1
|
Tanaka S, Furuta K. Roles of IgE and Histamine in Mast Cell Maturation. Cells 2021; 10:cells10082170. [PMID: 34440939 PMCID: PMC8392195 DOI: 10.3390/cells10082170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Mast cells are activated upon immunoglobulin E (IgE)-mediated antigen stimulation, and release a wide variety of mediators, including histamine to trigger inflammatory responses. The surface expression levels of Fcε receptor I (FcεRI), a high affinity receptor of IgE, were found to be positively regulated by IgE. IgE could protect murine cultured mast cells from apoptotic cell death induced by the deprivation of interleukin-3 and a certain kind of IgE could activate immature mast cells in the absence of antigens, leading to the release of pro-inflammatory cytokines and a transient increase in histamine synthesis. Histamine synthesis in mast cells was found to be required for the maturation of murine connective tissue-type mast cells, raising the possibility that IgE indirectly modulates local mast cell maturation. Although it remains controversial to what extent this concept of "monomeric IgE effects" could have relevance in the modulation of human mast cell functions, the therapeutic effects of anti-IgE antibodies might be accounted for in terms of the decreased serum IgE concentrations. Because drastic increases in serum IgE concentrations are often observed in patients with atopic dermatitis and chronic urticaria, a close investigation of the roles of IgE in mast cell maturation should contribute to development of novel therapeutic approaches for these inflammatory diseases.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho 5, Yamashina-ku, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4667
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tsushima naka 1-1-1, Kita-ku, Okayama 700-8530, Japan;
| |
Collapse
|
2
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Sakanaka M, Kurimune Y, Yamada K, Hyodo N, Natsuhara M, Ichikawa A, Furuta K, Tanaka S. Down-modulation of antigen-induced activation of murine cultured mast cells sensitized with a highly cytokinergic IgE clone. Immunol Lett 2016; 174:1-8. [PMID: 27060497 DOI: 10.1016/j.imlet.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 01/18/2023]
Abstract
Accumulating evidence suggests that several IgE clones can activate mast cells during the sensitization phase even in the absence of antigen. They were found to induce pro-inflammatory cytokine release, histamine synthesis, chemotaxis, adhesion, and accelerated maturation of mast cells, although it remains unknown whether antigen-induced responses can be affected by differences of IgE clones. We compared two IgE clones, which were different in the capacity to activate mast cells during sensitization, in terms of potentials to affect antigen-induced degranulation and cytokine releases using IL-3-dependent murine bone marrow-derived cultured mast cells (BMMCs). Antigen-induced degranulation and pro-inflammatory cytokine release were augmented, when BMMCs were sensitized with elevated concentrations of a clone IgE-3, which did not induce phosphorylation of JNK and cytokine release in the absence of antigen, whereas those were significantly rather decreased, when BMMCs were sensitized with elevated concentrations of a clone SPE-7, one of the most potent cytokinergic IgE clones, which intensively induced phosphorylation of JNK. This attenuated response with SPE-7 was accompanied by decreased tyrosine phosphorylation of the cellular proteins including Syk upon antigen stimulation. SP600125, which is known to inhibit JNK, restored the levels of antigen-induced degranulation and phosphorylation of Syk in BMMCs sensitized with higher concentrations of a clone SPE-7 when it was added before sensitization. Treatment with anisomycin, a potent activator of JNK, before IgE sensitization significantly suppressed antigen-induced degranulation. These findings suggest that differences of sensitizing IgE clones can affect antigen-induced responses and activation of JNK during sensitization might suppress antigen-induced activation of mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kurimune
