1
|
Li J, Amador C, Wilson MR. Computational predictions of interfacial tension, surface tension, and surfactant adsorption isotherms. Phys Chem Chem Phys 2024; 26:12107-12120. [PMID: 38587476 DOI: 10.1039/d3cp06170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
All-atom (AA) molecular dynamics (MD) simulations are employed to predict interfacial tensions (IFT) and surface tensions (ST) of both ionic and non-ionic surfactants. The general AMBER force field (GAFF) and variants are examined in terms of their performance in predicting accurate IFT/ST, γ, values for chosen water models, together with the hydration free energy, ΔGhyd, and density, ρ, predictions for organic bulk phases. A strong correlation is observed between the quality of ρ and γ predictions. Based on the results, the GAFF-LIPID force field, which provides improved ρ predictions is selected for simulating surfactant tail groups. Good γ predictions are obtained with GAFF/GAFF-LIPID parameters and the TIP3P water model for IFT simulations at a water-triolein interface, and for GAFF/GAFF-LIPID parameters together with the OPC4 water model for ST simulations at a water-vacuum interface. Using a combined molecular dynamics-molecular thermodynamics theory (MD-MTT) framework, a mole fraction of C12E6 molecule of 1.477 × 10-6 (from the experimental critical micelle concentration, CMC) gives a simulated surface excess concentration, ΓMAX, of 76 C12E6 molecules at a 36 nm2 water-vacuum surface (3.5 × 10-10 mol cm-2), which corresponds to a simulated ST of 35 mN m-1. The results compare favourably with an experimental ΓMAX of C12E6 of 3.7 × 10-10 mol cm-2 (80 surfactants for a 36 nm2 surface) and experimental ST of C12E6 of 32 mN m-1 at the CMC.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| | - Carlos Amador
- Newcastle Innovation Centre, Procter & Gamble Ltd, Newcastle Upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Gorshkova IN, Meyers NL, Herscovitz H, Mei X, Atkinson D. Human apoA-I[Lys107del] mutation affects lipid surface behavior of apoA-I and its ability to form large nascent HDL. J Lipid Res 2022; 64:100319. [PMID: 36525992 PMCID: PMC9926306 DOI: 10.1016/j.jlr.2022.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Population studies have found that a natural human apoA-I variant, apoA-I[K107del], is strongly associated with low HDL-C but normal plasma apoA-I levels. We aimed to reveal properties of this variant that contribute to its unusual phenotype associated with atherosclerosis. Our oil-drop tensiometry studies revealed that compared to WT, recombinant apoA-I[K107del] adsorbed to surfaces of POPC-coated triolein drops at faster rates, remodeled the surfaces to a greater extent, and was ejected from the surfaces at higher surface pressures on compression of the lipid drops. These properties may drive increased binding of apoA-I[K107del] to and its better retention on large triglyceride-rich lipoproteins, thereby increasing the variant's content on these lipoproteins. While K107del did not affect apoA-I capacity to promote ABCA1-mediated cholesterol efflux from J774 cells, it impaired the biogenesis of large nascent HDL particles resulting in the formation of predominantly smaller nascent HDL. Size-exclusion chromatography of spontaneously reconstituted 1,2-dimyristoylphosphatidylcholine-apoA-I complexes showed that apoA-I[K107del] had a hampered ability to form larger complexes but formed efficiently smaller-sized complexes. CD analysis revealed a reduced ability of apoA-I[K107del] to increase α-helical structure on binding to 1,2-dimyristoylphosphatidylcholine or in the presence of trifluoroethanol. This property may hinder the formation of large apoA-I[K107del]-containing discoidal and spherical HDL but not smaller HDL. Both factors, the increased content of apoA-I[K107del] on triglyceride-rich lipoproteins and the impaired ability of the variant to stabilize large HDL particles resulting in reduced lipid:protein ratios in HDL, may contribute to normal plasma apoA-I levels along with low HDL-C and increased risk for CVD.
