1
|
Louati M, Ksiksi R, Elbini-Dhouib I, Mlayah-Bellalouna S, Doghri R, Srairi-Abid N, Zid MF. Synthesis, structure and characterization of a novel decavanadate, Mg(H2O)6(C4N2H7)4V10O28·4H2O, with a potential antitumor activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
ANS Interacts with the Ca 2+-ATPase Nucleotide Binding Site. J Fluoresc 2020; 30:483-496. [PMID: 32146650 DOI: 10.1007/s10895-020-02518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
The binding of 8-anilino-1-naphthalene sulfonate (ANS) to the nucleotide binding domain (N-domain) of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) was studied. Molecular docking predicted two ANS binding modes (BMI and BMII) in the nucleotide binding site. The molecular interaction was confirmed as the fluorescence intensity of ANS was dramatically increased when in the presence of an engineered recombinant N-domain. Molecular dynamics simulation showed BMI (which occupies the ATP binding site) as the mode that is stable in solution. The above was confirmed by the absence of ANS fluorescence in the presence of a fluorescein isothiocyanate (FITC)-labeled N-domain. Further, the labeling of the N-domain with FITC was hindered by the presence of ANS, i.e., ANS was bound to the ATP binding site. Importantly, ANS displayed a higher affinity than ATP. In addition, ANS binding led to quenching the N-domain intrinsic fluorescence displaying a FRET pattern, which suggested the existence of a Trp-ANS FRET couple. Nonetheless, the chemical modification of the sole Trp residue with N-bromosuccinimide (NBS) discarded the existence of FRET and instead indicated structural rearrangements in the nucleotide binding site during ANS binding. Finally, Ca2+-ATPase kinetics in the presence of ANS showed a partial mixed-type inhibition. The Dixon plot showed the ANS-Ca2+-ATPase complex as catalytically active, hence supporting the existence of a functional dimeric Ca2+-ATPase in sarcoplasmic reticulum vesicles. ANS may be used as a molecular platform for the development of more effective inhibitors of Ca2+-ATPase and appears to be a new fluorescent probe for the nucleotide binding site. Graphical Abstract Molecular docking of ANS to the nucleotide binding site of Ca2+-ATPase. ANS fluorescence increase reveals molecular interaction.
Collapse
|
3
|
Iatmanen-Harbi S, Senicourt L, Papadopoulos V, Lequin O, Lacapere JJ. Characterization of the High-Affinity Drug Ligand Binding Site of Mouse Recombinant TSPO. Int J Mol Sci 2019; 20:ijms20061444. [PMID: 30901938 PMCID: PMC6470738 DOI: 10.3390/ijms20061444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023] Open
Abstract
The optimization of translocator protein (TSPO) ligands for Positron Emission Tomography as well as for the modulation of neurosteroids is a critical necessity for the development of TSPO-based diagnostics and therapeutics of neuropsychiatrics and neurodegenerative disorders. Structural hints on the interaction site and ligand binding mechanism are essential for the development of efficient TSPO ligands. Recently published atomic structures of recombinant mammalian and bacterial TSPO1, bound with either the high-affinity drug ligand PK 11195 or protoporphyrin IX, have revealed the membrane protein topology and the ligand binding pocket. The ligand is surrounded by amino acids from the five transmembrane helices as well as the cytosolic loops. However, the precise mechanism of ligand binding remains unknown. Previous biochemical studies had suggested that ligand selectivity and binding was governed by these loops. We performed site-directed mutagenesis to further test this hypothesis and measured the binding affinities. We show that aromatic residues (Y34 and F100) from the cytosolic loops contribute to PK 11195 access to its binding site. Limited proteolytic digestion, circular dichroism and solution two-dimensional (2-D) NMR using selective amino acid labelling provide information on the intramolecular flexibility and conformational changes in the TSPO structure upon PK 11195 binding. We also discuss the differences in the PK 11195 binding affinities and the primary structure between TSPO (TSPO1) and its paralogous gene product TSPO2.