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Keiko Yamada
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Nao Hyodo
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Mayuko Natsuhara
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Atsushi Ichikawa
- Institute for Biosciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kazuyuki Furuta
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Tanaka
- Department of Immunobiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
4
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
5
|
Kashiwakura JI, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:29-46. [PMID: 21713650 DOI: 10.1007/978-1-4419-9533-9_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mast cells play a major role in allergy and anaphylaxis, as well as a protective role in immunity against bacteria and venoms (innate immunity) and T-cell activation (acquired immunity).1,2 It was long thought that two steps are essential to mast cell activation. The first step (sensitization) occurs when antigen-specific IgE binds to its high-affinity IgE receptor (FcεRI) expressed on the surface of mast cells. The second step occurs when antigen (Ag) or anti-IgE binds antigen-specific IgE antibodies bound to FcεRI present on the mast cell surface (this mode of stimulation hereafter referred to as IgE+Ag or IgE+anti-IgE stimulation, respectively).Conventional wisdom has been that monomeric IgE plays only an initial, passive role in mast cell activation. However, recent findings have shown that IgE binding to its receptor FcεRI can mediate mast cell activation events even in the absence of antigen (this mode of stimulation hereafter referred to as IgE(-Ag) stimulation). Different subtypes of monomeric IgEs act via IgE(-Ag) stimulation to elicit varied effects on mast cells function, survival and differentiation. This chapter will describe the role of monomeric IgE molecules in allergic reaction, the various effects and mechanisms of action of IgE(-Ag) stimulation on mast cells and what possible developments may arise from this knowledge in the future. Since mast cells are involved in a variety of pathologic and protective responses, understanding the role that monomeric IgE plays in mast cell function, survival and differentiation will hopefully lead to better understanding and treatment of asthma and other allergic diseases, as well as improved understanding of host response to infections.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
6
|
Sakanaka M, Furuta K, Ichikawa A, Tanaka S. Impaired activation of mast cells upon IgE-mediated antigen stimulation in a stroke-prone spontaneously hypertensive rat strain, SHRSP.Z. Immunol Lett 2010; 128:74-9. [PMID: 19941900 DOI: 10.1016/j.imlet.2009.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 11/29/2022]
Abstract
We investigated IgE-mediated allergic responses in a metabolic syndrome model rat strain, SHRSP.Z, which develops obesity and hypertension to cast light on the relationship between metabolic disturbances and allergic responses. IgE-mediated cutaneous anaphylactic responses were severely attenuated in this strain regardless of the presence of fa/fa mutation, compared with the parental WKY/Izm strain. Furthermore, in the peritoneal mast cells of both the SHRSP.Z and SHRSP/Izm strains, IgE-mediated activation, such as degranulation and protein tyrosine phosphorylation, was severely impaired whereas no significant differences were found in morphology and number of peritoneal mast cells. Immunoblot analyses revealed that phosphorylation levels of Syk upon IgE-mediated antigen stimulation were significantly decreased and basal expression of linker for activation of T cells (LAT) was down-regulated in peritoneal mast cells of the SHRSP strains. These results suggest that attenuated cutaneous allergic responses in the SHRSP.Z strain might be attributed to impaired FcvarepsilonRI-mediated signal transduction in mast cells.
