1
|
Strandberg H, Hagströmer CJ, Werin B, Wendler M, Johanson U, Törnroth-Horsefield S. Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins. Int J Mol Sci 2024; 25:7672. [PMID: 39062914 PMCID: PMC11277499 DOI: 10.3390/ijms25147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden; (H.S.); (C.J.H.); (B.W.); (M.W.); (U.J.)
| |
Collapse
|
2
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
3
|
Barros P, Matos AM, Matos P, Jordan P. YES1 Kinase Mediates the Membrane Removal of Rescued F508del-CFTR in Airway Cells by Promoting MAPK Pathway Activation via SHC1. Biomolecules 2023; 13:949. [PMID: 37371529 DOI: 10.3390/biom13060949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Recent developments in CFTR modulator drugs have had a significant transformational effect on the treatment of individuals with Cystic Fibrosis (CF) who carry the most frequent F508del-CFTR mutation in at least one allele. However, the clinical effects of these revolutionary drugs remain limited by their inability to fully restore the plasma membrane (PM) stability of the rescued mutant channels. Here, we shed new light on the molecular mechanisms behind the reduced half-life of rescued F508del-CFTR at the PM of airway cells. We describe that YES1 protein kinase is enriched in F508del-CFTR protein PM complexes, and that its interaction with rescued channels is mediated and dependent on the adaptor protein YAP1. Moreover, we show that interference with this complex, either by depletion of one of these components or inhibiting YES1 activity, is sufficient to significantly improve the abundance and stability of modulator-rescued F508del-CFTR at the surface of airway cells. In addition, we found that this effect was mediated by a decreased phosphorylation of the scaffold protein SHC1, a key regulator of MAPK pathway activity. In fact, we showed that depletion of SHC1 or inhibition of MAPK pathway signaling was sufficient to improve rescued F508del-CFTR surface levels, whereas an ectopic increase in pathway activation downstream of SHC1, through the use of a constitutively active H-RAS protein, abrogated the stabilizing effect of YES1 inhibition on rescued F508del-CFTR. Taken together, our findings not only provide new mechanistic insights into the regulation of modulator-rescued F508del-CFTR membrane stability, but also open exciting new avenues to be further explored in CF research and treatment.
Collapse
Affiliation(s)
- Patrícia Barros
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Ana M Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Peter Jordan
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
5
|
Hieu DQ, Hang BTB, Lokesh J, Garigliany MM, Huong DTT, Yen DT, Liem PT, Tam BM, Hai DM, Son VN, Phuong NT, Farnir F, Kestemont P. Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles. Appl Microbiol Biotechnol 2022; 106:3245-3264. [PMID: 35366085 DOI: 10.1007/s00253-022-11895-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
In the present study, juvenile striped catfish (Pangasianodon hypophthalmus), a freshwater fish species, have been chronically exposed to a salinity gradient from freshwater to 20 psu (practical salinity unit) and were sampled at the beginning (D20) and the end (D34) of exposure. The results revealed that the intestinal microbial profile of striped catfish reared in freshwater conditions were dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Alpha diversity measures (observed OTUs (operational taxonomic units), Shannon and Faith's PD (phylogenetic diversity)) showed a decreasing pattern as the salinities increased, except for the phylogenetic diversity at D34, which was showing an opposite trend. Furthermore, the beta diversity between groups was significantly different. Vibrio and Akkermansia genera were affected differentially with increasing salinity, the former being increased while the latter was decreased. The genus Sulfurospirillium was found predominantly in fish submitted to salinity treatments. Regarding the host response, the fish intestine likely contributed to osmoregulation by modifying the expression of osmoregulatory genes such as nka1a, nka1b, slc12a1, slc12a2, cftr, and aqp1, especially in fish exposed to 15 and 20 psu. The expression of heat shock proteins (hsp) hsp60, hsp70, and hsp90 was significantly increased in fish reared in 15 and 20 psu. On the other hand, the expression of pattern recognition receptors (PRRs) were inhibited in fish exposed to 20 psu at D20. In conclusion, the fish intestinal microbiota was significantly disrupted in salinities higher than 10 psu and these effects were proportional to the exposure time. In addition, the modifications of intestinal gene expression related to ion exchange and stressful responses may help the fish to adapt hyperosmotic environment. KEY POINTS: • It is the first study to provide detailed information on the gut microbiota of fish using the amplicon sequencing method. • Salinity environment significantly modified the intestinal microbiota of striped catfish. • Intestinal responses may help the fish adapt to hyperosmotic environment.
Collapse
Affiliation(s)
- Dang Quang Hieu
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Jep Lokesh
- Université de Pau Et Des Pays de L'Adour, Saint-Pee-sur-Nivelle, E2S UPPA, INRAE, NuMéA, France
| | - Mutien-Marie Garigliany
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Dao Minh Hai
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam.,Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Vo Nam Son
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frédéric Farnir
- Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Liege, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| |
Collapse
|
6
|
CFTR Lifecycle Map-A Systems Medicine Model of CFTR Maturation to Predict Possible Active Compound Combinations. Int J Mol Sci 2021; 22:ijms22147590. [PMID: 34299207 PMCID: PMC8306775 DOI: 10.3390/ijms22147590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Different causative therapeutics for CF patients have been developed. There are still no mutation-specific therapeutics for some patients, especially those with rare CFTR mutations. For this purpose, high-throughput screens have been performed which result in various candidate compounds, with mostly unclear modes of action. In order to elucidate the mechanism of action for promising candidate substances and to be able to predict possible synergistic effects of substance combinations, we used a systems biology approach to create a model of the CFTR maturation pathway in cells in a standardized, human- and machine-readable format. It is composed of a core map, manually curated from small-scale experiments in human cells, and a coarse map including interactors identified in large-scale efforts. The manually curated core map includes 170 different molecular entities and 156 reactions from 221 publications. The coarse map encompasses 1384 unique proteins from four publications. The overlap between the two data sources amounts to 46 proteins. The CFTR Lifecycle Map can be used to support the identification of potential targets inside the cell and elucidate the mode of action for candidate substances. It thereby provides a backbone to structure available data as well as a tool to develop hypotheses regarding novel therapeutics.
Collapse
|
7
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
8
|
Mamonova T, Friedman PA. Noncanonical Sequences Involving NHERF1 Interaction with NPT2A Govern Hormone-Regulated Phosphate Transport: Binding Outside the Box. Int J Mol Sci 2021; 22:1087. [PMID: 33499384 PMCID: PMC7866199 DOI: 10.3390/ijms22031087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.