Collapse
|
3
|
Meyers NL, Larsson M, Olivecrona G, Small DM. A Pressure-dependent Model for the Regulation of Lipoprotein Lipase by Apolipoprotein C-II. J Biol Chem 2015; 290:18029-18044. [PMID: 26026161 DOI: 10.1074/jbc.m114.629865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Apolipoprotein C-II (apoC-II) is the co-factor for lipoprotein lipase (LPL) at the surface of triacylglycerol-rich lipoproteins. LPL hydrolyzes triacylglycerol, which increases local surface pressure as surface area decreases and amphipathic products transiently accumulate at the lipoprotein surface. To understand how apoC-II adapts to these pressure changes, we characterized the behavior of apoC-II at multiple lipid/water interfaces. ApoC-II adsorption to a triacylglycerol/water interface resulted in large increases in surface pressure. ApoC-II was exchangeable at this interface and desorbed on interfacial compressions. These compressions increase surface pressure and mimic the action of LPL. Analysis of gradual compressions showed that apoC-II undergoes a two-step desorption, which indicates that lipid-bound apoC-II can exhibit at least two conformations. We characterized apoC-II at phospholipid/triacylglycerol/water interfaces, which more closely mimic lipoprotein surfaces. ApoC-II had a large exclusion pressure, similar to that of apoC-I and apoC-III. However, apoC-II desorbed at retention pressures higher than those seen with the other apoCs. This suggests that it is unlikely that apoC-I and apoC-III inhibit LPL via displacement of apoC-II from the lipoprotein surface. Upon rapid compressions and re-expansions, re-adsorption of apoC-II increased pressure by lower amounts than its initial adsorption. This indicates that apoC-II removed phospholipid from the interface upon desorption. These results suggest that apoC-II regulates the activity of LPL in a pressure-dependent manner. ApoC-II is provided as a component of triacylglycerol-rich lipoproteins and is the co-factor for LPL as pressure increases. Above its retention pressure, apoC-II desorbs and removes phospholipid. This triggers release of LPL from lipoproteins.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mikael Larsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden; Department of Medicine, UCLA, Los Angeles, California 90095
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
4
|
Handa D, Kimura H, Oka T, Takechi Y, Okuhira K, Phillips MC, Saito H. Kinetic and thermodynamic analyses of spontaneous exchange between high-density lipoprotein-bound and lipid-free apolipoprotein A-I. Biochemistry 2015; 54:1123-31. [PMID: 25564321 DOI: 10.1021/bi501345j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is thought that apolipoprotein A-I (apoA-I) spontaneously exchanges between high-density lipoprotein (HDL)-bound and lipid-free states, which is relevant to the occurrence of preβ-HDL particles in plasma. To improve our understanding of the mechanistic basis for this phenomenon, we performed kinetic and thermodynamic analyses for apoA-I exchange between discoidal HDL-bound and lipid-free forms using fluorescence-labeled apoA-I variants. Gel filtration experiments demonstrated that addition of excess lipid-free apoA-I to discoidal HDL particles promotes exchange of apoA-I between HDL-associated and lipid-free pools without alteration of the steady-state HDL particle size. Kinetic analysis of time-dependent changes in NBD fluorescence upon the transition of NBD-labeled apoA-I from HDL-bound to lipid-free state indicates that the exchange kinetics are independent of the collision frequency between HDL-bound and lipid-free apoA-I, in which the lipid binding ability of apoA-I affects the rate of association of lipid-free apoA-I with the HDL particles and not the rate of dissociation of HDL-bound apoA-I. Thus, C-terminal truncations or mutations that reduce the lipid binding affinity of apoA-I strongly impair the transition of lipid-free apoA-I to the HDL-bound state. Thermodynamic analysis of the exchange kinetics demonstrated that the apoA-I exchange process is enthalpically unfavorable but entropically favorable. These results explain the thermodynamic basis of the spontaneous exchange reaction of apoA-I associated with HDL particles. The altered exchangeability of dysfunctional apoA-I would affect HDL particle rearrangement, leading to perturbed HDL metabolism.
