1
|
Cruz E, Vargas-Rodriguez O. The role of tRNA identity elements in aminoacyl-tRNA editing. Front Microbiol 2024; 15:1437528. [PMID: 39101037 PMCID: PMC11295145 DOI: 10.3389/fmicb.2024.1437528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The rules of the genetic code are implemented by the unique features that define the amino acid identity of each transfer RNA (tRNA). These features, known as "identity elements," mark tRNAs for recognition by aminoacyl-tRNA synthetases (ARSs), the enzymes responsible for ligating amino acids to tRNAs. While tRNA identity elements enable stringent substrate selectivity of ARSs, these enzymes are prone to errors during amino acid selection, leading to the synthesis of incorrect aminoacyl-tRNAs that jeopardize the fidelity of protein synthesis. Many error-prone ARSs have evolved specialized domains that hydrolyze incorrectly synthesized aminoacyl-tRNAs. These domains, known as editing domains, also exist as free-standing enzymes and, together with ARSs, safeguard protein synthesis fidelity. Here, we discuss how the same identity elements that define tRNA aminoacylation play an integral role in aminoacyl-tRNA editing, synergistically ensuring the correct translation of genetic information into proteins. Moreover, we review the distinct strategies of tRNA selection used by editing enzymes and ARSs to avoid undesired hydrolysis of correctly aminoacylated tRNAs.
Collapse
Affiliation(s)
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
2
|
Watkins RR, Vradi A, Shulgina I, Musier-Forsyth K. Trypanosoma brucei multi-aminoacyl-tRNA synthetase complex formation limits promiscuous tRNA proofreading. Front Microbiol 2024; 15:1445687. [PMID: 39081885 PMCID: PMC11286415 DOI: 10.3389/fmicb.2024.1445687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Faithful mRNA decoding depends on the accuracy of aminoacyl-tRNA synthetases (ARSs). Aminoacyl-tRNA proofreading mechanisms have been well-described in bacteria, humans, and plants. However, our knowledge of translational fidelity in protozoans is limited. Trypanosoma brucei (Tb) is a eukaryotic, protozoan pathogen that causes Human African Trypanosomiasis, a fatal disease if untreated. Tb undergoes many physiological changes that are dictated by nutrient availability throughout its insect-mammal lifecycle. In the glucose-deprived insect vector, the tsetse fly, Tb use proline to make ATP via mitochondrial respiration. Alanine is one of the major by-products of proline consumption. We hypothesize that the elevated alanine pool challenges Tb prolyl-tRNA synthetase (ProRS), an ARS known to misactivate alanine in all three domains of life, resulting in high levels of misaminoacylated Ala-tRNAPro. Tb encodes two domains that are members of the INS superfamily of aminoacyl-tRNA deacylases. One homolog is appended to the N-terminus of Tb ProRS, and a second is the major domain of multi-aminoacyl-tRNA synthetase complex (MSC)-associated protein 3 (MCP3). Both ProRS and MCP3 are housed in the Tb MSC. Here, we purified Tb ProRS and MCP3 and observed robust Ala-tRNAPro deacylation activity from both enzymes in vitro. Size-exclusion chromatography multi-angle light scattering used to probe the oligomerization state of MCP3 revealed that although its unique N-terminal extension confers homodimerization in the absence of tRNA, the protein binds to tRNA as a monomer. Kinetic assays showed MCP3 alone has relaxed tRNA specificity and promiscuously hydrolyzes cognate Ala-tRNAAla; this activity is significantly reduced in the presence of Tb alanyl-tRNA synthetase, also housed in the MSC. Taken together, our results provide insight into translational fidelity mechanisms in Tb and lay the foundation for exploring MSC-associated proteins as novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Yuan C, Li Z, Luo X, Huang P, Guo L, Lu M, Xia J, Xiao Y, Zhou XL, Chen M. Mammalian trans-editing factor ProX is able to deacylate tRNA Thr mischarged with alanine. Int J Biol Macromol 2023; 253:127121. [PMID: 37778588 DOI: 10.1016/j.ijbiomac.2023.127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.
Collapse
Affiliation(s)
- Chen Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zihan Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Ma X, Bakhtina M, Shulgina I, Cantara WA, Kuzmishin Nagy A, Goto Y, Suga H, Foster MP, Musier-Forsyth K. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res 2023; 51:3988-3999. [PMID: 36951109 PMCID: PMC10164551 DOI: 10.1093/nar/gkad192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Peng GX, Mao XL, Cao Y, Yao SY, Li QR, Chen X, Wang ED, Zhou XL. RNA granule-clustered mitochondrial aminoacyl-tRNA synthetases form multiple complexes with the potential to fine-tune tRNA aminoacylation. Nucleic Acids Res 2022; 50:12951-12968. [PMID: 36503967 PMCID: PMC9825176 DOI: 10.1093/nar/gkac1141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.
Collapse
Affiliation(s)
| | | | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shi-Ying Yao
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - En-Duo Wang
- Correspondence may also be addressed to En-Duo Wang. Tel: +86 21 5492 1241; Fax: +86 21 5492 1011;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
6
|
Jani J, Pappachan A. A review on quality control agents of protein translation - The role of Trans-editing proteins. Int J Biol Macromol 2022; 199:252-263. [PMID: 34995670 DOI: 10.1016/j.ijbiomac.2021.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.
Collapse
Affiliation(s)
- Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Sector 30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
7
|
Kuzmishin Nagy AB, Bakhtina M, Musier-Forsyth K. Trans-editing by aminoacyl-tRNA synthetase-like editing domains. Enzymes 2020; 48:69-115. [PMID: 33837712 DOI: 10.1016/bs.enz.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitous enzymes responsible for aminoacyl-tRNA (aa-tRNA) synthesis. Correctly formed aa-tRNAs are necessary for proper decoding of mRNA and accurate protein synthesis. tRNAs possess specific nucleobases that promote selective recognition by cognate aaRSs. Selecting the cognate amino acid can be more challenging because all amino acids share the same peptide backbone and several are isosteric or have similar side chains. Thus, aaRSs can misactivate non-cognate amino acids and produce mischarged aa-tRNAs. If left uncorrected, mischarged aa-tRNAs deliver their non-cognate amino acid to the ribosome resulting in misincorporation into the nascent polypeptide chain. This changes the primary protein sequence and potentially causes misfolding or formation of non-functional proteins that impair cell survival. A variety of proofreading or editing pathways exist to prevent and correct mistakes in aa-tRNA formation. Editing may occur before the amino acid transfer step of aminoacylation via hydrolysis of the aminoacyl-adenylate. Alternatively, post-transfer editing, which occurs after the mischarged aa-tRNA is formed, may be carried out via a distinct editing site on the aaRS where the mischarged aa-tRNA is deacylated. In recent years, it has become clear that most organisms also encode factors that lack aminoacylation activity but resemble aaRS editing domains and function to clear mischarged aa-tRNAs in trans. This review focuses on these trans-editing factors, which are encoded in all three domains of life and function together with editing domains present within aaRSs to ensure that the accuracy of protein synthesis is sufficient for cell survival.