Collapse
Affiliation(s)
- Tatyana Mamonova
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | | |
Collapse
|
9
|
Role of Transportome in the Gills of Chinese Mitten Crabs in Response to Salinity Change: A Meta-Analysis of RNA-Seq Datasets. BIOLOGY 2021; 10:biology10010039. [PMID: 33430106 PMCID: PMC7827906 DOI: 10.3390/biology10010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chinese mitten crab (CMC) or Eriocheir sinensis is a strong osmoregulator that can keep rigorous cellular homeostasis. CMC can flourish in freshwater, as well as seawater, habitats and represents the most important species for freshwater aquaculture. Salt stress can have direct effects on several stages (e.g., reproduction, molting, growth, etc.) of the CMC life cycle. To get a better overview of the genes involved in the gills of CMC under different salinity conditions, we conducted an RNA-Seq meta-analysis on the transcriptomes of four publicly available datasets. The meta-analysis identified 405 differentially expressed transcripts (DETs), of which 40% were classified into various transporter classes, including accessory factors and primary active transporters as the major transport classes. A network analysis of the DETs revealed that adaptation to salinity is a highly regulated mechanism in which different functional modules play essential roles. To the best of our knowledge, this study is the first to conduct a transcriptome meta-analysis of gills from crab RNA-Seq datasets under salinity. Additionally, this study is also the first to focus on the differential expression of diverse transporters and channels (transportome) in CMC. Our meta-analysis opens new avenues for a better understanding of the osmoregulation mechanism and the selection of potential transporters associated with salinity change.
Collapse
|
10
|
Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 2020; 477:2561-2580. [PMID: 32573649 DOI: 10.1042/bcj20200287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Collapse
|
11
|
Fougere B, Barnes KR, Francis ME, Claus LN, Cozzi RRF, Marshall WS. Focal adhesion kinase and osmotic responses in ionocytes of Fundulus heteroclitus, a euryhaline teleost fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110639. [PMID: 31863842 DOI: 10.1016/j.cbpa.2019.110639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022]
Abstract
Cystic Fibrosis Transmembrane conductance Regulator (CFTR) anion channels are the regulated exit pathway in Cl- secretion by teleost salt secreting ionocytes of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase Focal Adhesion Kinase (FAK) phosphorylated at Y407 (FAKpY407) and FAKpY397 are colocalized at the apical membrane and in subjacent membrane vesicles of ionocytes. Hypotonic shock and the α-2 adrenergic agonist clonidine rapidly and reversibly inhibit Cl- secretion by isolated opercular epithelia, simultaneous with dephosphorylation of FAKpY407 and increased FAKpY397, located in the apical membrane of ionocytes in the opercular epithelium. FAKpY407 is re-phosphorylated at the apical membrane of ionocytes and Cl- secretion rapidly restored by hypertonic shock, detectable at 2 min., maximum at 5 min and still elevated at 30 min. In isolated opercular epithelia, the FAK phosphorylation inhibitor Y15 and p38MAP kinase inhibitor SB203580 significantly blunted the recovery of short-circuit current (Isc, equal to Cl- secretion rate) after hypertonic shock. The cSRC inhibitor saracatinib dephosphorylated FAKpY861 seen near tight junctions of pavement cells, and reduced the increase in epithelial resistance normally seen with clonidine inhibition of ion transport, while FAKpY397 was unaffected. The results show rapid osmosensitive responses in teleost fish ionocytes involve phosphorylation of CFTR by FAKpY407, an opposing role for FAKpY397 and a possible role for FAKpY861 in tight junction dynamics.
Collapse
Affiliation(s)
- Breton Fougere
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Katelyn R Barnes
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Magen E Francis
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Lauren N Claus
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia B2G 2W5, Canada.
| |
Collapse
|
12
|
Matos AM, Pinto FR, Barros P, Amaral MD, Pepperkok R, Matos P. Inhibition of calpain 1 restores plasma membrane stability to pharmacologically rescued Phe508del-CFTR variant. J Biol Chem 2019; 294:13396-13410. [PMID: 31324722 PMCID: PMC6737230 DOI: 10.1074/jbc.ra119.008738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/01/2019] [Indexed: 07/30/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding CF transmembrane conductance regulator (CFTR), a chloride channel normally expressed at the surface of epithelial cells. The most frequent mutation, resulting in Phe-508 deletion, causes CFTR misfolding and its premature degradation. Low temperature or pharmacological correctors can partly rescue the Phe508del-CFTR processing defect and enhance trafficking of this channel variant to the plasma membrane (PM). Nevertheless, the rescued channels have an increased endocytosis rate, being quickly removed from the PM by the peripheral protein quality-control pathway. We previously reported that rescued Phe508del-CFTR (rPhe508del) can be retained at the cell surface by stimulating signaling pathways that coax the adaptor molecule ezrin (EZR) to tether rPhe508del-Na+/H+-exchange regulatory factor-1 complexes to the actin cytoskeleton, thereby averting the rapid internalization of this channel variant. However, the molecular basis for why rPhe508del fails to recruit active EZR to the PM remains elusive. Here, using a proteomics approach, we characterized and compared the core components of wt-CFTR- or rPhe508del-containing macromolecular complexes at the surface of human bronchial epithelial cells. We identified calpain 1 (CAPN1) as an exclusive rPhe508del interactor that prevents active EZR recruitment, impairs rPhe508del anchoring to actin, and reduces its stability in the PM. We show that either CAPN1 down-regulation or its chemical inhibition dramatically improves the functional rescue of Phe508del-CFTR in airway cells. These observations suggest that CAPN1 constitutes an appealing target for pharmacological intervention, as part of CF combination therapies restoring Phe508del-CFTR function.