Collapse
Affiliation(s)
- Daisuke Handa
- Institute of Health Biosciences, Graduate School of Pharmaceutical Sciences, Tokushima University , 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Imura T, Tsukui Y, Taira T, Aburai K, Sakai K, Sakai H, Abe M, Kitamoto D. Surfactant-like properties of an amphiphilic α-helical peptide leading to lipid nanodisc formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4752-4759. [PMID: 24738727 DOI: 10.1021/la500267b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanodiscs are self-assembled discoidal nanoparticles composed of amphiphilic α-helical scaffold proteins or peptides that wrap themselves around the circumference of a lipid bilayer in a beltlike manner. In this study, an amphiphilic helical peptide that mimics helix 10 of human apoA-I was newly synthesized by solid phase peptide synthesis using Fmoc chemistry, and its physicochemical properties, including surface tension, self-association, and solubilization abilities, were evaluated and related directly to nanodisc formation. The synthesized peptide having hydrophobic and hydrophilic faces behaves like a general surfactant, affording a critical association concentration (CAC) of 2.7 × 10(-5) M and a γCAC of 51.2 mN m(-1) in aqueous solution. Interestingly, only a peptide solution above its CAC was able to microsolubilize L-α-dimyristoylphosphatidylcholine (DMPC) vesicles, and lipid nanodiscs with an average diameter of 9.5 ± 2.7 nm were observed by dynamic light scattering and negative stain transmission electron microscopy. Moreover, the ζ potentials of the lipid nanodiscs were measured for the first time as a function of pH, and the values changed from positive (20 mV) to negative (-30 mV). In particular, nanodisc solutions at acidic pH 4 (20 mV) or basic pH 9 (-20 mV) were found to be stable for more than 6 months as a result of the electrostatic repulsion between the particles.
Collapse
Affiliation(s)
- Tomohiro Imura
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang L, Mei X, Atkinson D, Small DM. Surface behavior of apolipoprotein A-I and its deletion mutants at model lipoprotein interfaces. J Lipid Res 2013; 55:478-92. [PMID: 24308948 DOI: 10.1194/jlr.m044743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | | | | | | |
Collapse
|
7
|
Meyers NL, Wang L, Gursky O, Small DM. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces. J Lipid Res 2013; 54:1927-38. [PMID: 23670531 DOI: 10.1194/jlr.m037531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
8
|
Mitsche MA, Small DM. Surface pressure-dependent conformation change of apolipoprotein-derived amphipathic α-helices. J Lipid Res 2013; 54:1578-1588. [PMID: 23528259 DOI: 10.1194/jlr.m034462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Amphipathic α-helices (AαH) are the primary structural motif of exchangeable apolipoproteins. AαHs in exchangeable apolipoproteins adsorb, remodel, and desorb at the surface of plasma lipoproteins in response to changes in their size or composition. A triolein/water (TO/W) interface was used as a model surface to study adsorption and desorption of AαHs at a lipoprotein-like interface. We previously reported that AαH peptides spontaneously adsorb to a TO/W interface, but they only partially desorb from the surface when the excess peptide was removed from the system. This finding suggests that "exchangeable" apolipoproteins are in fact partially exchangeable and only desorb from a surface in response to compression or change in composition. Here, we develop a thermodynamic and kinetic model to describe this phenomenon based on the change in the interfacial pressure (Π) of the C-terminal 46 amino acids of apolipoprotein A-I (C46) at a TO/W interface. This model suggests that apolipoproteins have at least two interfacial conformations that are in a surface concentration and Π-dependent equilibrium. This two-state surface equilibrium model, which is based on experimental data and is consistent with dynamic changes in Π(t), provides insights into the selective metabolism and clearance of plasma lipoproteins and the process of lipoprotein remodeling.