Collapse
Affiliation(s)
- Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
8
|
Zajac J, Anderson H, Adams L, Wangmo D, Suhail S, Almen A, Berns L, Coerber B, Dawson L, Hunger A, Jehn J, Johnson J, Plack N, Strasser S, Williams M, Bhattacharyya S, Hati S. Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase. Protein J 2020; 39:542-553. [PMID: 32681406 DOI: 10.1007/s10930-020-09910-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes play important roles in many biological processes. Amino acid residues in the active site pocket of an enzyme, which are in direct contact with the substrate(s), are generally believed to be critical for substrate recognition and catalysis. Identifying and understanding how these "catalytic" residues help enzymes achieve enormous rate enhancement has been the focus of many structural and biochemical studies over the past several decades. Recent studies have shown that enzymes are intrinsically dynamic and dynamic coupling between distant structural elements is essential for effective catalysis in modular enzymes. Therefore, distal residues are expected to have impact on enzyme function. However, few studies have investigated the role of distal residues on enzymatic catalysis. In the present study, the effects of distal residue mutations on the catalytic function of an aminoacyl-tRNA synthetase, namely, prolyl-tRNA synthase, were investigated. The present study demonstrates that distal residues significantly contribute to catalysis of the modular Escherichia coli prolyl-tRNA synthetase by maintaining intrinsic protein flexibility.
Collapse
Affiliation(s)
- Jonathan Zajac
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Heidi Anderson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Lauren Adams
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Dechen Wangmo
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Shanzay Suhail
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Aimee Almen
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Lauren Berns
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Breanna Coerber
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Logan Dawson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Andrea Hunger
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Julia Jehn
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Joseph Johnson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Naomi Plack
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Steven Strasser
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Murphi Williams
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | | | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA.
| |
Collapse
|
9
|
Chen M, Kuhle B, Diedrich J, Liu Z, Moresco JJ, Yates Iii JR, Pan T, Yang XL. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Nucleic Acids Res 2020; 48:6445-6457. [PMID: 32484512 PMCID: PMC7337962 DOI: 10.1093/nar/gkaa469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 01/18/2023] Open
Abstract
The accuracy in pairing tRNAs with correct amino acids by aminoacyl-tRNA synthetases (aaRSs) dictates the fidelity of translation. To ensure fidelity, multiple aaRSs developed editing functions that remove a wrong amino acid from tRNA before it reaches the ribosome. However, no specific mechanism within an aaRS is known to handle the scenario where a cognate amino acid is mischarged onto a wrong tRNA, as exemplified by AlaRS mischarging alanine to G4:U69-containing tRNAThr. Here, we report that the mischargeable G4:U69-containing tRNAThr are strictly conserved in vertebrates and are ubiquitously and abundantly expressed in mammalian cells and tissues. Although these tRNAs are efficiently mischarged, no corresponding Thr-to-Ala mistranslation is detectable. Mistranslation is prevented by a robust proofreading activity of ThrRS towards Ala-tRNAThr. Therefore, while wrong amino acids are corrected within an aaRS, a wrong tRNA is handled in trans by an aaRS cognate to the mischarged tRNA species. Interestingly, although Ala-tRNAThr mischarging is not known to occur in bacteria, Escherichia coli ThrRS also possesses robust cross-editing ability. We propose that the cross-editing activity of ThrRS is evolutionarily conserved and that this intrinsic activity allows G4:U69-containing tRNAThr to emerge and be preserved in vertebrates to have alternative functions without compromising translational fidelity.
Collapse
Affiliation(s)
- Meirong Chen
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bernhard Kuhle
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ze Liu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates Iii
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Kuncha SK, Venkadasamy VL, Amudhan G, Dahate P, Kola SR, Pottabathini S, Kruparani SP, Shekar PC, Sankaranarayanan R. Genomic innovation of ATD alleviates mistranslation associated with multicellularity in Animalia. eLife 2020; 9:58118. [PMID: 32463355 PMCID: PMC7302879 DOI: 10.7554/elife.58118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The emergence of multicellularity in Animalia is associated with increase in ROS and expansion of tRNA-isodecoders. tRNA expansion leads to misselection resulting in a critical error of L-Ala mischarged onto tRNAThr, which is proofread by Animalia-specific-tRNA Deacylase (ATD) in vitro. Here we show that in addition to ATD, threonyl-tRNA synthetase (ThrRS) can clear the error in cellular scenario. This two-tier functional redundancy for translation quality control breaks down during oxidative stress, wherein ThrRS is rendered inactive. Therefore, ATD knockout cells display pronounced sensitivity through increased mistranslation of threonine codons leading to cell death. Strikingly, we identify the emergence of ATD along with the error inducing tRNA species starting from Choanoflagellates thus uncovering an important genomic innovation required for multicellularity that occurred in unicellular ancestors of animals. The study further provides a plausible regulatory mechanism wherein the cellular fate of tRNAs can be switched from protein biosynthesis to non-canonical functions. The first animals evolved around 750 million years ago from single-celled ancestors that were most similar to modern-day organisms called the Choanoflagellates. As animals evolved they developed more complex body plans consisting of multiple cells organized into larger structures known as tissues and organs. Over time cells also evolved increased levels of molecules called reactive oxygen species, which are involved in many essential cell processes but are toxic at high levels. Animal cells also contain more types of molecules known as transfer ribonucleic acids, or tRNAs for short, than Choanoflagellate cells and other single-celled organisms. These molecules deliver building blocks known as amino acids to the machinery that produces new proteins. To ensure the proteins are made correctly, it is important that tRNAs deliver specific amino acids to the protein-building machinery in the right order. Each type of tRNA usually only pairs with a specific type of amino acid, but sometimes the enzymes involved in this process can make mistakes. Therefore, cells contain proofreading enzymes that help remove incorrect amino acids on tRNAs. One such enzyme – called ATD – is only found in animals. Experiments in test tubes reported that ATD removes an amino acid called alanine from tRNAs that are supposed to carry threonine, but its precise role in living cells remained unclear. To address this question, Kuncha et al. studied proofreading enzymes in human kidney cells. The experiments showed that, in addition to ATD, a second enzyme known as ThrRS was also able to correct alanine substitutions for threonines on tRNAs. However, reactive oxygen species inactivated the proofreading ability of ThrRS, suggesting ATD plays an essential role in correcting errors in cells containing high levels of reactive oxygen species. These findings suggest that as organisms evolved multiple cells and the levels of tRNA and oxidative stress increased, this led to the appearance of a new proofreading enzyme. Further studies found that ATD originated around 900 million years ago, before Choanoflagellates and animals diverged, indicating these enzymes might have helped to shape the evolution of animals. The next step following on from this work will be to understand the role of ATD in the cells of organs that are known to have particularly high levels of reactive oxygen species, such as testis and ovaries.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | | | - Priyanka Dahate