Collapse
Affiliation(s)
- Ana M Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Francisco R Pinto
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit and Advanced Light Microscopy Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal; University of Lisboa, Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, 1749-016 Lisboa, Portugal.
| |
Collapse
|
13
|
Bhattacharya S, Stanley CB, Heller WT, Friedman PA, Bu Z. Dynamic structure of the full-length scaffolding protein NHERF1 influences signaling complex assembly. J Biol Chem 2019; 294:11297-11310. [PMID: 31171716 PMCID: PMC6643037 DOI: 10.1074/jbc.ra119.008218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
The Na+/H+ exchange regulatory cofactor 1 (NHERF1) protein modulates the assembly and intracellular trafficking of several transmembrane G protein-coupled receptors (GPCRs) and ion transport proteins with the membrane-cytoskeleton adapter protein ezrin. Here, we applied solution NMR and small-angle neutron scattering (SANS) to structurally characterize full-length NHERF1 and disease-associated variants that are implicated in impaired phosphate homeostasis. Using NMR, we mapped the modular architecture of NHERF1, which is composed of two structurally-independent PDZ domains that are connected by a flexible, disordered linker. We observed that the ultra-long and disordered C-terminal tail of NHERF1 has a type 1 PDZ-binding motif that interacts weakly with the proximal, second PDZ domain to form a dynamically autoinhibited structure. Using ensemble-optimized analysis of SANS data, we extracted the molecular size distribution of structures from the extensive conformational space sampled by the flexible chain. Our results revealed that NHERF1 is a diffuse ensemble of variable PDZ domain configurations and a disordered C-terminal tail. The joint NMR/SANS data analyses of three disease variants (L110V, R153Q, and E225K) revealed significant differences in the local PDZ domain structures and in the global conformations compared with the WT protein. Furthermore, we show that the substitutions affect the affinity and kinetics of NHERF1 binding to ezrin and to a C-terminal peptide from G protein-coupled receptor kinase 6A (GRK6A). These findings provide important insight into the modulation of the intrinsic flexibility of NHERF1 by disease-associated point mutations that alter the dynamic assembly of signaling complexes.
Collapse
Affiliation(s)
| | - Christopher B Stanley
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031
| |
Collapse
|
14
|
Zhang Q, Xiao K, Paredes JM, Mamonova T, Sneddon WB, Liu H, Wang D, Li S, McGarvey JC, Uehling D, Al-Awar R, Joseph B, Jean-Alphonse F, Orte A, Friedman PA. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J Biol Chem 2019; 294:4546-4571. [PMID: 30696771 PMCID: PMC6433080 DOI: 10.1074/jbc.ra119.007421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/30/2022] Open
Abstract
Na+-H+ exchanger regulatory factor-1 (NHERF1) is a PDZ protein that scaffolds membrane proteins, including sodium-phosphate co-transport protein 2A (NPT2A) at the plasma membrane. NHERF1 is a phosphoprotein with 40 Ser and Thr residues. Here, using tandem MS analysis, we characterized the sites of parathyroid hormone (PTH)-induced NHERF1 phosphorylation and identified 10 high-confidence phosphorylation sites. Ala replacement at Ser46, Ser162, Ser181, Ser269, Ser280, Ser291, Thr293, Ser299, and Ser302 did not affect phosphate uptake, but S290A substitution abolished PTH-dependent phosphate transport. Unexpectedly, Ser290 was rapidly dephosphorylated and rephosphorylated after PTH stimulation, and we found that protein phosphatase 1α (PP1α), which binds NHERF1 through a conserved VxF/W PP1 motif, dephosphorylates Ser290 Mutating 257VPF259 eliminated PP1 binding and blunted dephosphorylation. Tautomycetin blocked PP1 activity and abrogated PTH-sensitive phosphate transport. Using fluorescence lifetime imaging (FLIM), we observed that PTH paradoxically and transiently elevates intracellular phosphate. Added phosphate blocked PP1α-mediated Ser290 dephosphorylation of recombinant NHERF1. Hydrogen-deuterium exchange MS revealed that β-sheets in NHERF1's PDZ2 domain display lower deuterium uptake than those in the structurally similar PDZ1, implying that PDZ1 is more cloistered. Dephosphorylated NHERF1 exhibited faster exchange at C-terminal residues suggesting that NHERF1 dephosphorylation precedes Ser290 rephosphorylation. Our results show that PP1α and NHERF1 form a holoenzyme and that a multiprotein kinase cascade involving G protein-coupled receptor kinase 6A controls the Ser290 phosphorylation status of NHERF1 and regulates PTH-sensitive, NPT2A-mediated phosphate uptake. These findings reveal how reversible phosphorylation modifies protein conformation and function and the biochemical mechanisms underlying PTH control of phosphate transport.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology.,Vascular Medicine Institute, and.,Biomedical Mass Spectrometry Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - José M Paredes
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Tatyana Mamonova
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Dawei Wang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Sheng Li
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - David Uehling
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Babu Joseph
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Angel Orte
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, .,Department of Structural Biology
| |
Collapse
|
15
|
Liu X, Fuentes EJ. Emerging Themes in PDZ Domain Signaling: Structure, Function, and Inhibition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 343:129-218. [PMID: 30712672 PMCID: PMC7185565 DOI: 10.1016/bs.ircmb.2018.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-synaptic density-95, disks-large and zonula occludens-1 (PDZ) domains are small globular protein-protein interaction domains widely conserved from yeast to humans. They are composed of ∼90 amino acids and form a classical two α-helical/six β-strand structure. The prototypical ligand is the C-terminus of partner proteins; however, they also bind internal peptide sequences. Recent findings indicate that PDZ domains also bind phosphatidylinositides and cholesterol. Through their ligand interactions, PDZ domain proteins are critical for cellular trafficking and the surface retention of various ion channels. In addition, PDZ proteins are essential for neuronal signaling, memory, and learning. PDZ proteins also contribute to cytoskeletal dynamics by mediating interactions critical for maintaining cell-cell junctions, cell polarity, and cell migration. Given their important biological roles, it is not surprising that their dysfunction can lead to multiple disease states. As such, PDZ domain-containing proteins have emerged as potential targets for the development of small molecular inhibitors as therapeutic agents. Recent data suggest that the critical binding function of PDZ domains in cell signaling is more than just glue, and their binding function can be regulated by phosphorylation or allosterically by other binding partners. These studies also provide a wealth of structural and biophysical data that are beginning to reveal the physical features that endow this small modular domain with a central role in cell signaling.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Ernesto J. Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
- Corresponding author: E-mail:
| |
Collapse
|
16
|
Puglia M, Landi C, Gagliardi A, Breslin L, Armini A, Brunetti J, Pini A, Bianchi L, Bini L. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease. J Proteomics 2018; 170:28-42. [DOI: 10.1016/j.jprot.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 01/04/2023]
|
17
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
18
|
Broadbent D, Ahmadzai MM, Kammala AK, Yang C, Occhiuto C, Das R, Subramanian H. Roles of NHERF Family of PDZ-Binding Proteins in Regulating GPCR Functions. Adv Immunol 2017; 136:353-385. [PMID: 28950951 DOI: 10.1016/bs.ai.2017.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multicellular organisms are equipped with an array of G-protein-coupled receptors (GPCRs) that mediate cell-cell signaling allowing them to adapt to environmental cues and ultimately survive. This is mechanistically possible through complex intracellular GPCR machinery that encompasses a vast network of proteins. Within this network, there is a group called scaffolding proteins that facilitate proper localization of signaling proteins for a quick and robust GPCR response. One protein family within this scaffolding group is the PSD-95/Dlg/ZO-1 (PDZ) family which is important for GPCR localization, internalization, recycling, and downstream signaling. Although the PDZ family of proteins regulate the functions of several receptors, this chapter focuses on a subfamily within the PDZ protein family called the Na+/H+ exchanger regulatory factors (NHERFs). Here we extensively review the predominantly characterized roles of NHERFs in renal phosphate absorption, intestinal ion regulation, cancer progression, and immune cell functions. Finally, we discuss the future perspectives and possible clinical application of targeting NHERFs in several disorders.