Collapse
Affiliation(s)
- Soria Iatmanen-Harbi
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Lucile Senicourt
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
4
|
Glaves JP, Primeau JO, Espinoza-Fonseca LM, Lemieux MJ, Young HS. The Phospholamban Pentamer Alters Function of the Sarcoplasmic Reticulum Calcium Pump SERCA. Biophys J 2019; 116:633-647. [PMID: 30712785 DOI: 10.1016/j.bpj.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/17/2022] Open
Abstract
The interaction of phospholamban (PLN) with the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump is a major regulatory axis in cardiac muscle contractility. The prevailing model involves reversible inhibition of SERCA by monomeric PLN and storage of PLN as an inactive pentamer. However, this paradigm has been challenged by studies demonstrating that PLN remains associated with SERCA and that the PLN pentamer is required for the regulation of cardiac contractility. We have previously used two-dimensional (2D) crystallization and electron microscopy to study the interaction between SERCA and PLN. To further understand this interaction, we compared small helical crystals and large 2D crystals of SERCA in the absence and presence of PLN. In both crystal forms, SERCA molecules are organized into identical antiparallel dimer ribbons. The dimer ribbons pack together with distinct crystal contacts in the helical versus large 2D crystals, which allow PLN differential access to potential sites of interaction with SERCA. Nonetheless, we show that a PLN oligomer interacts with SERCA in a similar manner in both crystal forms. In the 2D crystals, a PLN pentamer interacts with transmembrane segments M3 of SERCA and participates in a crystal contact that bridges neighboring SERCA dimer ribbons. In the helical crystals, an oligomeric form of PLN also interacts with M3 of SERCA, though the PLN oligomer straddles a SERCA-SERCA crystal contact. We conclude that the pentameric form of PLN interacts with M3 of SERCA and that it plays a distinct structural and functional role in SERCA regulation. The interaction of the pentamer places the cytoplasmic domains of PLN at the membrane surface proximal to the calcium entry funnel of SERCA. This interaction may cause localized perturbation of the membrane bilayer as a mechanism for increasing the turnover rate of SERCA.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Clausen JD, Bublitz M, Arnou B, Olesen C, Andersen JP, Møller JV, Nissen P. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase. Structure 2016; 24:617-623. [PMID: 27050689 DOI: 10.1016/j.str.2016.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/09/2016] [Accepted: 02/25/2016] [Indexed: 11/25/2022]
Abstract
Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Johannes D Clausen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Maike Bublitz
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark
| | - Bertrand Arnou
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark
| | - Claus Olesen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Jesper Vuust Møller
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Aarhus University, 8000 Aarhus, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
6
|
Xu X, Bošnjaković-Pavlović N, Čolović MB, Krstić DZ, Vasić VM, Gillet JM, Wu P, Wei Y, Spasojević-de Biré A. A combined crystallographic analysis and ab initio calculations to interpret the reactivity of functionalized hexavanadates and their inhibitor potency toward Na(+)/K(+)-ATPase. J Inorg Biochem 2016; 161:27-36. [PMID: 27235271 DOI: 10.1016/j.jinorgbio.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023]
Abstract
In vitro influence of five synthesized functionalized hexavanadates (V6) on commercial porcine cerebral cortex Na(+)/K(+)-ATPase activity has been studied. Dose dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated half maximal inhibitory concentration IC50 values, in mol/L, for Na(+)/K(+)-ATPase were 7.6×10(-5), 1.8×10(-5), 2.9×10(-5), 5.5×10(-5) for functionalized hexavanadates (V6) with tetrabutylammonium (TBA) [V6-CH3][TBA]2, [V6-NO2][TBA]2, [V6-OH][TBA]2 and [V6-C3][TBA]2 respectively. [V6-OH][Na]2 inhibited Na(+)/K(+)-ATPase activity up to 30% at maximal investigated concentration 1×10(-3)mol/L. This reactivity has been interpreted using a study of the non-covalent interactions of functionalized hexavanadate hybrids through Cambridge Structural Database (CSD) analysis. Bibliographic searching has led to 18 different structures and 99 contacts. We have observed that C-H⋯O contacts consolidate the structures. We have also performed density functional theory (DFT) calculations and have determined electrostatic potential values at the molecular surface on a series of functionalized V6. These results enlightened their chemical reactivity and their potential biological applications such as the inhibition of the ATPase.