Collapse
Affiliation(s)
- Mariko Sakanaka
- Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | | | | | | |
Collapse
|
7
|
Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:848-66. [PMID: 20948178 PMCID: PMC3037517 DOI: 10.2183/pjab.86.848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Histamine and prostaglandins (PGs) play a variety of physiological roles as autacoids, which function in the vicinity of their sources and maintain local homeostasis in the body. They stimulate target cells by acting on their specific receptors, which are coupled to trimeric G proteins. For the precise understanding of the physiological roles of histamine and PGs, it is necessary to clarify the molecular mechanisms involved in their synthesis as well as their receptor-mediated responses. We cloned the cDNAs for mouse L-histidine decarboxylase (HDC) and 6 mouse prostanoid receptors (4 PGE(2) receptors, PGF receptor, and PGI receptor). We then characterized the expression patterns and functions of these genes. Furthermore, we established gene-targeted mouse strains for HDC and PG receptors to explore the novel pathophysiological roles of histamine and PGs. We have here summarized our research, which should contribute to progress in the molecular biology of HDC and PG receptors.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA, Complementary/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Histamine/chemistry
- Histidine Decarboxylase/genetics
- Histidine Decarboxylase/metabolism
- Homeostasis
- Humans
- Mice
- Models, Biological
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
Collapse
Affiliation(s)
- Atsushi Ichikawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
8
|
Takenaka H, Ushio H, Niyonsaba F, Jayawardana STM, Hajime S, Ikeda S, Ogawa H, Okumura K. Synergistic augmentation of inflammatory cytokine productions from murine mast cells by monomeric IgE and toll-like receptor ligands. Biochem Biophys Res Commun 2009; 391:471-6. [PMID: 19914211 DOI: 10.1016/j.bbrc.2009.11.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 01/08/2023]
Abstract
Simultaneous activation of murine mast cells by monomeric IgE and toll-like receptor (TLR) ligands was examined. Inflammatory cytokine production elicited by the binding of IgE in the absence of antigen, was further enhanced by the addition of lipopolysaccharide (LPS) or peptidoglycan (PGN). Enhancement by LPS or PGN on cytokine production was mediated by TLR4 and TLR2, respectively, since TLR4- and TLR2-deficient mast cells did not show synergistic activation by monomeric IgE and LPS/PGN. Synergistic activation of mast cells was obtained via phosphorylation of several mitogen-activated protein kinases (MAPK). Furthermore, MAPK inhibitors, significantly attenuated the augmentation of inflammatory cytokine production by monomeric IgE and LPS or PGN. Altogether, these results suggest that simultaneous TLR activation of mast cells with IgE molecules, particularly highly cytokinergic (HC) IgE, might contribute to the exacerbation of allergic diseases associated with infection even in the absence of a specific antigen.
Collapse
Affiliation(s)
- Hiroshi Takenaka
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cruse G, Yang W, Duffy SM, Chachi L, Leyland M, Amrani Y, Bradding P. Counterregulation of beta(2)-adrenoceptor function in human mast cells by stem cell factor. J Allergy Clin Immunol 2009; 125:257-63.e1-5. [PMID: 19864009 DOI: 10.1016/j.jaci.2009.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 07/10/2009] [Accepted: 08/05/2009] [Indexed: 02/01/2023]
Abstract
BACKGROUND Mast cells contribute to the pathophysiology of asthma with the sustained release of both preformed and newly generated mediators in response to allergens and other diverse stimuli. Stem cell factor (SCF) is the key human mast cell growth factor, but also primes mast cells for mediator release. SCF expression is markedly increased in asthmatic airways. Short-acting beta(2)-adrenoceptor drugs such as albuterol inhibit human lung mast cell (HLMC) degranulation in vitro in the absence of SCF, but their effect in the presence of SCF is not known. OBJECTIVE The aim of this study was to elucidate the effects of albuterol on HLMC function in the presence of SCF. METHODS Mediator release and K(Ca)3.1 ion channel activity were analyzed in purified HLMC. Intracellular signalling and beta(2)-adrenoceptor phosphorylation and internalization were analyzed in the HMC-1 human mast cell line. RESULTS beta(2)-Adrenoceptor agonist-dependent inhibition of K(Ca)3.1 ion channels and HLMC mediator release was markedly attenuated in the presence of SCF. Remarkably, albuterol actually potentiated IgE-induced histamine release in a dose-dependent manner when both SCF and IgE were present. These effects were related to the SCF-dependent phosphorylation of Tyr350 on the beta(2)-adrenoceptor with immediate uncoupling of the receptor followed by receptor internalization. CONCLUSION The potentially beneficial effects of beta(2)-adrenoceptor agonists in asthmatic airways may be blunted as a result of the high concentrations of SCF present.
