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that checkpoint kinase 1 (Chk1) and Claspin, two DNA-damage checkpoint proteins, were down-regulated by 1,25-dihydroxyvitamin D(3), a known inhibitor of cell proliferation. In the present study, we aimed to investigate the transcriptional regulation of Chk1 and Claspin and to study their expression levels in human breast cancer tissue. Transient transfection experiments in MCF-7 breast cancer cells showed that promoter activities of Chk1 and Claspin were regulated by the E2F family of transcription factors. Subsequently, transcript levels of Chk1, Claspin, and E2F1 were determined by quantitative reverse transcriptase-PCR analysis in 103 primary invasive breast carcinomas and were compared with several clinicopathologic variables in breast cancer. A strong correlation was found between Chk1 and Claspin transcript levels. Transcript levels of Chk1, Claspin, and E2F1 were highest in histologic grade 3 tumors and in tumors in which the expression of estrogen receptor (ER) and progesterone receptor (PR) was lost. Moreover, Chk1 expression was significantly elevated in grade 3 breast carcinomas showing a triple-negative ER-/PR-/HER-2- phenotype compared with other grade 3 tumors. Further research is warranted to validate the use of Chk1 inhibitors in triple-negative breast carcinomas for which treatment strategies are limited at present.
Collapse
Affiliation(s)
- Lieve Verlinden
- Laboratorium voor Experimentele Geneeskunde en Endocrinologie and CMPG/ESAT, Katholieke Universiteit Leuven, Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Verlinden L, Eelen G, Van Hellemont R, Engelen K, Beullens I, Van Camp M, Marchal K, Mathieu C, Bouillon R, Verstuyf A. 1alpha,25-Dihydroxyvitamin D3-induced down-regulation of the checkpoint proteins, Chk1 and Claspin, is mediated by the pocket proteins p107 and p130. J Steroid Biochem Mol Biol 2007; 103:411-5. [PMID: 17251008 DOI: 10.1016/j.jsbmb.2006.12.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A previous cDNA microarray analysis in murine MC3T3-E1 osteoblasts revealed a cluster of genes involved in cell cycle progression that was significantly down-regulated after a single treatment with 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] [L. Verlinden, G. Eelen, I. Beullens, M. Van Camp, P. Van Hummelen, K. Engelen, R. Van Hellemont, K. Marchal, B. De Moor, F. Foijer, H. Te Riele, M. Beullens, M. Bollen, C. Mathieu, R. Bouillon, A. Verstuyf, Characterization of the condensin component Cnap1 and protein kinase Melk as novel E2F target genes down-regulated by 1,25-dihydroxyvitamin D3, J. Biol. Chem. 280 (45) (2005) 37319-37330]. Among those genes were the DNA replication and DNA damage checkpoint proteins, Chk1 and Claspin, of which the human homologues were recently shown to be E2F-responsive. Quantitative real-time PCR experiments in 1,25(OH)(2)D(3)-treated MC3T3-E1 cells confirmed the down-regulation observed in the microarray experiment. Moreover, Chk1 and Claspin promoter activities were also reduced after incubation with 1,25(OH)(2)D(3), and this reduction was mediated through the E2F recognition motifs within their promoters because mutation of these motifs almost completely abolished the repressive effect of 1,25(OH)(2)D(3). The antiproliferative effect of 1,25(OH)(2)D(3) as well as its potential to down-regulate the expression of Chk1 and Claspin depended on the pocket proteins p107 and p130 because 1,25(OH)(2)D(3) lost its antiproliferative action and failed to repress these E2F-target genes in p107(-/-);p130(-/-)-cells, but not in pRb(-/-)-cells.
Collapse
Affiliation(s)
- Lieve Verlinden
- Laboratorium voor Experimentele Geneeskunde en Endocrinologie, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Buchsbaum S, Morris C, Bochard V, Jalinot P. Human INT6 interacts with MCM7 and regulates its stability during S phase of the cell cycle. Oncogene 2007; 26:5132-44. [PMID: 17310990 DOI: 10.1038/sj.onc.1210314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse int6 gene is a frequent integration site of the mouse mammary tumor virus and INT6 silencing by RNA interference in HeLa cells causes an increased number of cells in the G2/M phases of the cell cycle, along with mitotic defects. In this report, we investigated the functional significance of the interaction between INT6 and MCM7, which was observed in a two-hybrid screen performed with INT6 as bait. It was found that proteasome inhibition strengthens interaction between both proteins and that INT6 stabilizes MCM7. Removal of MCM7 from chromatin as replication proceeds was accelerated in INT6-silenced cells and reduced amounts of protein were transiently observed, followed by a correction resulting from stimulation of mcm7 gene expression. Synchronized cells depleted for either INT6 or MCM7 display a reduction in thymidine incorporation and a reinforced association of RPA and claspin with chromatin. These data show that INT6 stabilizes chromatin-bound MCM7 and that alteration of this effect is associated with replication deficiency.