Collapse
Affiliation(s)
| | | | | | - Canchai Yang
- Michigan State University, East Lansing, MI, United States
| | | | - Rupali Das
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
19
|
Callaway DJE, Matsui T, Weiss T, Stingaciu LR, Stanley CB, Heller WT, Bu Z. Controllable Activation of Nanoscale Dynamics in a Disordered Protein Alters Binding Kinetics. J Mol Biol 2017; 429:987-998. [PMID: 28285124 DOI: 10.1016/j.jmb.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The "tip of the whip" that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the binding of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.
Collapse
Affiliation(s)
- David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, CUNY, New York, NY 10031, USA.
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, CA 94025, USA
| | - Thomas Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, CA 94025, USA
| | - Laura R Stingaciu
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Christopher B Stanley
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, CUNY, New York, NY 10031, USA.
| |
Collapse
|
20
|
Callaway DJ, Bu Z. Visualizing the nanoscale: protein internal dynamics and neutron spin echo spectroscopy. Curr Opin Struct Biol 2016; 42:1-5. [PMID: 27756047 DOI: 10.1016/j.sbi.2016.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The most complex molecular machines are proteins found within cells. Protein dynamics, in particular dynamics on nanoscales, presents us with a novel paradigm for cell signaling: the idea that proteins and protein complexes can communicate directly within themselves to effect long-range information transfer, via coupled domains and correlated residue clusters. This idea has been little explored, in large part because of a paucity of experimental techniques that can address the necessary questions. Here we review recent progress in developing a promising new approach, neutron spin echo spectroscopy.
Collapse
Affiliation(s)
- David Je Callaway
- Department of Chemistry and Biochemistry, City College of New York, PhD Programs in Chemistry and Biochemistry, CUNY, United States
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, PhD Programs in Chemistry and Biochemistry, CUNY, United States.
| |
Collapse
|
21
|
Lobo MJ, Amaral MD, Zaccolo M, Farinha CM. EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1. J Cell Sci 2016; 129:2599-612. [PMID: 27206858 DOI: 10.1242/jcs.185629] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/17/2016] [Indexed: 01/14/2023] Open
Abstract
Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Miguel J Lobo
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, Lisboa 1749-016, Portugal
| |
Collapse
|
22
|
Abbattiscianni AC, Favia M, Mancini MT, Cardone RA, Guerra L, Monterisi S, Castellani S, Laselva O, Di Sole F, Conese M, Zaccolo M, Casavola V. Correctors of mutant CFTR enhance subcortical cAMP-PKA signaling through modulating ezrin phosphorylation and cytoskeleton organization. J Cell Sci 2016; 129:1128-40. [PMID: 26823603 DOI: 10.1242/jcs.177907] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022] Open
Abstract
The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.
Collapse
Affiliation(s)
- Anna C Abbattiscianni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Maria T Mancini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Rosa A Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Onofrio Laselva
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| | - Francesca Di Sole
- Physiology and Pharmacology Department, Des Moines University, Des Moines, IA 50312, USA
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70126, Italy
| |
Collapse
|
23
|
Essential Strategies for Revealing Nanoscale Protein Dynamics by Neutron Spin Echo Spectroscopy. Methods Enzymol 2016; 566:253-70. [DOI: 10.1016/bs.mie.2015.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
25
|
Loureiro CA, Matos AM, Dias-Alves Â, Pereira JF, Uliyakina I, Barros P, Amaral MD, Matos P. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci Signal 2015; 8:ra48. [PMID: 25990958 DOI: 10.1126/scisignal.aaa1580] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.
Collapse
Affiliation(s)
- Cláudia A Loureiro
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ana Margarida Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ângela Dias-Alves
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Joana F Pereira
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Inna Uliyakina
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
26
|
Chen X, Khajeh JA, Ju JH, Gupta YK, Stanley CB, Do C, Heller WT, Aggarwal AK, Callaway DJE, Bu Z. Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin heterocomplex, as revealed by small angle neutron scattering. J Biol Chem 2015; 290:6639-52. [PMID: 25572402 PMCID: PMC4358296 DOI: 10.1074/jbc.m114.589523] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/30/2014] [Indexed: 01/02/2023] Open
Abstract
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes.
Collapse
Affiliation(s)
- Xiaodong Chen
- From the Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, the School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jahan Ali Khajeh
- From the Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031
| | - Jeong Ho Ju
- From the Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031
| | - Yogesh K Gupta
- the Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - Christopher B Stanley
- the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Changwoo Do
- the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T Heller
- the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Aneel K Aggarwal
- the Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, and
| | - David J E Callaway
- From the Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031
| | - Zimei Bu
- From the Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031,
| |
Collapse
|
27
|
Park JY, Duc NM, Kim DK, Lee SY, Li S, Seo MD, Woods VL, Chung KY. Different conformational dynamics of PDZ1 and PDZ2 in full-length EBP50 analyzed by hydrogen/deuterium exchange mass spectrometry. Biochem Cell Biol 2015; 93:290-7. [PMID: 25789870 DOI: 10.1139/bcb-2014-0145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ezrin-radixin-moesin-binding protein 50 (EBP50) is a scaffolding protein expressed in polarized epithelial cells in various organs, including the liver, kidney, and small intestine, in which it regulates the trafficking and targeting cellular proteins. EBP50 contains two postsynaptic density-95/disk-large/ZO-1 homology (PDZ) domains (e.g., PDZ1 and PDZ2) and an ezrin/radixin/moesin-binding (EB) domain. PDZ domains are one of the major scaffolding domains regulating protein-protein interactions with critical biological roles in cell polarity, migration, proliferation, recognition, and cell-cell interaction. PDZ1 and PDZ2 in EBP50 have different ligand selectivity, although several high-resolution structural studies of isolated PDZ1 and PDZ2 showed similar structures. We studied the conformations of full-length EBP50 and isolated PDZ1 and PDZ2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). The deuterium uptake profiles of isolated PDZ1 and PDZ2 were similar to those of full-length EBP50. Interestingly, PDZ1 was more dynamic than PDZ2, and these PDZ domains underwent different conformational changes upon ligand binding. These results might explain the differences in ligand-selectivity between PDZ1 and PDZ2.