Collapse
Affiliation(s)
- Glenn Cruse
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ezeamuzie CI, Al-Attiyah R, Shihab PK, Al-Radwan R. Low-affinity IgE receptor (FcεRII)-mediated activation of human monocytes by both monomeric IgE and IgE/anti-IgE immune complex. Int Immunopharmacol 2009; 9:1110-4. [PMID: 19505590 DOI: 10.1016/j.intimp.2009.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
11
|
Kato N, Motohashi S, Okada T, Ozawa T, Mashima K. PICOT, protein kinase C theta-interacting protein, is a novel regulator of FcepsilonRI-mediated mast cell activation. Cell Immunol 2008; 251:62-7. [PMID: 18479680 DOI: 10.1016/j.cellimm.2008.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 11/29/2022]
Abstract
PICOT (PKC-interacting cousin of thioredoxin) consists of one thioredoxin homology domain in the N-terminal and two tandem PICOT homology domains in the C-terminal. PICOT specifically interacts with protein kinase C theta (PKC-theta) via its thioredoxin homology domain and acts as an important modulator of T cell receptor (TCR)-signaling. Using PICOT overexpressing rat basophilic leukemia cells (RBL-2H3), we evaluated the effect of PICOT overexpression on the FcepsilonRI-mediated signaling. In comparison to the control cells, introduction of PICOT to RBL-2H3 cells induced increased degranulation and the activation of NFAT and in the expression of IL-4 and TNF-alpha transcripts by FcepsilonRI-crosslinking, whereas no significant change was observed with the elevation of ERK1/2 and p38 MAP kinase phosphorylation and NF-kappaB activation by FcepsilonRI aggregation. More interesting was the exogenous PICOT overexpression in RBL-2H3 cells causing a large decrease in the elevation of JNK phosphorylation. PICOT-regulated FcepsilonRI-mediated signals in RBL-2H3 cells and acted as a positive regulator on IL-4 and TNF-alpha expression, NFAT and degranulation signal pathways and a negative regulator on a JNK signal pathway. Considering that PICOT has no enzymatic activity, the regulation of PICOT on FcepsilonRI-signaling may depend on PICOT-associated molecule(s).
Collapse
Affiliation(s)
- Natsumi Kato
- Department of Life Science, Rikkyo (St. Paul's) University, 3-34-1, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | | | |
Collapse
|
12
|
Cruse G, Cockerill S, Bradding P. IgE alone promotes human lung mast cell survival through the autocrine production of IL-6. BMC Immunol 2008; 9:2. [PMID: 18215266 PMCID: PMC2257927 DOI: 10.1186/1471-2172-9-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 01/23/2008] [Indexed: 11/26/2022] Open
Abstract
Background Mast cells play a key role in asthma and recent evidence indicates that their ongoing activation in this disease is mediated, in part, via IgE in the absence of antigen. In this study we have examined whether IgE alone enhances human lung mast cell (HLMC) survival. Methods Purified HLMC were cultured for 4 weeks and survival assays then performed over 10 days following cytokine withdrawal in the presence or absence of human myeloma IgE. Quantitative real time RT-PCR was carried out to examine IL-6 mRNA expression and IL-6 protein was measured in HLMC supernatants by ELISA. Results IgE alone promoted the survival of HLMC in a dose-dependent manner following cytokine withdrawal. IgE-induced survival was eliminated with the addition of neutralising anti-IL-6 antibody but not by the addition of neutralising anti-stem cell factor. IgE sensitisation initiated profound upregulation of IL-6 mRNA in HLMC, and IL-6 concentrations were also raised in the culture supernatants of IgE-exposed cells. Conclusion These data taken together suggest that IgE in the absence of antigen promotes HLMC survival through the autocrine production of IL-6. This provides a further mechanism through which IL-6 and IgE contribute to the pathogenesis of asthma, and through which anti-IgE therapy might achieve its therapeutic effect.
Collapse
Affiliation(s)
- Glenn Cruse
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester and Warwick Medical School, University of Leicester, University Road, Leicester, LE1 9HN, UK.
| | | | | |
Collapse
|