Collapse
Affiliation(s)
- Matthew A Mitsche
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA.
| | - Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| |
Collapse
|
9
|
Meyers NL, Wang L, Small DM. Apolipoprotein C-I binds more strongly to phospholipid/triolein/water than triolein/water interfaces: a possible model for inhibiting cholesterol ester transfer protein activity and triacylglycerol-rich lipoprotein uptake. Biochemistry 2012; 51:1238-48. [PMID: 22264166 DOI: 10.1021/bi2015212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein C-I (apoC-I) is an important constituent of high-density lipoprotein (HDL) and is involved in the accumulation of cholesterol ester in nascent HDL via inhibition of cholesterol ester transfer protein and potential activation of lecithin:cholesterol acyltransferase (LCAT). As the smallest exchangeable apolipoprotein (57 residues), apoC-I transfers between lipoproteins via a lipid-binding motif of two amphipathic α-helices (AαHs), spanning residues 7-29 and 38-52. To understand apoC-I's behavior at hydrophobic lipoprotein surfaces, oil drop tensiometry was used to compare the binding to triolein/water (TO/W) and palmitoyloleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. When apoC-I binds to either interface, the surface tension (γ) decreases by ~16-18 mN/m. ApoC-I can be exchanged at both interfaces, desorbing upon compression and readsorbing on expansion. The maximal surface pressures at which apoC-I begins to desorb (Π(max)) were 16.8 and 20.7 mN/m at TO/W and POPC/TO/W interfaces, respectively. This suggests that apoC-I interacts with POPC to increase its affinity for the interface. ApoC-I is more elastic on POPC/TO/W than TO/W interfaces, marked by higher values of the elasticity modulus (ε) on oscillations. At POPC/TO/W interfaces containing an increasing POPC:TO ratio, the pressure at which apoC-I begins to be ejected increases as the phospholipid surface concentration increases. The observed increase in apoC-I interface affinity due to higher degrees of apoC-I-POPC interactions may explain how apoC-I can displace larger apolipoproteins, such as apoE, from lipoproteins. These interactions allow apoC-I to remain bound to the interface at higher Π values, offering insight into apoC-I's rearrangement on triacylglycerol-rich lipoproteins as they undergo Π changes during lipoprotein maturation by plasma factors such as lipoprotein lipase.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
10
|
Wu Z, Gogonea V, Lee X, May RP, Pipich V, Wagner MA, Undurti A, Tallant TC, Baleanu-Gogonea C, Charlton F, Ioffe A, DiDonato JA, Rye KA, Hazen SL. The low resolution structure of ApoA1 in spherical high density lipoprotein revealed by small angle neutron scattering. J Biol Chem 2011; 286:12495-508. [PMID: 21292766 PMCID: PMC3069452 DOI: 10.1074/jbc.m110.209130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/29/2011] [Indexed: 01/22/2023] Open
Abstract
Spherical high density lipoprotein (sHDL), a key player in reverse cholesterol transport and the most abundant form of HDL, is associated with cardiovascular diseases. Small angle neutron scattering with contrast variation was used to determine the solution structure of protein and lipid components of reconstituted sHDL. Apolipoprotein A1, the major protein of sHDL, forms a hollow structure that cradles a central compact lipid core. Three apoA1 chains are arranged within the low resolution structure of the protein component as one of three possible global architectures: (i) a helical dimer with a hairpin (HdHp), (ii) three hairpins (3Hp), or (iii) an integrated trimer (iT) in which the three apoA1 monomers mutually associate over a portion of the sHDL surface. Cross-linking and mass spectrometry analyses help to discriminate among the three molecular models and are most consistent with the HdHp overall architecture of apoA1 within sHDL.