Collapse
Affiliation(s)
- Ji Young Park
- a School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440746, Republic of Korea
| | - Nguyen Minh Duc
- a School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440746, Republic of Korea
| | - Dong Kyun Kim
- a School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440746, Republic of Korea
| | - Su Youn Lee
- a School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440746, Republic of Korea
| | - Sheng Li
- b Department of medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Min-Duk Seo
- c College of Pharmacy & Department of Molecular Science and Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Virgil L Woods
- b Department of medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ka Young Chung
- a School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440746, Republic of Korea
| |
Collapse
|
28
|
Nanoscale protein domain motion and long-range allostery in signaling proteins- a view from neutron spin echo sprectroscopy. Biophys Rev 2015; 7:165-174. [PMID: 26005503 DOI: 10.1007/s12551-015-0162-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many cellular proteins are multi-domain proteins. Coupled domain-domain interactions in these multidomain proteins are important for the allosteric relay of signals in the cellular signaling networks. We have initiated the application of neutron spin echo spectroscopy to the study of nanoscale protein domain motions on submicrosecond time scales and on nanometer length scale. Our NSE experiments reveal the activation of protein domain motions over a long distance of over more than 100 Å in a multidomain scaffolding protein NHERF1 upon binding to another protein Ezrin. Such activation of nanoscale protein domains motions is correlated with the allosteric assembly of multi-protein complexes by NHERF1 and Ezrin. Here, we summarize the theoretical framework that we have developed, which uses simple concepts from nonequilibrium statistical mechanics to interpret the NSE data, and employs a mobility tensor to describe nanoscale protein domain motion. Extracting nanoscale protein domain motion from the NSE does not require elaborate molecular dynamics simulations, or complex fits to rotational motion, or elastic network models. The approach is thus more robust than multiparameter techniques that require untestable assumptions. We also demonstrate that an experimental scheme of selective deuteration of a protein subunit in a complex can highlight and amplify specific domain dynamics from the abundant global translational and rotational motions in a protein. We expect NSE to provide a unique tool to determine nanoscale protein dynamics for the understanding of protein functions, such as how signals are propagated in a protein over a long distance to a distal domain.
Collapse
|
29
|
PTEN phosphatase-independent maintenance of glandular morphology in a predictive colorectal cancer model system. Neoplasia 2014; 15:1218-30. [PMID: 24348097 DOI: 10.1593/neo.121516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.
Collapse
|
30
|
Ali Khajeh J, Ju JH, Atchiba M, Allaire M, Stanley C, Heller WT, Callaway DJE, Bu Z. Molecular conformation of the full-length tumor suppressor NF2/Merlin--a small-angle neutron scattering study. J Mol Biol 2014; 426:2755-68. [PMID: 24882693 PMCID: PMC4407695 DOI: 10.1016/j.jmb.2014.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/11/2014] [Accepted: 05/13/2014] [Indexed: 12/26/2022]
Abstract
The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high level of sequence similarity to the Ezrin-Radixin-Moesin family of proteins, the structural model of Ezrin-Radixin-Moesin protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low-resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small-angle neutron scattering and binding experiments. Small-angle neutron scattering shows that, in solution, both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding and contributes to resolving a controversy about the molecular conformation and binding activity of Merlin.
Collapse
Affiliation(s)
- Jahan Ali Khajeh
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Jeong Ho Ju
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Moussoubaou Atchiba
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Marc Allaire
- Photon Sciences Directorate, Brookhaven National Laboratory, NY, USA
| | | | - William T Heller
- Biology and Soft Matter Division, Oak Ridge National Laboratory, TN, USA
| | - David J E Callaway
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA
| | - Zimei Bu
- Department of Chemistry, City College of New York and CUNY Graduate Center, NY, USA.
| |
Collapse
|
31
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
32
|
Alshafie W, Chappe FG, Li M, Anini Y, Chappe VM. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Am J Physiol Cell Physiol 2014; 307:C107-19. [DOI: 10.1152/ajpcell.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na+/H+ exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.
Collapse
Affiliation(s)
- Walaa Alshafie
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Frederic G. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Mansong Li
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
- Obstetrics and Gynecology, Dalhousie University, Nova Scotia, Canada
| | - Valerie M. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| |
Collapse
|
33
|
Bozoky Z, Krzeminski M, Chong PA, Forman-Kay JD. Structural changes of CFTR R region upon phosphorylation: a plastic platform for intramolecular and intermolecular interactions. FEBS J 2013; 280:4407-16. [PMID: 23826884 PMCID: PMC4160016 DOI: 10.1111/febs.12422] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 11/29/2022]
Abstract
Chloride channel gating and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) are regulated by phosphorylation. Intrinsically disordered segments of the protein are responsible for phospho‐regulation, particularly the regulatory (R) region that is a target for several kinases and phosphatases. The R region remains disordered following phosphorylation, with different phosphorylation states sampling various conformations. Recent studies have demonstrated the crucial role that intramolecular and intermolecular interactions of the R region play in CFTR regulation. Different partners compete for the same binding segment, with the R region containing multiple overlapping binding elements. The non‐phosphorylated R region interacts with the nucleotide binding domains and inhibits channel activity by blocking heterodimerization. Phosphorylation shifts the equilibrium such that the R region is excluded from the dimer interface, facilitating gating and processing by stimulating R region interactions with other domains and proteins. The dynamic conformational sampling and transient binding of the R region to multiple partners enables complex control of CFTR channel activity and trafficking.