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sankara Rao Kola
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - P Chandra Shekar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
11
|
Chen L, Tanimoto A, So BR, Bakhtina M, Magliery TJ, Wysocki VH, Musier-Forsyth K. Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation. Nucleic Acids Res 2019; 47:929-940. [PMID: 30418624 PMCID: PMC6344894 DOI: 10.1093/nar/gky1153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids onto tRNAs. To avoid mistranslation, editing mechanisms evolved to maintain tRNA aminoacylation fidelity. For instance, while rejecting the majority of non-cognate amino acids via discrimination in the synthetic active site, prolyl-tRNA synthetase (ProRS) misactivates and mischarges Ala and Cys, which are similar in size to cognate Pro. Ala-tRNAPro is specifically hydrolyzed by the editing domain of ProRS in cis, while YbaK, a free-standing editing domain, clears Cys-tRNAPro in trans. ProXp-ala is another editing domain that clears Ala-tRNAPro in trans. YbaK does not appear to possess tRNA specificity, readily deacylating Cys-tRNACysin vitro. We hypothesize that YbaK binds to ProRS to gain specificity for Cys-tRNAPro and avoid deacylation of Cys-tRNACys in the cell. Here, in vivo evidence for ProRS-YbaK interaction was obtained using a split-green fluorescent protein assay. Analytical ultracentrifugation and native mass spectrometry were used to investigate binary and ternary complex formation between ProRS, YbaK, and tRNAPro. Our combined results support the hypothesis that the specificity of YbaK toward Cys-tRNAPro is determined by the formation of a three-component complex with ProRS and tRNAPro and establish the stoichiometry of a 'triple-sieve' editing complex for the first time.
Collapse
Affiliation(s)
- Lin Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Byung Ran So
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. Surface-Induced Dissociation: An Effective Method for Characterization of Protein Quaternary Structure. Anal Chem 2019; 91:190-209. [PMID: 30412666 PMCID: PMC6571034 DOI: 10.1021/acs.analchem.8b05071] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alyssa Q. Stiving
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Florian Busch
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
| | - Samantha H. Sarni
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
13
|
Bacusmo JM, Kuzmishin AB, Cantara WA, Goto Y, Suga H, Musier-Forsyth K. Quality control by trans-editing factor prevents global mistranslation of non-protein amino acid α-aminobutyrate. RNA Biol 2017; 15:576-585. [PMID: 28737471 DOI: 10.1080/15476286.2017.1353846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.
Collapse
Affiliation(s)
- Jo Marie Bacusmo
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - Alexandra B Kuzmishin
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - William A Cantara
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - Yuki Goto
- c Department of Chemistry , Graduate School of Science, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Hiroaki Suga
- c Department of Chemistry , Graduate School of Science, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Karin Musier-Forsyth
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
14
|
Fluorothreonyl-tRNA deacylase prevents mistranslation in the organofluorine producer Streptomyces cattleya. Proc Natl Acad Sci U S A 2017; 114:11920-11925. [PMID: 29078362 DOI: 10.1073/pnas.1711482114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fluorine is an element with unusual properties that has found significant utility in the design of synthetic small molecules, ranging from therapeutics to materials. In contrast, only a few fluorinated compounds made by living organisms have been found to date, most of which derive from the fluoroacetate/fluorothreonine biosynthetic pathway first discovered in Streptomyces cattleya While fluoroacetate has long been known to act as an inhibitor of the tricarboxylic acid cycle, the fate of the amino acid fluorothreonine is still not well understood. Here, we show that fluorothreonine can be misincorporated into protein in place of the proteinogenic amino acid threonine. We have identified two conserved proteins from the organofluorine biosynthetic locus, FthB and FthC, that are involved in managing fluorothreonine toxicity. Using a combination of biochemical, genetic, physiological, and proteomic studies, we show that FthB is a trans-acting transfer RNA (tRNA) editing protein, which hydrolyzes fluorothreonyl-tRNA 670-fold more efficiently than threonyl-RNA, and assign a role to FthC in fluorothreonine transport. While trans-acting tRNA editing proteins have been found to counteract the misacylation of tRNA with commonly occurring near-cognate amino acids, their role has yet to be described in the context of secondary metabolism. In this regard, the recruitment of tRNA editing proteins to biosynthetic clusters may have enabled the evolution of pathways to produce specialized amino acids, thereby increasing the diversity of natural product structure while also attenuating the risk of mistranslation that would ensue.
Collapse
|
15
|
Danhart EM, Bakhtina M, Cantara WA, Kuzmishin AB, Ma X, Sanford BL, Vargas-Rodriguez O, Košutić M, Goto Y, Suga H, Nakanishi K, Micura R, Foster MP, Musier-Forsyth K. Conformational and chemical selection by a trans-acting editing domain. Proc Natl Acad Sci U S A 2017; 114:E6774-E6783. [PMID: 28768811 PMCID: PMC5565427 DOI: 10.1073/pnas.1703925114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.
Collapse
Affiliation(s)
- Eric M Danhart
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - William A Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Alexandra B Kuzmishin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Xiao Ma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Brianne L Sanford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | | | - Marija Košutić
- Institute of Organic Chemistry, Leopold Franzens University, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Ronald Micura
- Institute of Organic Chemistry, Leopold Franzens University, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
16
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
17
|
Cvetesic N, Dulic M, Bilus M, Sostaric N, Lenhard B, Gruic-Sovulj I. Naturally Occurring Isoleucyl-tRNA Synthetase without tRNA-dependent Pre-transfer Editing. J Biol Chem 2016; 291:8618-31. [PMID: 26921320 PMCID: PMC4861432 DOI: 10.1074/jbc.m115.698225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
Isoleucyl-tRNA synthetase (IleRS) is unusual among aminoacyl-tRNA synthetases in having a tRNA-dependent pre-transfer editing activity. Alongside the typical bacterial IleRS (such as Escherichia coli IleRS), some bacteria also have the enzymes (eukaryote-like) that cluster with eukaryotic IleRSs and exhibit low sensitivity to the antibiotic mupirocin. Our phylogenetic analysis suggests that the ileS1 and ileS2 genes of contemporary bacteria are the descendants of genes that might have arisen by an ancient duplication event before the separation of bacteria and archaea. We present the analysis of evolutionary constraints of the synthetic and editing reactions in eukaryotic/eukaryote-like IleRSs, which share a common origin but diverged through adaptation to different cell environments. The enzyme from the yeast cytosol exhibits tRNA-dependent pre-transfer editing analogous to E. coli IleRS. This argues for the presence of this proofreading in the common ancestor of both IleRS types and an ancient origin of the synthetic site-based quality control step. Yet surprisingly, the eukaryote-like enzyme from Streptomyces griseus IleRS lacks this capacity; at the same time, its synthetic site displays the 103-fold drop in sensitivity to antibiotic mupirocin relative to the yeast enzyme. The discovery that pre-transfer editing is optional in IleRSs lends support to the notion that the conserved post-transfer editing domain is the main checkpoint in these enzymes. We substantiated this by showing that under error-prone conditions S. griseus IleRS is able to rescue the growth of an E. coli lacking functional IleRS, providing the first evidence that tRNA-dependent pre-transfer editing in IleRS is not essential for cell viability.