Collapse
Affiliation(s)
- Zhiping Wu
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Valentin Gogonea
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Xavier Lee
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Roland P. May
- the Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9, France
| | - Vitaliy Pipich
- the Jülich Center for Neutron Science at FRM II, Institut fur Festkörperforschung, Forschungszentrum Jülich, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Matthew A. Wagner
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Arundhati Undurti
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Thomas C. Tallant
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Camelia Baleanu-Gogonea
- From the Department of Cell Biology
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Francesca Charlton
- the Lipid Research Group, Heart Research Institute, Sydney, New South Wales 2042, Australia
| | - Alexander Ioffe
- the Jülich Center for Neutron Science at FRM II, Institut fur Festkörperforschung, Forschungszentrum Jülich, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Joseph A. DiDonato
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
| | - Kerry-Anne Rye
- the Lipid Research Group, Heart Research Institute, Sydney, New South Wales 2042, Australia
- the Faculty of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia, and
- the Department of Medicine, University of Melbourne, Victoria 3010, Australia
| | - Stanley L. Hazen
- From the Department of Cell Biology
- the Center for Cardiovascular Diagnostics and Prevention, and
- the Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| |
Collapse
|
11
|
Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 2010; 49:3898-907. [PMID: 20353182 PMCID: PMC2879024 DOI: 10.1021/bi100056v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Zhenghui Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Donald M. Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
12
|
Davidsson P, Hulthe J, Fagerberg B, Camejo G. Proteomics of apolipoproteins and associated proteins from plasma high-density lipoproteins. Arterioscler Thromb Vasc Biol 2009; 30:156-63. [PMID: 19778948 DOI: 10.1161/atvbaha.108.179317] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteomics studies have extended the list of identified apolipoproteins and associated proteins present in HDL and its subclasses. These proteins appear to cluster around specific functions related to lipid metabolism, inflammation, the immune system, hormone-binding, hemostasis, and antioxidant properties. Small studies suggest that there are substantial differences between the HDL proteome from cardiovascular disease patients and that from controls. Furthermore, dyslipidemia therapy shifts the HDL proteome from patients toward the profile observed in healthy controls. In addition, the proteome of HDL and LDL from patients with insulin resistance and peripheral atherosclerosis show significant differences with that of matched healthy controls. The proteome of HDL and LDL density subclasses have apolipoproteins and associated proteins profiles that suggest subclass-specific functions. However, proteomics studies of lipoproteins are few and small and should be interpreted with caution. Nonetheless rapid technical progress in proteomic platforms suggest that soon analysis time will be reduced and precise measurement of identified proteins will be possible. This, combined with controlled purification steps of HDL and its subclasses should provide further information about proteins involved in the particles postulated spectrum of functions, including those believed to be atheroprotective.
Collapse
|
13
|
Small DM, Wang L, Mitsche MA. The adsorption of biological peptides and proteins at the oil/water interface. A potentially important but largely unexplored field. J Lipid Res 2009; 50 Suppl:S329-34. [PMID: 19029067 PMCID: PMC3283257 DOI: 10.1194/jlr.r800083-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/21/2008] [Indexed: 11/20/2022] Open
Abstract
This review focuses on some new techniques to study the behavior of peptides and proteins bound to oil droplets. We will show how model peptides e.g., amphipathic alpha helices (AalphaH) and amphipathic beta strand (AbetaS) and some apolipoproteins adsorb to triacylglycerol (TAG) droplets and how they behave once adsorbed to the interface. While most of the studies described involve peptides and proteins at an oil/water interface, studies can also be carried out when the surface has been partially covered with phospholipids. This work is important because it examines biophysical changes that take place at lipid droplet interfaces and how this may relate to the metabolism of lipoproteins and lipid droplets.