Collapse
Affiliation(s)
- Xiao Xu
- Université Paris Saclay, CentraleSupélec, Campus de Châtenay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Grande Voie des Vignes, 92295 Châtenay-Malabry, France
| | | | - Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, Serbia
| | - Jean-Michel Gillet
- Université Paris Saclay, CentraleSupélec, Campus de Châtenay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Grande Voie des Vignes, 92295 Châtenay-Malabry, France
| | - Pingfan Wu
- Institute of POM-based Materials, The Synergistic Innovation Center of Catalysis Materials of Hubei Province, Hubei University of Technology, 430086 Wuhan, Hubei Province, P. R. China
| | - Yongge Wei
- Department of Chemistry, Tsinghua University, 100084 Beijing, P.R. China
| | - Anne Spasojević-de Biré
- Université Paris Saclay, CentraleSupélec, Campus de Châtenay, Grande Voie des Vignes, 92295 Châtenay-Malabry, France; CNRS, UMR 8580, Laboratory "Structures Propriétés et Modélisation des Solides" (SPMS), Grande Voie des Vignes, 92295 Châtenay-Malabry, France
| |
Collapse
|
7
|
Johnson MC, Dreaden TM, Kim LY, Rudolph F, Barry BA, Schmidt-Krey I. Two-dimensional crystallization of membrane proteins by reconstitution through dialysis. Methods Mol Biol 2013; 955:31-58. [PMID: 23132054 DOI: 10.1007/978-1-62703-176-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Studies of membrane proteins by two-dimensional (2D) crystallization and electron crystallography have provided crucial information on the structure and function of a rapidly growing number of these intricate proteins within a close-to-native lipid bilayer. Here we provide protocols for planning and executing 2D crystallization trials by detergent removal through dialysis, including the preparation of phospholipids and the dialysis setup. General factors to be considered, such as the protein preparation, solubilizing detergent, lipid for reconstitution, and buffer conditions are discussed. Several 2D crystallization conditions are highlighted that have shown great promise to grow 2D crystals within a surprisingly short amount of time. Finally, conditions for optimizing order and size of 2D crystals are outlined.
Collapse
Affiliation(s)
- Matthew C Johnson
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Autry JM, Rubin JE, Svensson B, Li J, Thomas DD. Nucleotide activation of the Ca-ATPase. J Biol Chem 2012; 287:39070-82. [PMID: 22977248 DOI: 10.1074/jbc.m112.404434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca(2+)-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca(2+)-free, Ca(2+)-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca(2+) binding (distal allostery) and phosphoenzyme formation (direct activation).
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
9
|
Hinsen K, Beaumont E, Fournier B, Lacapère JJ. From electron microscopy maps to atomic structures using normal mode-based fitting. Methods Mol Biol 2010; 654:237-258. [PMID: 20665270 DOI: 10.1007/978-1-60761-762-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electron microscopy (EM) has made possible to solve the structure of many proteins. However, the resolution of some of the EM maps is too low for interpretation at the atomic level, which is particularly important to describe function. We describe methods that combine low-resolution EM data with atomic structures for different conformations of the same protein in order to produce atomic models compatible with the EM map.We illustrate these methods with EM data from decavanadate-induced tubular crystals of a pseudo-phosphorylated intermediate of Ca-ATPase and the various atomic structures of other intermediates available in the Protein Data Bank (PDB). Determination of atomic structure permits not only to analyse protein-protein interactions in the crystals, but also to localize residues in the proximity of the crystallizing agent both within Ca-ATPase and between Ca-ATPase molecules.
Collapse
Affiliation(s)
- Konrad Hinsen
- Centre de Biophysique Moléculaire (CNRS), Orléans, France.
| | | | | | | |
Collapse
|
10
|
Abstract
Helical symmetry is commonly used for building macromolecular assemblies. Helical symmetry is naturally present in viruses and cytoskeletal filaments and also occurs during crystallization of isolated proteins, such as Ca-ATPase and the nicotinic acetyl choline receptor. Structure determination of helical assemblies by electron microscopy has a long history dating back to the original work on three-dimensional (3D) reconstruction. A helix offers distinct advantages for structure determination. Not only can one improve resolution by averaging across the constituent subunits, but each helical assembly provides multiple views of these subunits and thus provides a complete 3D data set. This review focuses on Fourier methods of helical reconstruction, covering the theoretical background, a step-by-step guide to the process, and a practical example based on previous work with Ca-ATPase. Given recent results from helical reconstructions at atomic resolution and the development of graphical user interfaces to aid in the process, these methods are likely to continue to make an important contribution to the field of structural biology.
Collapse
Affiliation(s)
- Ruben Diaz
- Cryo-electron Microscopy Facility, New York Structural Biology Center, New York, USA
| | | | | |
Collapse
|
11
|
Yamaguchi T, Fujii T, Abe Y, Hirai T, Kang D, Namba K, Hamasaki N, Mitsuoka K. Helical image reconstruction of the outward-open human erythrocyte band 3 membrane domain in tubular crystals. J Struct Biol 2009; 169:406-12. [PMID: 20005958 DOI: 10.1016/j.jsb.2009.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022]
Abstract
The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface.