Collapse
Affiliation(s)
- Nevena Cvetesic
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Morana Dulic
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Mirna Bilus
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Nikolina Sostaric
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| | - Boris Lenhard
- the Computational Regulatory Genomics Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Ita Gruic-Sovulj
- From the Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia and
| |
Collapse
|
18
|
Fortowsky GB, Simard DJ, Aboelnga MM, Gauld JW. Substrate-Assisted and Enzymatic Pretransfer Editing of Nonstandard Amino Acids by Methionyl-tRNA Synthetase. Biochemistry 2015; 54:5757-65. [PMID: 26322377 DOI: 10.1021/acs.biochem.5b00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are central to a number of physiological processes, including protein biosynthesis. In particular, they activate and then transfer their corresponding amino acid to the cognate tRNA. This is achieved with a generally remarkably high fidelity by editing against incorrect standard and nonstandard amino acids. Using docking, molecular dynamics (MD), and hybrid quantum mechanical/molecular mechanics methods, we have investigated mechanisms by which methionyl-tRNA synthetase (MetRS) may edit against the highly toxic, noncognate, amino acids homocysteine (Hcy) and its oxygen analogue, homoserine (Hse). Substrate-assisted editing of Hcy-AMP in which its own phosphate acts as the mechanistic base occurs with a rate-limiting barrier of 98.2 kJ mol(-1). This step corresponds to nucleophilic attack of the Hcy side-chain sulfur at its own carbonyl carbon (CCarb). In contrast, a new possible editing mechanism is identified in which an active site aspartate (Asp259) acts as the base. The rate-limiting step is now rotation about the substrate's aminoacyl Cβ-Cγ bond with a barrier of 27.5 kJ mol(-1), while for Hse-AMP, the rate-limiting step is cleavage of the CCarb-OP bond with a barrier of 30.9 kJ mol(-1). A similarly positioned aspartate or glutamate also occurs in the homologous enzymes LeuRS, IleRS, and ValRS, which also discriminate against Hcy. Docking and MD studies suggest that at least in the case of LeuRS and ValRS, a similar editing mechanism may be possible.
Collapse
Affiliation(s)
- Grant B Fortowsky
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Daniel J Simard
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
19
|
Homologous trans-editing factors with broad tRNA specificity prevent mistranslation caused by serine/threonine misactivation. Proc Natl Acad Sci U S A 2015; 112:6027-32. [PMID: 25918376 DOI: 10.1073/pnas.1423664112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) establish the rules of the genetic code, whereby each amino acid is attached to a cognate tRNA. Errors in this process lead to mistranslation, which can be toxic to cells. The selective forces exerted by species-specific requirements and environmental conditions potentially shape quality-control mechanisms that serve to prevent mistranslation. A family of editing factors that are homologous to the editing domain of bacterial prolyl-tRNA synthetase includes the previously characterized trans-editing factors ProXp-ala and YbaK, which clear Ala-tRNA(Pro) and Cys-tRNA(Pro), respectively, and three additional homologs of unknown function, ProXp-x, ProXp-y, and ProXp-z. We performed an in vivo screen of 230 conditions in which an Escherichia coli proXp-y deletion strain was grown in the presence of elevated levels of amino acids and specific ARSs. This screen, together with the results of in vitro deacylation assays, revealed Ser- and Thr-tRNA deacylase function for this homolog. A similar activity was demonstrated for Bordetella parapertussis ProXp-z in vitro. These proteins, now renamed "ProXp-ST1" and "ProXp-ST2," respectively, recognize multiple tRNAs as substrates. Taken together, our data suggest that these free-standing editing domains have the ability to prevent mistranslation errors caused by a number of ARSs, including lysyl-tRNA synthetase, threonyl-tRNA synthetase, seryl-tRNA synthetase, and alanyl-tRNA synthetase. The expression of these multifunctional enzymes is likely to provide a selective growth advantage to organisms subjected to environmental stresses and other conditions that alter the amino acid pool.
Collapse
|
20
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
21
|
Shepherd J, Ibba M. Bacterial transfer RNAs. FEMS Microbiol Rev 2015; 39:280-300. [PMID: 25796611 DOI: 10.1093/femsre/fuv004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
22
|
Novoa EM, Vargas-Rodriguez O, Lange S, Goto Y, Suga H, Musier-Forsyth K, Ribas de Pouplana L. Ancestral AlaX editing enzymes for control of genetic code fidelity are not tRNA-specific. J Biol Chem 2015; 290:10495-503. [PMID: 25724653 DOI: 10.1074/jbc.m115.640060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 01/15/2023] Open
Abstract
Accurate protein synthesis requires the hydrolytic editing of tRNAs incorrectly aminoacylated by aminoacyl-tRNA synthetases (ARSs). Recognition of cognate tRNAs by ARS is less error-prone than amino acid recognition, and, consequently, editing domains are generally believed to act only on the tRNAs cognate to their related ARSs. For example, the AlaX family of editing domains, including the editing domain of alanyl-tRNA synthetase and the related free-standing trans-editing AlaX enzymes, are thought to specifically act on tRNA(Ala), whereas the editing domains of threonyl-tRNA synthetases are specific for tRNA(Thr). Here we show that, contrary to this belief, AlaX-S, the smallest of the extant AlaX enzymes, deacylates Ser-tRNA(Thr) in addition to Ser-tRNA(Ala) and that a single residue is important to determine this behavior. Our data indicate that promiscuous forms of AlaX are ancestral to tRNA-specific AlaXs. We propose that former AlaX domains were used to maintain translational fidelity in earlier stages of genetic code evolution when mis-serylation of several tRNAs was possible.