Collapse
Affiliation(s)
- Donald M Small
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, W-302, Boston, MA 02118, USA.
| | | | | |
Collapse
|
14
|
Wang L, Martin DDO, Genter E, Wang J, McLeod RS, Small DM. Surface study of apoB1694-1880, a sequence that can anchor apoB to lipoproteins and make it nonexchangeable. J Lipid Res 2009; 50:1340-52. [PMID: 19251580 DOI: 10.1194/jlr.m900040-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The beta1 region (residues 827-1880) of apoB has a high amphipathic beta strand (AbetaS) content and is proposed to be one region anchoring apoB to lipoproteins. The AbetaS-rich region between apoB37 and apoB41 (residues 1694-1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37-41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37-41] was removed from the aqueous phase. Adsorbed apoB[37-41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37-41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by +/-13% of its area. On an A/W interface, the apoB[37-41] monolayer became solid when compressed to 4 mN/m pressure indicating extended beta-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AbetaS structure of apoB[37-41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mitsche MA, Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of a complex multi-domain 490 amino acid peptide derived from apolipoprotein B (residues 292-782). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2322-2330. [PMID: 19146422 DOI: 10.1021/la802663g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ApolipoproteinB (ApoB) is a lipid binding protein that is a nonexchangeable component of chylomicrons, VLDL, and LDL. In the liver and intestinal cells ApoB recruits lipid to form nascent triacylglycerol rich particles cotranslationally in the endoplasmic reticulum membrane which are then processed and secreted to form plasma lipoproteins. The N-terminal domain, which comprises the first 22% of apoB, recruits lipid in a controlled manner. The first 6% (residues 1-291) of the N-terminus does not bind lipid. The first lipid binding domain, including residues 292-782 (B6-17), forms a lipid binding pocket which is predicted to consist of 17 alpha-helices and 6 beta-strands. A structural model based on the X-ray structure of the homologues protein lipovitellin suggests that the N-terminal 6-8 helices and the beta-sheet interact with lipid while the C-terminal helices form a structural unit stabilizing the beta-sheet. Using isothermal drop tensiometry we showed that ApoB6.4-17 is surface active and binds to a triolein/water interface and exerts 16-19 mN/m of pressure (Pi) on that surface. The protein initially adsorbs slowly from aqueous solution to the surface but following compression and re-expansion it reaches equilibrium much faster. When Pi exceeds 16.9 mN/m part of the protein is ejected from the surface, but when compressed to high Pi the protein is never completely ejected indicating that part of the peptide is irreversibly anchored to the interface. The surface dilation modulus (epsilon) varies between 25-38 mN/m, and is predominantly elastic with a small viscous component. When compressed at an air/water interface ApoB6.4-17 has a limiting area of approximately 11 A2 per amino acid at lift off and only approximately 7 A2 per amino acid at the collapse Pi (28 mN/m). These values are about half the anticipated values if all the residues are at the surface. This suggests that ApoB6.4-17 retains some globular structure at an interface and does not completely denature at the surface, as many other globular proteins do. We suggest that while bound to the surface ApoB6.4-17 exhibits properties of both alpha and beta structure giving it unique and versatile characteristics at a hydrophobic interface.