Collapse
|
12
|
Wu CC, Rice WJ, Stokes DL. Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 2008; 16:976-85. [PMID: 18547529 DOI: 10.1016/j.str.2008.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 01/15/2023]
Abstract
P-type ATPases play an important role in Cu homeostasis, which provides sufficient Cu for metalloenzyme biosynthesis but prevents oxidative damage of free Cu to the cell. The P(IB) group of P-type ATPases includes ATP-dependent pumps of Cu and other transition metal ions, and it is distinguished from other family members by the presence of N-terminal metal-binding domains (MBD). We have determined structures of two constructs of a Cu pump from Archaeoglobus fulgidus (CopA) by cryoelectron microscopy of tubular crystals, which reveal the overall architecture and domain organization of the molecule. By comparing these structures, we localized its N-terminal MBD within the cytoplasmic domains that use ATP hydrolysis to drive the transport cycle. We have built a pseudoatomic model by fitting existing crystallographic structures into the cryoelectron microscopy maps for CopA, which suggest a Cu-dependent regulatory role for the MBD.
Collapse
Affiliation(s)
- Chen-Chou Wu
- Skirball Institute of Biomolecular Medicine, School of Medicine, New York University, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
13
|
McIntosh DB, Montigny C, Champeil P. Unexpected phosphoryl transfer from Asp351 to fluorescein attached to Lys515 in sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 2008; 47:6386-93. [PMID: 18500824 DOI: 10.1021/bi800290q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sarcoplasmic reticulum Ca(2+)-ATPase is an ion pump whose catalytic cycle includes the transient formation of an acyl phosphate at Asp(351), and fluorescein isothiocyanate is a covalent inhibitor of ATP binding to this pump, known to specifically derivatize Lys(515) in the nucleotide-binding site. It was previously found that an unusually stable, phosphorylated form of fluorescein-ATPase, with low fluorescence, is obtained following Ca (2+) loading with acetyl phosphate as energy source and then chelation with EGTA of Ca(2+) on the cytosolic side. Here we show that the phospho-linkage in this low fluorescent species is stable at alkaline pH, unlike the acyl phosphate at Asp(351). Moreover, the low fluorescence and stable phosphoryl group track together in primary and secondary tryptic subfragments, separated by SDS-PAGE after denaturation. Finally, normal fluorescence and absorbance are recovered upon treatment with alkaline phosphatase after extensive trypsinolysis. We conclude that the low fluorescent species is the result of the phosphoryl group being transferred from Asp (351) to the fluorescein moiety during pump reversal, yielding fluorescein monophosphate tethered to Ca(2+)-ATPase.
Collapse
Affiliation(s)
- David B McIntosh
- Institute of Infectious Diseases and Molecular Medicine, Division of Chemical Pathology, and National Health Laboratory Services, University of Cape Town, South Africa.
| | | | | |
Collapse
|
14
|
González DA, Ostuni MA, Lacapère JJ, Alonso GL. Stoichiometry of ATP and metal cofactor interaction with the sarcoplasmic reticulum Ca(2+)-ATPase: a binding model accounting for radioisotopic and fluorescence results. Biophys Chem 2006; 124:27-34. [PMID: 16784803 DOI: 10.1016/j.bpc.2006.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/21/2006] [Indexed: 11/15/2022]
Abstract
Sarcoplasmic reticulum Ca-ATPase belongs to the P-type ATPases family and transports calcium at the expense of ATP hydrolysis. For years, a complex pattern of activity has been observed as a function of ATP and metal cofactor concentrations, leaving the stoichiometry of both metal and ATP in the active site as an open question. In agreement with recent structural studies we present here-using Mn as analogue of Mg-radioisotopic and fluorescence results showing that two metal ions bind to the Ca-ATPase favoring ATP binding. We further show that low ATP concentration favors the binding of these ions, whereas high ATP concentration is inhibitory. We propose a binding model for ATP and metal ions, which permits simulation of our data. Finally, we suggest that (i) the contribution of two metal ions as cofactors of ATP is essential to get maximal activity; (ii) the contribution of two ATP molecules can activate or inhibit the Ca-ATPase depending on metal concentration.
Collapse
Affiliation(s)
- Débora A González
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, M.T. De Alvear 2142 (C1122AAH) Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
15
|
Pomfret AJ, Rice WJ, Stokes DL. Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. J Struct Biol 2006; 157:106-16. [PMID: 16879984 PMCID: PMC4040983 DOI: 10.1016/j.jsb.2006.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods.
Collapse
Affiliation(s)
- Andrew J Pomfret
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|