Collapse
Affiliation(s)
- Eva Maria Novoa
- From the Institute for Research in Biomedicine, c/ Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Oscar Vargas-Rodriguez
- the Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Stefanie Lange
- From the Institute for Research in Biomedicine, c/ Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Yuki Goto
- the Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Hiroaki Suga
- the Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan, and
| | - Karin Musier-Forsyth
- the Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Lluís Ribas de Pouplana
- From the Institute for Research in Biomedicine, c/ Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain, the Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
23
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
24
|
Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M. Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. ACTA ACUST UNITED AC 2014; 15:181-90. [PMID: 25047712 DOI: 10.1007/s10969-014-9186-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/04/2014] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials.
Collapse
Affiliation(s)
- Vitul Jain
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
25
|
Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V, Blanchard A. Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet 2014; 10:e1004363. [PMID: 24809820 PMCID: PMC4014445 DOI: 10.1371/journal.pgen.1004363] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
Mollicutes is a class of parasitic bacteria that have evolved from a common Firmicutes ancestor mostly by massive genome reduction. With genomes under 1 Mbp in size, most Mollicutes species retain the capacity to replicate and grow autonomously. The major goal of this work was to identify the minimal set of proteins that can sustain ribosome biogenesis and translation of the genetic code in these bacteria. Using the experimentally validated genes from the model bacteria Escherichia coli and Bacillus subtilis as input, genes encoding proteins of the core translation machinery were predicted in 39 distinct Mollicutes species, 33 of which are culturable. The set of 260 input genes encodes proteins involved in ribosome biogenesis, tRNA maturation and aminoacylation, as well as proteins cofactors required for mRNA translation and RNA decay. A core set of 104 of these proteins is found in all species analyzed. Genes encoding proteins involved in post-translational modifications of ribosomal proteins and translation cofactors, post-transcriptional modifications of t+rRNA, in ribosome assembly and RNA degradation are the most frequently lost. As expected, genes coding for aminoacyl-tRNA synthetases, ribosomal proteins and initiation, elongation and termination factors are the most persistent (i.e. conserved in a majority of genomes). Enzymes introducing nucleotides modifications in the anticodon loop of tRNA, in helix 44 of 16S rRNA and in helices 69 and 80 of 23S rRNA, all essential for decoding and facilitating peptidyl transfer, are maintained in all species. Reconstruction of genome evolution in Mollicutes revealed that, beside many gene losses, occasional gains by horizontal gene transfer also occurred. This analysis not only showed that slightly different solutions for preserving a functional, albeit minimal, protein synthetizing machinery have emerged in these successive rounds of reductive evolution but also has broad implications in guiding the reconstruction of a minimal cell by synthetic biology approaches.
Collapse
Affiliation(s)
- Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Marc Breton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, Lyon, France
- Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy L'Etoile, France
| | - François Thiaucourt
- Centre International de Recherche en Agronomie pour le Développement, UMR CMAEE, Montpellier, France
| | - Christine Citti
- INRA, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
- Université de Toulouse, INP-ENVT, UMR1225, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Aurélien Barré
- Univ. Bordeaux, Centre de bioinformatique et de génomique fonctionnelle, CBiB, Bordeaux, France
| | - Satoko Yoshizawa
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Dominique Fourmy
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Université Paris-Sud, FRC 3115, Gif-sur-Yvette, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University Florida, Gainesville, Florida, United States of America
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- * E-mail:
| |
Collapse
|
26
|
Bartholow TG, Sanford BL, Cao B, Schmit HL, Johnson JM, Meitzner J, Bhattacharyya S, Musier-Forsyth K, Hati S. Strictly conserved lysine of prolyl-tRNA Synthetase editing domain facilitates binding and positioning of misacylated tRNA(Pro.). Biochemistry 2014; 53:1059-68. [PMID: 24450765 PMCID: PMC3986007 DOI: 10.1021/bi401279r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To ensure high fidelity in translation, many aminoacyl-tRNA synthetases, enzymes responsible for attaching specific amino acids to cognate tRNAs, require proof-reading mechanisms. Most bacterial prolyl-tRNA synthetases (ProRSs) misactivate alanine and employ a post-transfer editing mechanism to hydrolyze Ala-tRNA(Pro). This reaction occurs in a second catalytic site (INS) that is distinct from the synthetic active site. The 2'-OH of misacylated tRNA(Pro) and several conserved residues in the Escherichia coli ProRS INS domain are directly involved in Ala-tRNA(Pro) deacylation. Although mutation of the strictly conserved lysine 279 (K279) results in nearly complete loss of post-transfer editing activity, this residue does not directly participate in Ala-tRNA(Pro) hydrolysis. We hypothesized that the role of K279 is to bind the phosphate backbone of the acceptor stem of misacylated tRNA(Pro) and position it in the editing active site. To test this hypothesis, we carried out pKa, charge neutralization, and free-energy of binding calculations. Site-directed mutagenesis and kinetic studies were performed to verify the computational results. The calculations revealed a considerably higher pKa of K279 compared to an isolated lysine and showed that the protonated state of K279 is stabilized by the neighboring acidic residue. However, substitution of this acidic residue with a positively charged residue leads to a significant increase in Ala-tRNA(Pro) hydrolysis, suggesting that enhancement in positive charge density in the vicinity of K279 favors tRNA binding. A charge-swapping experiment and free energy of binding calculations support the conclusion that the positive charge at position 279 is absolutely necessary for tRNA binding in the editing active site.
Collapse
Affiliation(s)
- Thomas G Bartholow
- Department of Chemistry, University of Wisconsin-Eau Claire , Eau Claire, Wisconsin, 54702, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Das M, Vargas-Rodriguez O, Goto Y, Suga H, Musier-Forsyth K. Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation. Nucleic Acids Res 2013; 42:3943-53. [PMID: 24371276 PMCID: PMC3973320 DOI: 10.1093/nar/gkt1332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Errors in protein synthesis due to mispairing of amino acids with tRNAs jeopardize cell viability. Several checkpoints to prevent formation of Ala- and Cys-tRNAPro have been described, including the Ala-specific editing domain (INS) of most bacterial prolyl-tRNA synthetases (ProRSs) and an autonomous single-domain INS homolog, YbaK, which clears Cys-tRNAPro in trans. In many species where ProRS lacks an INS domain, ProXp-ala, another single-domain INS-like protein, is responsible for editing Ala-tRNAPro. Although the amino acid specificity of these editing domains has been established, the role of tRNA sequence elements in substrate selection has not been investigated in detail. Critical recognition elements for aminoacylation by bacterial ProRS include acceptor stem elements G72/A73 and anticodon bases G35/G36. Here, we show that ProXp-ala and INS require these same acceptor stem and anticodon elements, respectively, whereas YbaK lacks inherent tRNA specificity. Thus, these three related domains use divergent approaches to recognize tRNAs and prevent mistranslation. Whereas some editing domains have borrowed aspects of tRNA recognition from the parent aminoacyl-tRNA synthetase, relaxed tRNA specificity leading to semi-promiscuous editing may offer advantages to cells.