Collapse
Affiliation(s)
- Zoltan Bozoky
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Callaway DJE, Farago B, Bu Z. Nanoscale protein dynamics: a new frontier for neutron spin echo spectroscopy. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:76. [PMID: 23884624 DOI: 10.1140/epje/i2013-13076-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/16/2012] [Accepted: 01/02/2013] [Indexed: 06/02/2023]
Abstract
Recent studies show that neutron spin echo spectroscopy (NSE) can reveal long-range protein domain motions on nanometer lengthscales and on nanosecond to microsecond timescales. This unique capability of NSE provides new opportunities to understand protein dynamics and functions, such as how binding signals are propagated in a protein to distal sites. Here we review our applications of NSE to the study of nanoscale protein domain motions in a set of cell signaling proteins. We summarize the theoretical framework we have developed, which allows one to interpret the NSE data (Biophys. J. 99, 3473 (2010) and Proc. Natl. Acad. Sci. USA 102, 17646 (2005)). Our theoretical framework uses simple concepts from nonequilibrium statistical mechanics, and does not require elaborate molecular dynamics simulations, complex fits to rotational motion, or elastic network models. It is thus more robust than multiparameter techniques that require untestable assumptions. We also demonstrate our experimental scheme involving deuterium labeling of a protein domain or a subunit in a protein complex. We show that our selective deuteration scheme can highlight and resolve specific domain dynamics from the abundant global translational and rotational motions in a protein. Our approach thus clears significant hurdles to the application of NSE for the study of protein dynamics in solution.
Collapse
Affiliation(s)
- David J E Callaway
- Department of Chemistry, the City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
35
|
Ligand-induced dynamic changes in extended PDZ domains from NHERF1. J Mol Biol 2013; 425:2509-28. [PMID: 23583913 DOI: 10.1016/j.jmb.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
The multi-domain scaffolding protein NHERF1 modulates the assembly and intracellular trafficking of various transmembrane receptors and ion-transport proteins. The two PDZ (postsynaptic density 95/disk large/zonula occluden 1) domains of NHERF1 possess very different ligand-binding capabilities: PDZ1 recognizes a variety of membrane proteins with high affinity, while PDZ2 only binds limited number of target proteins. Here using NMR, we have determined the structural and dynamic mechanisms that differentiate the binding affinities of the two PDZ domains, for the type 1 PDZ-binding motif (QDTRL) in the carboxyl terminus of cystic fibrosis transmembrane regulator. Similar to PDZ2, we have identified a helix-loop-helix subdomain coupled to the canonical PDZ1 domain. The extended PDZ1 domain is highly flexible with correlated backbone motions on fast and slow timescales, while the extended PDZ2 domain is relatively rigid. The malleability of the extended PDZ1 structure facilitates the transmission of conformational changes at the ligand-binding site to the remote helix-loop-helix extension. By contrast, ligand binding has only modest effects on the conformation and dynamics of the extended PDZ2 domain. The study shows that ligand-induced structural and dynamic changes coupled with sequence variation at the putative PDZ binding site dictate ligand selectivity and binding affinity of the two PDZ domains of NHERF1.
Collapse
|
36
|
Moniz S, Sousa M, Moraes BJ, Mendes AI, Palma M, Barreto C, Fragata JI, Amaral MD, Matos P. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR. ACS Chem Biol 2013; 8:432-42. [PMID: 23148778 DOI: 10.1021/cb300484r] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cystic fibrosis (CF), a major life-limiting genetic disease leading to severe respiratory symptoms, is caused by mutations in CF transmembrane conductance regulator (CFTR), a chloride (Cl(-)) channel expressed at the apical membrane of epithelial cells. Absence of functional CFTR from the surface of respiratory cells reduces mucociliary clearance, promoting airways obstruction, chronic infection, and ultimately lung failure. The most frequent mutation, F508del, causes the channel to misfold, triggering its premature degradation and preventing it from reaching the cell surface. Recently, novel small-molecule correctors rescuing plasma membrane localization of F508del-CFTR underwent clinical trials but with limited success. Plausibly, this may be due to the mutant intrinsic plasma membrane (PM) instability. Herein, we show that restoration of F508del-CFTR PM localization by correctors can be dramatically improved through a novel pathway involving stimulation of signaling by the endogenous small GTPase Rac1 via hepatocyte growth factor (HGF). We first show that CFTR anchors to apical actin cytoskeleton (via Ezrin) upon activation of Rac1 signaling through PIP5K and Arp2/3. We then found that such anchoring retains pharmacologically rescued F508del-CFTR at the cell surface, boosting functional restoration by correctors up to 30% of wild-type channel levels in human airway epithelial cells. Our findings reveal that surface anchoring and retention is a major target pathway for CF pharmacotherapy, namely, to achieve maximal restoration of F508del-CFTR in patients in combination with correctors. Moreover, this approach may also translate to other disorders caused by trafficking-deficient surface proteins.
Collapse
Affiliation(s)
- Sónia Moniz
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Marisa Sousa
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Bruno José Moraes
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Ana Isabel Mendes
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Marta Palma
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Celeste Barreto
- Department of Pediatrics, Hospital de Santa Maria, Avenida Professor Egas Moniz,
1649-035 Lisboa, Portugal
| | - José I. Fragata
- Department of Cardiothoracic
Surgery, Hospital de Santa Marta, R. de
Santa Marta 50, 1169-024 Lisboa, Portugal
| | - Margarida D. Amaral
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| | - Paulo Matos
- Department of Genetics, National Health Institute ‘Dr. Ricardo Jorge’, Av. Padre Cruz, 1649-016 Lisboa;
Portugal
- Faculty of Sciences,
BioFIG
- Centre for Biodiversity, Functional and Integrative Genomics, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa,
Portugal
| |
Collapse
|
37
|
Jayasundar JJ, Ju JH, He L, Liu D, Meilleur F, Zhao J, Callaway DJE, Bu Z. Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering. J Biol Chem 2012; 287:37119-33. [PMID: 22927432 PMCID: PMC3481312 DOI: 10.1074/jbc.m112.380972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/22/2012] [Indexed: 11/06/2022] Open
Abstract
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP(2). Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP(2) binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP(2) binding. The study provides the first structural view of the activated ezrin bound to PIP(2) and to F-actin.