Collapse
Affiliation(s)
- S Buchsbaum
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5161 CNRS/ENS de Lyon, IFR 128 Biosciences Lyon Gerland, Lyon cedex 07, Rhone, France
| | | | | | | |
Collapse
|
47
|
Tsimaratou K, Kletsas D, Kastrinakis NG, Tsantoulis PK, Evangelou K, Sideridou M, Liontos M, Poulias I, Venere M, Salmas M, Kittas C, Halazonetis TD, Gorgoulis VG. Evaluation of claspin as a proliferation marker in human cancer and normal tissues. J Pathol 2007; 211:331-9. [PMID: 17152083 DOI: 10.1002/path.2095] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Claspin is a nuclear protein involved in DNA replication and the DNA damage response. Its structural and functional properties suggest that it may represent a potentially useful proliferation marker. To this end, a monoclonal antibody was generated and the expression of claspin was investigated in normal fibroblasts and various cancer cell lines, as well as in tumour and normal tissues from patients with primary epithelial carcinomas. Immunoblotting analysis confirmed the specificity of the antibody, while immunohistochemistry demonstrated its applicability in archival material. In normal cells and tissues, claspin expression was weak, whereas increased levels were observed in cancer cell lines and tumour specimens. Claspin staining correlated strongly with Ki67 staining in both normal (p < 0.001) and tumour tissues (p < 0.001). However, the labelling index (LI) of claspin was consistently lower than that of Ki67, suggesting that claspin expression may be limited to a narrower part of the cell cycle. Co-localization assays with cyclin A and cell synchronization experiments indicated that claspin expression coincides with the S phase. Interestingly, the relative increase of the claspin LI in tumour samples compared with normal tissues was significantly higher (14-fold) than that of the Ki67 LI (five-fold), suggesting that claspin may be a more sensitive marker of aberrant proliferation.
Collapse
Affiliation(s)
- K Tsimaratou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Praetorius-Ibba M, Wang QE, Wani G, El-Mahdy MA, Zhu Q, Qin S, Wani AA. Role of Claspin in regulation of nucleotide excision repair factor DDB2. DNA Repair (Amst) 2006; 6:578-87. [PMID: 17196446 DOI: 10.1016/j.dnarep.2006.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
The replication checkpoint protein Claspin is important for maintenance of genomic stability and is required for cells to overcome genotoxic stress. Upon UV-induced DNA damage, Claspin is required for activation of the ATR-mediated DNA damage checkpoint response, leading to arrest of DNA replication and inhibition of cell cycle progression. Located at the DNA replication fork, Claspin is also suggested to monitor replication and sense damage. Our present studies in HeLa cells demonstrate associations between the Claspin/ATR-related DNA damage checkpoint response and the global genomic nucleotide excision repair pathway. siRNA-mediated knockdown of Claspin abolishes the UV-induced degradation of DDB2 and impairs the co-localization of DDB2 to DNA damage sites. Thus, the presence of Claspin is required for the total turnover of DNA damage binding protein DDB2, as well as for its functionality in DNA damage recognition. Claspin, however, seems not to be required for maintaining the cellular level of the NER factor XPC and its UV-induced post-translational modifications. Co-localization of XPC with DNA lesions is also intact in the absence of Claspin as is the repair of the UV-induced lesions CPD and 6-4PP. Claspin itself may be directly responsible for physical interaction between the two pathways since Claspin is able to associate with DDB1, DDB2 and XPC. Taken together, these findings reveal physical and functional interplay between Claspin and NER-related proteins and demonstrate crosstalk between the DNA damage checkpoint control and DNA damage repair pathways.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Radiology, The Ohio State University, Columbus, OH 43240, United States.
| | | | | | | | | | | | | |
Collapse
|
49
|
Chini CCS, Chen J. Repeated Phosphopeptide Motifs in Human Claspin Are Phosphorylated by Chk1 and Mediate Claspin Function. J Biol Chem 2006; 281:33276-82. [PMID: 16963448 DOI: 10.1074/jbc.m604373200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claspin is a checkpoint protein involved in ATR (ataxia telangiectasia mutated- and Rad3-related)-dependent Chk1 activation in Xenopus and human cells. In Xenopus, Claspin interacts with Chk1 after DNA damage through a region containing two highly conserved repeats, which becomes phosphorylated during the checkpoint response. Because this region is also conserved in human Claspin, we investigated the regulation and function of these potential phosphorylation sites in human Claspin. We found that Claspin is phosphorylated in vivo at Thr-916 in response to replication stress and UV damage. Mutation of these phosphorylation sites on Claspin inhibited Claspin-Chk1 interaction in vivo, impaired Chk1 activation, and induced premature chromatin condensation in cells, indicating a defect in replication checkpoint. In addition, we found that Thr-916 on Claspin is phosphorylated by Chk1, suggesting that Chk1 regulates Claspin during checkpoint response. These results together indicate that phosphorylation of Claspin repeats in human Claspin is important for Claspin function and the regulation of Claspin-Chk1 interaction in human cells.
Collapse
Affiliation(s)
- Claudia C S Chini
- Department of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
50
|
Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE, Pagano M. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 2006; 23:319-29. [PMID: 16885022 DOI: 10.1016/j.molcel.2006.06.013] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/23/2006] [Accepted: 06/01/2006] [Indexed: 11/20/2022]
Abstract
During replicative stress, Claspin mediates the phosphorylation and consequent activation of Chk1 by ATR. We found that during recovery from the DNA replication checkpoint response, Claspin is degraded in a betaTrCP-dependent manner. In vivo, Claspin is phosphorylated in a canonical DSGxxS degron sequence, which is typical of betaTrCP substrates. Phosphorylation of Claspin is mediated by Plk1 and is essential for binding to betaTrCP. In vitro ubiquitylation of Claspin requires betaTrCP, Plk1, and an intact DSGxxS degron. Significantly, expression of a stable Claspin mutant unable to bind betaTrCP prolongs the activation of Chk1, thereby attenuating the recovery from the DNA replication stress response and significantly delaying entry into mitosis. Thus, the SCFbetaTrCP-dependent degradation of Claspin is necessary for the efficient and timely termination of the DNA replication checkpoint. Importantly, in response to DNA damage in G2, Claspin proteolysis is inhibited to allow the prompt reestablishment of the checkpoint.
Collapse
Affiliation(s)
- Angelo Peschiaroli
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, MSB 599, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|