Collapse
Affiliation(s)
- Mom Das
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA and Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
28
|
Li L, Carter CW. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. J Biol Chem 2013; 288:34736-45. [PMID: 24142809 DOI: 10.1074/jbc.m113.510958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tryptophanyl-tRNA Synthetase (TrpRS) Urzyme (fragments A and C), a 130-residue construct containing only secondary structures positioning the HIGH and KMSKS active site signatures and the specificity helix, accelerates tRNA(Trp) aminoacylation with ∼10-fold specificity toward tryptophan, relative to structurally related tyrosine. We proposed that including the 76-residue connecting peptide 1 insertion (Fragment B) might enhance tryptophan affinity and hence amino acid specificity, because that subdomain constrains the orientation of the specificity helix. We test that hypothesis by characterizing two new constructs: the catalytic domain (fragments A-C) and the Urzyme supplemented with the anticodon-binding domain (fragments A, C, and D). The three constructs, together with the full-length enzyme (fragments A-D), comprise a factorial experiment from which we deduce individual and combined contributions of the two modules to the steady-state kinetics parameters for tryptophan-dependent (32)PPi exchange, specificity for tryptophan versus tyrosine, and aminoacylation of tRNA(Trp). Factorial design directly measures the energetic coupling between the two more recent modules in the contemporary enzyme and demonstrates its functionality. Combining the TrpRS Urzyme individually in cis with each module affords an analysis of long term evolution of amino acid specificity and tRNA aminoacylation, both essential for expanding the genetic code. Either module significantly enhances tryptophan activation but unexpectedly eliminates amino acid specificity for tryptophan, relative to tyrosine, and significantly reduces tRNA aminoacylation. Exclusive dependence of both enhanced functionalities of full-length TrpRS on interdomain coupling energies between the two new modules argues that independent recruitment of connecting peptide 1 and the anticodon-binding domain during evolutionary development of Urzymes would have entailed significant losses of fitness.
Collapse
Affiliation(s)
- Li Li
- From the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260
| | | |
Collapse
|
29
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
30
|
Zhou X, Wang E. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:921-32. [PMID: 23982864 DOI: 10.1007/s11427-013-4542-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein. To perform its role in protein biosynthesis, it has to be accurately recognized by aminoacyl-tRNA synthetases (aaRSs) to generate aminoacyl-tRNAs (aa-tRNAs). The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control. Production and utilization of mis-charged tRNAs are usually detrimental for all the species, resulting in cellular dysfunctions. Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors. However, in very limited instances, mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery. Here, from the point of accuracy in tRNA charging, we review our understanding about the mechanism ensuring correct aa-tRNA generation. In addition, some unique mis-charged tRNA species necessary for the organism are also briefly described.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | |
Collapse
|
31
|
Johnson JM, Sanford BL, Strom AM, Tadayon SN, Lehman BP, Zirbes AM, Bhattacharyya S, Musier-Forsyth K, Hati S. Multiple pathways promote dynamical coupling between catalytic domains in Escherichia coli prolyl-tRNA synthetase. Biochemistry 2013; 52:4399-412. [PMID: 23731272 DOI: 10.1021/bi400079h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases are multidomain enzymes that catalyze covalent attachment of amino acids to their cognate tRNA. Cross-talk between functional domains is a prerequisite for this process. In this study, we investigate the molecular mechanism of site-to-site communication in Escherichia coli prolyl-tRNA synthetase (Ec ProRS). Earlier studies have demonstrated that evolutionarily conserved and/or co-evolved residues that are engaged in correlated motion are critical for the propagation of functional conformational changes from one site to another in modular proteins. Here, molecular simulation and bioinformatics-based analysis were performed to identify dynamically coupled and evolutionarily constrained residues that form contiguous pathways of residue-residue interactions between the aminoacylation and editing domains of Ec ProRS. The results of this study suggest that multiple pathways exist between these two domains to maintain the dynamic coupling essential for enzyme function. Moreover, residues in these interaction networks are generally highly conserved. Site-directed changes of on-pathway residues have a significant impact on enzyme function and dynamics, suggesting that any perturbation along these pathways disrupts the native residue-residue interactions that are required for effective communication between the two functional domains. Free energy analysis revealed that communication between residues within a pathway and cross-talk between pathways are important for coordinating functions of different domains of Ec ProRS for efficient catalysis.
Collapse
Affiliation(s)
- James M Johnson
- Department of Chemistry, University of Wisconsin-Eau Claire, Wisconsin 54702, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Aminoacyl-tRNA substrate and enzyme backbone atoms contribute to translational quality control by YbaK. J Phys Chem B 2013; 117:4521-7. [PMID: 23185990 PMCID: PMC3601562 DOI: 10.1021/jp308628y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA(Pro) with Ala and Cys. The cis-editing domain of ProRS (INS) hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is hydrolyzed by a single domain editing protein, YbaK, in trans. Previous studies have proposed a model of substrate-binding by bacterial YbaK and elucidated a substrate-assisted mechanism of catalysis. However, the microscopic steps in this mechanism have not been investigated. In this work, we carried out biochemical experiments together with a detailed hybrid quantum mechanics/molecular mechanics study to investigate the mechanism of catalysis by Escherichia coli YbaK. The results support a mechanism wherein cyclization of the substrate Cys results in cleavage of the Cys-tRNA ester bond. Protein side chains do not play a significant role in YbaK catalysis. Instead, protein backbone atoms play crucial roles in stabilizing the transition state, while the product is stabilized by the 2'-OH of the tRNA.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Mom Das
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
33
|
Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity. Biochem J 2013; 450:243-52. [PMID: 23210460 DOI: 10.1042/bj20121493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
aaRSs (aminoacyl-tRNA synthetases) are responsible for ensuring the fidelity of the genetic code translation by accurately linking a particular amino acid to its cognate tRNA isoacceptor. To ensure accuracy of protein biosynthesis, some aaRSs have evolved an editing process to remove mischarged tRNA. The hydrolysis of the mischarged tRNA usually occurs in an editing domain, which is inserted into or appended to the main body of the aaRS. In addition, autonomous, editing domain-homologous proteins can also trans-edit mischarged tRNA in concert or in compensating for the editing function of its corresponding aaRS. The freestanding ProX is a homologue of the editing domain of bacterial ProRS (prolyl-tRNA synthetase). In the present study, we cloned for the first time a gene encoding HsProX (human cytoplasmic ProX) and purified the expressed recombinant protein. The catalytic specificity of HsProX for non-cognate amino acids and identity elements on tRNAPro for editing were also investigated. We found that HsProX could deacylate mischarged Ala-tRNAPro, but not Cys-HstRNA(UGGPro), and specifically targeted the alanine moiety of Ala-tRNAPro. The importance of the CCA76 end of the tRNA for deacylation activity and key amino acid residues in HsProX for its editing function were also identified.