Collapse
Affiliation(s)
| | - Jeong Ho Ju
- From the Department of Chemistry, City College of New York, New York, New York 10031
| | - Lilin He
- the Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- the Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dazhi Liu
- the Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Flora Meilleur
- the Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
- the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, and
| | - Jinkui Zhao
- the Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - David J. E. Callaway
- From the Department of Chemistry, City College of New York, New York, New York 10031
- the New York University School of Medicine, New York, New York 10016
| | - Zimei Bu
- From the Department of Chemistry, City College of New York, New York, New York 10031
| |
Collapse
|
38
|
Duan Y, Sun Y, Zhang F, Zhang WK, Wang D, Wang Y, Cao X, Hu W, Xie C, Cuppoletti J, Magin TM, Wang H, Wu Z, Li N, Huang P. Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch. J Biol Chem 2012; 287:40547-59. [PMID: 23045527 DOI: 10.1074/jbc.m112.403584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND CFTR function is tightly regulated by many interacting proteins. RESULTS Intermediate filament protein keratin 18 increases the cell surface expression of CFTR by interacting with the C-terminal hydrophobic patch of CFTR. CONCLUSION K18 controls the function of CFTR. SIGNIFICANCE These findings offer novel insights into the regulation of CFTR and suggest that K18 and its dimerization partner, K8, may be modifier genes in cystic fibrosis. Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to cystic fibrosis, but the regulation of CFTR is not fully understood. Here, we identified the intermediate filament protein keratin K18 (K18) as a CFTR-binding protein by various approaches. We mapped a highly conserved "hydrophobic patch" ((1413)FLVI(1416)) in the CFTR C-terminus, known to determine plasmalemmal CFTR stability, as the K18-binding site. On the other hand, the C-terminal tail of K18 was found to be a critical determinant for binding CFTR. Overexpression of K18 in cells robustly increased the surface expression of wild-type CFTR, whereas depletion of K18 through RNA interference specifically diminished it. K18 binding increased the surface expression of CFTR by accelerating its apical recycling rate without altering CFTR biosynthesis, maturation, or internalization. Importantly, CFTR surface expression was markedly reduced in duodenal and gallbladder epithelia of K18(-/-) mice. Taken together, our results suggest that K18 increases the cell surface expression of CFTR by interacting with the CFTR C-terminal hydrophobic patch. These findings offer novel insights into the regulation of CFTR and suggest that K18 and its dimerization partner, K8, may be modifier genes in cystic fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Duan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Song GJ, Leslie KL, Barrick S, Bougoin S, Taboas JM, Bisello A. EBP50 promotes focal adhesion turnover and vascular smooth muscle cells migration. J Mol Cell Cardiol 2012; 53:809-19. [PMID: 22974528 DOI: 10.1016/j.yjmcc.2012.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
The ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a PDZ-containing scaffolding protein that regulates a variety of physiological functions. In the vasculature, EBP50 promotes neointima formation following arterial injury. In this study the role of EBP50 on vascular smooth muscle cell (VSMC) migration was characterized. The spreading and motility of primary VSMC isolated from EBP50 knockout (KO) mice were significantly reduced compared to wild-type (WT) cells. EBP50-null VSMC had fewer and larger focal adhesions than wild-type cells. Assembly and disassembly of focal adhesion-assessed by live-cell total internal reflection fluorescence imaging-in response to epidermal growth factor (EGF) were significantly reduced in KO cells. Immunoprecipitation experiments showed that EBP50 interacts with EGF receptor via the PDZ2 domain and with focal adhesion kinase (FAK) via the C-terminal ERM domain. EBP50 promoted the formation of a complex containing both EGF receptor and FAK. Phosphorylation of Tyr-925 of FAK in response to EGF was significantly reduced in KO cell compared to WT cells. The residence time of FAK in focal adhesions-determined by fluorescence recovery after photobleaching-was increased in WT cells. Collectively, these studies indicate that EBP50, by scaffolding EGF receptor and FAK, facilitates activation of FAK, focal adhesion turnover, and migration of VSMC.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Wang B, Means CK, Yang Y, Mamonova T, Bisello A, Altschuler DL, Scott JD, Friedman PA. Ezrin-anchored protein kinase A coordinates phosphorylation-dependent disassembly of a NHERF1 ternary complex to regulate hormone-sensitive phosphate transport. J Biol Chem 2012; 287:24148-63. [PMID: 22628548 PMCID: PMC3397842 DOI: 10.1074/jbc.m112.369405] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/19/2012] [Indexed: 12/14/2022] Open
Abstract
Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.
Collapse
Affiliation(s)
- Bin Wang
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Chris K. Means
- the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Yanmei Yang
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Tatyana Mamonova
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Alessandro Bisello
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Daniel L. Altschuler
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - John D. Scott
- the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Peter A. Friedman
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
41
|
Luck K, Charbonnier S, Travé G. The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett 2012; 586:2648-61. [PMID: 22709956 DOI: 10.1016/j.febslet.2012.03.056] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/18/2022]
Abstract
The canonical binding mode of PDZ domains to target motifs involves a small interface, unlikely to fully account for PDZ-target interaction specificities. Here, we review recent work on sequence context, defined as the regions surrounding not only the PDZ domains but also their target motifs. We also address the theoretical problem of defining the core of PDZ domains and the practical issue of designing PDZ constructs. Sequence context is found to introduce structural diversity, to impact the stability and solubility of constructs, and to deeply influence binding affinity and specificity, thereby increasing the difficulty of predicting PDZ-motif interactions. We expect that sequence context will have similar importance for other protein interactions mediated by globular domains binding to short linear motifs.
Collapse
Affiliation(s)
- Katja Luck
- UMR 7242, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Bd Sébastien Brant, BP 10413, 67412 Illkirch, Cedex, France.
| | | | | |
Collapse
|
42
|
Overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with human cervical cancer malignancy, progression and prognosis. Gynecol Oncol 2012; 125:470-6. [PMID: 22366595 DOI: 10.1016/j.ygyno.2012.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the correlation of cystic fibrosis transmembrane conductance regulator (CFTR) to cervical cancer progression and prognosis by examining CFTR expression levels in different cervical tissues and cell lines. METHODS Paraffin-embedded cervical tissue samples (n=192) were collected for immunohistochemistry (IHC), while fresh cervical tissue samples (n=165) and human cervical cell lines were collected for protein and mRNA detection by quantitative real-time PCR and western blot, respectively. Correlations between CFTR expression levels to cancer clinicopathologic features and prognosis were statistically analyzed. RESULTS Both CFTR mRNA and protein expression gradually increased from normal to precancerous (LSIL, HSIL) and cervical cancer tissues (p<0.05). Furthermore, CFTR expression level was well-correlated to tumor stage (p<0.001), histological grades (p<0.001), lymphatic metastasis (p<0.001), vascular invasion (p<0.05), interstitial invasive depth (p<0.05), tumor size (p<0.05) and HPV infection (p<0.05). In vitro, CFTR mRNA and protein were expressed strongly both in SiHa and HeLa, but little was seen in Caski and H8 (p<0.05). More importantly, overexpression of CFTR conferred significantly poorer survival in cervical carcinoma (Log rank p=0.028), although it was not an independent predictor for prognosis according to multivariate analysis (p>0.05). CONCLUSIONS These results suggest that higher CFTR expression is closely associated with cervical cancer progression, aggressive behaviors and poorer prognosis, indicating that CFTR may function as a novel tumor marker, a prospective prognostic indicator and a potential therapeutic target for cervical cancer.