Collapse
Affiliation(s)
- Matthew A Mitsche
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
16
|
Kono M, Okumura Y, Tanaka M, Nguyen D, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H. Conformational flexibility of the N-terminal domain of apolipoprotein a-I bound to spherical lipid particles. Biochemistry 2008; 47:11340-7. [PMID: 18831538 PMCID: PMC2667695 DOI: 10.1021/bi801503r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lipid binding of human apolipoprotein A-I (apoA-I) occurs initially through the C-terminal alpha-helices followed by conformational reorganization of the N-terminal helix bundle. This led us to hypothesize that apoA-I has multiple lipid-bound conformations, in which the N-terminal helix bundle adopts either open or closed conformations anchored by the C-terminal domain. To investigate such possible conformations of apoA-I at the surface of a spherical lipid particle, site-specific labeling of the N- and C-terminal helices in apoA-I by N-(1-pyrene)maleimide was employed after substitution of a Cys residue for Val-53 or Phe-229. Neither mutagenesis nor the pyrene labeling caused discernible changes in the lipid-free structure and lipid interaction of apoA-I. Taking advantage of a significant increase in fluorescence when a pyrene-labeled helix is in contact with the lipid surface, we monitored the behaviors of the N- and C-terminal helices upon binding of apoA-I to egg PC small unilamellar vesicles. Comparison of the binding isotherms for pyrene-labeled apoA-I as well as a C-terminal helical peptide suggests that an increase in surface concentration of apoA-I causes dissociation of the N-terminal helix from the surface leaving the C-terminal helix attached. Consistent with this, isothermal titration calorimetry measurements showed that the enthalpy of apoA-I binding to the lipid surface under near saturated conditions is much less exothermic than that for binding at a low surface concentration, indicating the N-terminal helix bundle is out of contact with lipid at high apoA-I surface concentrations. Interestingly, the presence of cholesterol significantly induces the open conformation of the helix bundle. These results provide insight into the multiple lipid-bound conformations that the N-terminal helix bundle of apoA-I can adopt on a lipid or lipoprotein particle, depending upon the availability of space on the surface and the surface composition.
Collapse
Affiliation(s)
- Momoe Kono
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Yusuke Okumura
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masafumi Tanaka
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - David Nguyen
- Division of GI/Nutrition/Hepatology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318
| | - Padmaja Dhanasekaran
- Division of GI/Nutrition/Hepatology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318
| | - Sissel Lund-Katz
- Division of GI/Nutrition/Hepatology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318
| | - Michael C. Phillips
- Division of GI/Nutrition/Hepatology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| |
Collapse
|
17
|
Surface rheology and adsorption kinetics reveal the relative amphiphilicity, interfacial activity, and stability of human exchangeable apolipoproteins. Biophys J 2007; 94:1735-45. [PMID: 17993480 DOI: 10.1529/biophysj.107.115220] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exchangeable apolipoproteins are located in the surface of lipoprotein particles and regulate lipid metabolism through direct protein-protein and protein-lipid interactions. These proteins are characterized by the presence of tandem repeats of amphiphatic alpha-helix segments and a high surface activity in monolayers and lipoprotein surfaces. A noteworthy aspect in the description of the function of exchangeable apolipoproteins is the requirement of a quantitative account of the relation between their physicochemical and structural characteristics and changes in the mesoscopic system parameters such as the maximum surface pressure and relative stability at interfaces. To comply with this demand, we set out to establish the relations among alpha-helix amphiphilicity, surface concentration, and surface rheology of apolipoproteins ApoA-I, ApoA-II, ApoC-I, ApoC-II, and ApoC-III adsorbed at the air-water interface. Our studies render further insights into the interfacial properties of exchangeable apolipoproteins, including the kinetics of their adsorption and the physical properties of the interfacial layer.