Collapse
|
34
|
Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Biochem J 2013; 449:123-31. [PMID: 23035846 DOI: 10.1042/bj20121258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
EcLeuRS [Escherichia coli LeuRS (leucyl-tRNA synthetase)] has evolved both tRNA-dependent pre- and post-transfer editing capabilities to ensure catalytic specificity. Both editing functions rely on the entry of the tRNA CCA tail into the editing domain of the LeuRS enzyme, which, according to X-ray crystal structural studies, leads to a dynamic disordered orientation of the interface between the synthetic and editing domains. The results of the present study show that this tRNA-triggered conformational rearrangement leads to interdomain communication between the editing and synthetic domains through their interface, and this communication mechanism modulates the activity of tRNA-dependent pre-transfer editing. Furthermore, tRNA-dependent editing reaction inhibits misactivating non-cognate amino acids from the synthetic active site. These results also suggested a novel quality control mechanism of EcLeuRS which is achieved through the co-ordination between the synthetic and editing domains.
Collapse
|
35
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
36
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
37
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Substrate and enzyme functional groups contribute to translational quality control by bacterial prolyl-tRNA synthetase. J Phys Chem B 2012; 116:6991-9. [PMID: 22458656 DOI: 10.1021/jp300845h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aminoacyl-tRNA synthetases activate specific amino acid substrates and attach them via an ester linkage to cognate tRNA molecules. In addition to cognate proline, prolyl-tRNA synthetase (ProRS) can activate cysteine and alanine and misacylate tRNA(Pro). Editing of the misacylated aminoacyl-tRNA is required for error-free protein synthesis. An editing domain (INS) appended to bacterial ProRS selectively hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is cleared by a freestanding editing domain, YbaK, through a unique mechanism involving substrate sulfhydryl chemistry. The detailed mechanism of catalysis by INS is currently unknown. To understand the alanine specificity and mechanism of catalysis by INS, we have explored several possible mechanisms of Ala-tRNA(Pro) deacylation via hybrid QM/MM calculations. Experimental studies were also performed to test the role of several residues in the INS active site as well as various substrate functional groups in catalysis. Our results support a critical role for the tRNA 2'-OH group in substrate binding and catalytic water activation. A role is also proposed for the protein's conserved GXXXP loop in transition state stabilization and for the main chain atoms of Gly261 in a proton relay that contributes substantially to catalysis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
38
|
Sanford B, Cao B, Johnson JM, Zimmerman K, Strom AM, Mueller RM, Bhattacharyya S, Musier-Forsyth K, Hati S. Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases. Biochemistry 2012; 51:2146-56. [PMID: 22356126 DOI: 10.1021/bi300097g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity.
Collapse
Affiliation(s)
- Brianne Sanford
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fischer F, Huot JL, Lorber B, Diss G, Hendrickson TL, Becker HD, Lapointe J, Kern D. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res 2012; 40:4965-76. [PMID: 22362756 PMCID: PMC3367201 DOI: 10.1093/nar/gks167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life.
Collapse
Affiliation(s)
- Paul Schimmel
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Yadavalli SS, Ibba M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:1-43. [PMID: 22243580 DOI: 10.1016/b978-0-12-386497-0.00001-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
42
|
Kumar S, Das M, Hadad CM, Musier-Forsyth K. Substrate specificity of bacterial prolyl-tRNA synthetase editing domain is controlled by a tunable hydrophobic pocket. J Biol Chem 2011; 287:3175-84. [PMID: 22128149 DOI: 10.1074/jbc.m111.313619] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the covalent attachment of amino acids onto their cognate tRNAs. High fidelity in this reaction is crucial to the accurate decoding of genetic information and is ensured, in part, by proofreading of the newly synthesized aminoacyl-tRNAs. Prolyl-tRNA synthetases (ProRS) mischarge tRNA(Pro) with alanine or cysteine due to their smaller or similar sizes relative to cognate proline. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) present in most bacterial ProRSs. In contrast, the INS domain is unable to deacylate Cys-tRNA(Pro), which is hydrolyzed exclusively by a freestanding trans-editing domain known as YbaK. Here, we have used computational and experimental approaches to probe the molecular basis of INS domain alanine specificity. We show that the methyl side chain of alanine binds in a well defined hydrophobic pocket characterized by conserved residues Ile-263, Leu-266, and Lys-279 and partially conserved residue Thr-277 in Escherichia coli ProRS. Site-specific mutation of these residues leads to a significant loss in Ala-tRNA(Pro) hydrolysis, and altering the size of the pocket modulates the substrate specificity. Remarkably, one ProRS INS domain variant displays a complete switch in substrate specificity from alanine to cysteine. The mutually exclusive aminoacyl-tRNA substrate specificities of the WT and engineered INS domains is consistent with the evolution of two distinct editing domains that function to clear Ala-tRNA(Pro) and Cys-tRNA(Pro) in vivo.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
43
|
Sarkar J, Martinis SA. Amino-acid-dependent shift in tRNA synthetase editing mechanisms. J Am Chem Soc 2011; 133:18510-3. [PMID: 22017352 DOI: 10.1021/ja2048122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many aminoacyl-tRNA synthetases prevent mistranslation by relying upon proofreading activities at multiple stages of the aminoacylation reaction. In leucyl-tRNA synthetase (LeuRS), editing activities that precede or are subsequent to tRNA charging have been identified. Although both are operational, either the pre- or post-transfer editing activity can predominate. Yeast cytoplasmic LeuRS (ycLeuRS) misactivates structurally similar noncognate amino acids including isoleucine and methionine. We show that ycLeuRS has a robust post-transfer editing activity that efficiently clears tRNA(Leu) mischarged with isoleucine. In comparison, the enzyme's post-transfer hydrolytic activity against tRNA(Leu) mischarged with methionine is weak. Rather, methionyl-adenylate is cleared robustly via an enzyme-mediated pre-transfer editing activity. We hypothesize that, similar to E. coli LeuRS, ycLeuRS has coexisting functional pre- and post-transfer editing activities. In the case of ycLeuRS, a shift between the two editing pathways is triggered by the identity of the noncognate amino acid.