Collapse
|
43
|
Vouilleme L, Cushing PR, Volkmer R, Madden DR, Boisguerin P. Engineering peptide inhibitors to overcome PDZ binding promiscuity. Angew Chem Int Ed Engl 2011; 49:9912-6. [PMID: 21105032 DOI: 10.1002/anie.201005575] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lars Vouilleme
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Farago B, Li J, Cornilescu G, Callaway DJE, Bu Z. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy. Biophys J 2011; 99:3473-82. [PMID: 21081097 DOI: 10.1016/j.bpj.2010.09.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/09/2010] [Accepted: 09/30/2010] [Indexed: 11/15/2022] Open
Abstract
NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE.
Collapse
|
45
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
46
|
Vouilleme L, Cushing PR, Volkmer R, Madden DR, Boisguerin P. Engineering Peptide Inhibitors To Overcome PDZ Binding Promiscuity. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201005575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
LaLonde DP, Garbett D, Bretscher A. A regulated complex of the scaffolding proteins PDZK1 and EBP50 with ezrin contribute to microvillar organization. Mol Biol Cell 2010; 21:1519-29. [PMID: 20237154 PMCID: PMC2861611 DOI: 10.1091/mbc.e10-01-0008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We characterize a ternary complex of PDZK1, EBP50, and ezrin that is regulated by their individual inter- and intramolecular interactions. PDZK1 is shown to undergo cell confluence-dependent nucleocytoplasmic shuttling that regulates the formation of this complex. A functional redundancy between PDZK1 and EBP50 in microvilli maintenance is shown. PDZK1 and ezrin, radixin, moesin binding phosphoprotein 50 kDa (EBP50) are postsynaptic density 95/disc-large/zona occludens (PDZ)-domain–containing scaffolding proteins found in the apical microvilli of polarized epithelial cells. Binary interactions have been shown between the tail of PDZK1 and the PDZ domains of EBP50, as well as between EBP50 and the membrane–cytoskeletal linking protein ezrin. Here, we show that these molecules form a regulated ternary complex in vitro and in vivo. Complex formation is cooperative because ezrin positively influences the PDZK1/EBP50 interaction. Moreover, the interaction of PDZK1 with EBP50 is enhanced by the occupancy of EBP50's adjacent PDZ domain. The complex is further regulated by location, because PDZK1 shuttles from the nucleus in low confluence cells to microvilli in high confluence cells, and this regulates the formation of the PDZK1/EBP50/ezrin complex in vivo. Knockdown of EBP50 decreases the presence of microvilli, a phenotype that can be rescued by EBP50 re-expression or expression of a PDZK1 chimera that is directly targeted to ezrin. Thus, when appropriately located, PDZK1 can provide a function necessary for microvilli formation normally provided by EBP50. By entering into the ternary complex, PDZK1 can both enhance the scaffolding at the apical membrane as well as augment EBP50's role in microvilli formation.
Collapse
Affiliation(s)
- David P LaLonde
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
48
|
Nilsson HE, Dragomir A, Lazorova L, Johannesson M, Roomans GM. CFTR and tight junctions in cultured bronchial epithelial cells. Exp Mol Pathol 2010; 88:118-27. [DOI: 10.1016/j.yexmp.2009.09.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/26/2009] [Indexed: 02/03/2023]
|
49
|
Bhattacharya S, Dai Z, Li J, Baxter S, Callaway DJE, Cowburn D, Bu Z. A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation. J Biol Chem 2009; 285:9981-9994. [PMID: 20042604 DOI: 10.1074/jbc.m109.074005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Na(+)/H(+) exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.
Collapse
Affiliation(s)
| | - Zhongping Dai
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Jianquan Li
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Sabine Baxter
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | - David Cowburn
- New York Structural Biology Center, New York, New York 10031.
| | - Zimei Bu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111; Department of Chemistry, City College of New York, New York, New York 10031.
| |
Collapse
|
50
|
Marshall WS, Watters KD, Hovdestad LR, Cozzi RRF, Katoh F. CFTR Cl- channel functional regulation by phosphorylation of focal adhesion kinase at tyrosine 407 in osmosensitive ion transporting mitochondria rich cells of euryhaline killifish. ACTA ACUST UNITED AC 2009; 212:2365-77. [PMID: 19617429 DOI: 10.1242/jeb.030015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) anion channels are the regulated exit pathway in Cl(-) secretion by teleost mitochondria rich salt secreting (MR) cells of the gill and opercular epithelia of euryhaline teleosts. By confocal light immunocytochemistry, immunogold transmission electron microscopy (TEM), and co-immunoprecipitation, using regular and phospho-antibodies directed against conserved sites, we found that killifish CFTR (kfCFTR) and the tyrosine kinase focal adhesion kinase (FAK) phosphorylated at Y407 (FAK pY407) are colocalized in the apical membrane and in subjacent membrane vesicles of MR cells. We showed previously that basolateral FAK pY407, unlike other FAK phosphorylation sites, is osmosensitive and dephosphorylates during hypotonic shock of epithelial cells (Marshall et al., 2008). In the present study, we found that hypotonic shock and the alpha(2)-adrenergic agonist clonidine (neither of which affects cAMP levels) rapidly and reversibly inhibit Cl(-) secretion by isolated opercular membranes, simultaneous with dephosphorylation of FAK pY407, located in the apical membrane. FAK pY407 is rephosphorylated and Cl(-) secretion rapidly restored by hypertonic shock as well as by forskolin and isoproterenol, which operate via cAMP and protein kinase A. We conclude that hormone mediated, cAMP dependent and osmotically mediated, cAMP independent pathways converge on a mechanism to activate CFTR and Cl(-) secretion, possibly through tyrosine phosphorylation of CFTR by FAK.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | | | | | |
Collapse
|