Collapse
|
18
|
Jiang ZG, Simon MN, Wall JS, McKnight CJ. Structural analysis of reconstituted lipoproteins containing the N-terminal domain of apolipoprotein B. Biophys J 2007; 92:4097-108. [PMID: 17369413 PMCID: PMC1868998 DOI: 10.1529/biophysj.106.101105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoproteins play a central role in lipoprotein metabolism, and are directly implicated in cardiovascular diseases, but their structural characterization has been complicated by their structural flexibility and heterogeneity. Here we describe the structural characterization of the N-terminal region of apolipoprotein B (apoB), the major protein component of very low-density lipoprotein and low-density lipoprotein, in the presence of phospholipids. Specifically, we focus on the N-terminal 6.4-17% of apoB (B6.4-17) complexed with the phospholipid dimyristoylphosphatidylcholine in vitro. In addition to circular dichroism spectroscopy and limited proteolysis, our strategy incorporates nanogold-labeling of the protein in the reconstituted lipoprotein complex followed by visualization and molecular weight determination with scanning transmission electron microscopy imaging. Based on the scanning transmission electron microscopy imaging analysis of approximately 1300 individual particles where the B6.4-17 is labeled with nanogold through a six-His tag, most complexes contain either two or three B6.4-17 molecules. Circular dichroism spectroscopy and limited proteolysis of these reconstituted particles indicate that there are no large conformational changes in B6.4-17 upon lipoprotein complex formation. This is in contrast to the large structural changes that occur during apolipoprotein A-I-lipid interactions. The method described here allows a direct measurement of the stoichiometry and molecular weight of individual particles, rather than the average of the entire sample. Thus, it represents a useful strategy to characterize the structure of lipoproteins, which are not structurally uniform, but can still be defined by an ensemble of related patterns.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Wang L, Walsh MT, Small DM. Apolipoprotein B is conformationally flexible but anchored at a triolein/water interface: a possible model for lipoprotein surfaces. Proc Natl Acad Sci U S A 2006; 103:6871-6. [PMID: 16636271 PMCID: PMC1458986 DOI: 10.1073/pnas.0602213103] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein B (apoB) is one of a unique group of proteins that form and bind to fat droplets, stabilize the emulsified fat, and direct their metabolism. ApoB, secreted on lipoproteins (emulsions), remains bound during lipid metabolism yet exhibits conformational flexibility. It has amphipathic beta-strand (AbetaS)-rich domains and amphipathic alpha-helix (AalphaH)-rich domains. We showed that two consensus AbetaS peptides of apoB bound strongly to hydrophobic interfaces [triolein/water (TO/W) and dodecane/water], were elastic, and were not pushed off the interface when the surface was compressed. In contrast, an AalphaH peptide modeling helical parts of apoB was forced off the TO/W interface by compression and readsorbed when the interface was expanded. In this report, the surface behavior of apoB-100 was studied at the TO/W interface. Solubilized apoB lowered the interfacial tension of TO/W in a concentration-dependent fashion. At equilibrium tension, if the surface was compressed, part of apoB was pushed off but quickly readsorbed when the surface was expanded. Even when the surface area was compressed by approximately 55%, part of the apoB molecule remained bound. The maximum surface pressure that apoB could withstand without being partially ejected was 13 mN/m. ApoB showed high elasticity at the TO/W interface. Based on studies of the consensus AbetaS and AalphaH peptides, we suggest that AbetaSs anchor apoB and are its nonexchangeable motif, whereas its conformational flexibility arises from both the elastic nature of the AbetaS and the ability of AalphaH domains of the molecule to desorb and readsorb rapidly in response to surface pressure changes.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Mary T. Walsh
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Donald M. Small
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W-302, Boston, MA 02118. E-mail:
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in structural studies of exchangeable human apolipoproteins and the insights they provide into lipoprotein action in cardiovascular and amyloid diseases. RECENT FINDINGS The high-resolution X-ray crystal structure of free apoA-II reveals a parallel helical array that may represent other lipid-poor apolipoproteins, and the structure in complex with detergent substantiates the belt model for the protein arrangement on lipoproteins. Nuclear magnetic resonance structures of apolipoprotein-detergent complexes show a repertoire of curved helical conformations, suggesting multiple helical arrangements on the lipid. Low-resolution spectroscopic analyses, interface studies and molecular modeling provide new insights into the 'hinge-domain' mechanism of apolipoprotein adaptation at variable lipoprotein surfaces. A kinetic mechanism for lipoprotein stabilization is proposed. SUMMARY Cumulative evidence supports the belt model that provides a general structural basis for understanding the molecular mechanisms of functional apolipoprotein reactions, such as binding to lipoprotein receptors, lipid transporters, and the activation of lipophilic enzymes. However, the detailed protein and lipid conformations on lipoproteins and the underlying molecular interactions are unclear. New insights will hopefully emerge once the first detailed lipoprotein structure is solved.
Collapse
Affiliation(s)
- Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, W329, Boston, Massachusetts 02118, USA.
| |
Collapse
|