Collapse
Affiliation(s)
- Jaya Sarkar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 419 Roger Adams Laboratory, Box B-4, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
44
|
Sarkar J, Mao W, Lincecum TL, Alley MRK, Martinis SA. Characterization of benzoxaborole-based antifungal resistance mutations demonstrates that editing depends on electrostatic stabilization of the leucyl-tRNA synthetase editing cap. FEBS Lett 2011; 585:2986-91. [PMID: 21856301 DOI: 10.1016/j.febslet.2011.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022]
Abstract
The broad-spectrum benzoxaborole antifungal AN2690 blocks protein synthesis by inhibiting leucyl-tRNA synthetase (LeuRS) via a novel oxaborole tRNA trapping mechanism in the editing site. Herein, one set of resistance mutations is at Asp487 outside the LeuRS hydrolytic editing pocket, in a region of unknown function. It is located within a eukaryote/archaea specific insert I4, which forms part of a cap over a benzoxaborole-AMP that is bound in the LeuRS CP1 domain editing active site. Mutational and biochemical analysis at Asp487 identified a salt bridge between Asp487 and Arg316 in the hinge region of the I4 cap of yeast LeuRS that is critical for tRNA deacylation. We hypothesize that this electrostatic interaction stabilizes the cap during binding of the editing substrate for hydrolysis.
Collapse
Affiliation(s)
- Jaya Sarkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
45
|
So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K. Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. J Biol Chem 2011; 286:31810-20. [PMID: 21768119 DOI: 10.1074/jbc.m111.232611] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases attach specific amino acids to cognate tRNAs. Prolyl-tRNA synthetases are known to mischarge tRNA(Pro) with the smaller amino acid alanine and with cysteine, which is the same size as proline. Quality control in proline codon translation is partly ensured by an editing domain (INS) present in most bacterial prolyl-tRNA synthetases that hydrolyzes smaller Ala-tRNA(Pro) and excludes Pro-tRNA(Pro). In contrast, Cys-tRNA(Pro) is cleared by a freestanding INS domain homolog, YbaK. Here, we have investigated the molecular mechanism of catalysis and substrate recognition by Hemophilus influenzae YbaK using site-directed mutagenesis, enzymatic assays of isosteric substrates and functional group analogs, and computational modeling. These studies together with mass spectrometric characterization of the YbaK-catalyzed reaction products support a novel substrate-assisted mechanism of Cys-tRNA(Pro) deacylation that prevents nonspecific Pro-tRNA(Pro) hydrolysis. Collectively, we propose that the INS and YbaK domains co-evolved distinct mechanisms involving steric exclusion and thiol-specific chemistry, respectively, to ensure accurate decoding of proline codons.
Collapse
Affiliation(s)
- Byung Ran So
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
p23H implicated as cis/trans regulator of AlaXp-directed editing for mammalian cell homeostasis. Proc Natl Acad Sci U S A 2011; 108:2723-8. [PMID: 21285375 DOI: 10.1073/pnas.1019400108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The toxicity of mistranslation of serine for alanine appears to be universal, and is prevented in part by the editing activities of alanyl-tRNA synthetases (AlaRSs), which remove serine from mischarged tRNA(Ala). The problem of serine mistranslation is so acute that free-standing, genome-encoded fragments of the editing domain of AlaRSs are found throughout evolution. These AlaXps are thought to provide functional redundancy of editing. Indeed, archaeal versions rescue the conditional lethality of bacterial cells harboring an editing-inactive AlaRS. In mammals, AlaXps are encoded by a gene that fuses coding sequences of a homolog of the HSP90 cochaperone p23 (p23(H)) to those of AlaXp, to create p23(H)AlaXp. Not known is whether this fusion protein, or various potential splice variants, are expressed as editing-proficient proteins in mammalian cells. Here we show that both p23(H)AlaXp and AlaXp alternative splice variants can be detected as proteins in mammalian cells. The variant that ablated p23(H) and encoded just AlaXp was active in vitro. In contrast, neither the p23(H)AlaXp fusion protein, nor the mixture of free p23(H) with AlaXp, was active. Further experiments in a mammalian cell-based system showed that RNAi-directed suppression of sequences encoding AlaXp led to a serine-sensitive increase in the accumulation of misfolded proteins. The results demonstrate the dependence of mammalian cell homeostasis on AlaXp, and implicate p23(H) as a cis- and trans-acting regulator of its activity.
Collapse
|
47
|
Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat Rev Microbiol 2010; 8:849-56. [PMID: 21079633 DOI: 10.1038/nrmicro2472] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison of in vitro and in vivo findings. This provides new insights as to why mistranslation can have both positive and negative effects on growth and viability.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
48
|
tRNAs: cellular barcodes for amino acids. FEBS Lett 2009; 584:387-95. [PMID: 19903480 DOI: 10.1016/j.febslet.2009.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
Abstract
The role of tRNA in translating the genetic code has received considerable attention over the last 50 years, and we now know in great detail how particular amino acids are specifically selected and brought to the ribosome in response to the corresponding mRNA codon. Over the same period, it has also become increasingly clear that the ribosome is not the only destination to which tRNAs deliver amino acids, with processes ranging from lipid modification to antibiotic biosynthesis all using aminoacyl-tRNAs as substrates. Here we review examples of alternative functions for tRNA beyond translation, which together suggest that the role of tRNA is to deliver amino acids for a variety of processes that includes, but is not limited to, protein synthesis.
Collapse
|
49
|
Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, Silvestrini F, Pizzi E, Sharma A. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genomics 2009; 10:644. [PMID: 20042123 PMCID: PMC2813244 DOI: 10.1186/1471-2164-10-644] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 12/31/2009] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRSs) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism. Results Using various computational and bioinformatics tools, we have identified 37 aaRSs in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRSs in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRSs to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs. Conclusion We have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria.
Collapse
Affiliation(s)
- Tarun Kumar Bhatt
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Translating the 4-letter code of RNA into the 22-letter alphabet of proteins is a central feature of cellular life. The fidelity with which mRNA is translated during protein synthesis is determined by two factors: the availability of aminoacyl-tRNAs composed of cognate amino acid:tRNA pairs and the accurate selection of aminoacyl-tRNAs on the ribosome. The role of aminoacyl-tRNA synthetases in translation is to define the genetic code by accurately pairing cognate tRNAs with their corresponding amino acids. Synthetases achieve the amino acid substrate specificity necessary to keep errors in translation to an acceptable level in two ways: preferential binding of the cognate amino acid and selective editing of near-cognate amino acids. Editing significantly decreases the frequency of errors and is important for translational quality control, and many details of the various editing mechanisms and their effect on different cellular systems are now starting to emerge.
Collapse
Affiliation(s)
- Jiqiang Ling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|