1
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Cai Y, Geacintov NE, Broyde S. Variable impact of conformationally distinct DNA lesions on nucleosome structure and dynamics: Implications for nucleotide excision repair. DNA Repair (Amst) 2019; 87:102768. [PMID: 32018112 DOI: 10.1016/j.dnarep.2019.102768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022]
Abstract
The packaging of DNA in nucleosomes presents a barrier for biological transactions including replication, transcription and repair. However, despite years of research, how the DNA is freed from the histone proteins and thereby allows the molecular machines to access the DNA remains poorly understood. We are interested in global genomic nucleotide excision repair (GG-NER). It is established that the histones are obstacles to this process, and DNA lesions are repaired less efficiently in nucleosomes than in free DNA. In the present study, we utilized molecular dynamics simulations to elucidate the nature of the distortions and dynamics imposed in the nucleosome by a set of three structually different lesions that vary in GG-NER efficiencies in free DNA, and in nucleosomes [Shafirovich, Geacintov, et. al, 2019]. Two of these are bulky lesions derived from metabolic activation of the environmental carcinogen benzo[a]pyrene, the 10R (+)-cis-anti-B[a]P-N2-dG and the stereoisomeric 10S (+)-trans-anti-B[a]P-N2-dG, which respectively adopt base-displaced/intercalated and minor groove-aligned conformations in DNA. The third is a non-bulky lesion, the 5'R-8-cyclo-2'-deoxyguanosine cross-link, produced by reactive oxygen and nitrogen species; cyclopurine lesions are highly mutagenic. These adducts are placed near the dyad axis, and rotationally with the lesion-containing strand facing towards or away from the histones. While each lesion has distinct conformational characteristics that are retained in the nucleosome, a spectrum of structural and dynamic disturbances, from slight to substantial, are displayed that depend on the lesion's structure and position in the nucleosome. We hypothesize that these intrinsic structural and dynamic distinctions provide different signals to initiate the cascade of chromatin-opening processes, including acetylation and other post translational modifications, remodeling by ATP-dependent complexes and spontaneous unwrapping that regulate the rate of access to the lesion; this may translate ultimately into varying GG-NER efficiencies, including repair resistance when signals for access are too weak.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
3
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
4
|
ATM Induces Cell Death with Autophagy in Response to H 2O 2 Specifically in Caenorhabditis elegans Nondividing Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3862070. [PMID: 30057676 PMCID: PMC6051064 DOI: 10.1155/2018/3862070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/28/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
Introduction Ataxia-telangiectasia-mutated (ATM) kinase is a master regulator of the DNA damage response and is directly activated by reactive oxygen species (ROSs) in addition to DNA double-stranded breaks. However, the physiological function of the response to ROSs is not understood. Purpose In the present study, we investigated how ATM responds to ROSs in Caenorhabditis elegans (C. elegans). Materials and Methods First, we measured sensitivities of larvae to DNA-damaging agents and ROSs. Next, we analyzed the drug sensitivities of fully matured adult worms, which consist of nondividing somatic cells. Dead cell staining with acridine orange was performed to visualize the dead cells. In addition, we performed GFP reporter assays of lgg-1, an autophagy-related gene, to determine the types of cell death. Results atm-1(tm5027) larvae showed a wide range of sensitivities to both DNA-damaging agents and ROSs. In contrast, fully matured adult worms, which consist of nondividing somatic cells, showed sensitivity to DNA-damaging agent, NaHSO3, but they showed resistance to H2O2. Dead cell staining and GFP reporter assays of lgg-1 suggest that C. elegans ATM-1 induces the cell death with autophagy in intestinal cells in response to H2O2. Conclusion We revealed that ATM induces cell death in response to H2O2.
Collapse
|
5
|
Wang K, Taylor JSA. Modulation of cyclobutane thymine photodimer formation in T11-tracts in rotationally phased nucleosome core particles and DNA minicircles. Nucleic Acids Res 2017; 45:7031-7041. [PMID: 28525579 PMCID: PMC5499554 DOI: 10.1093/nar/gkx427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/11/2017] [Indexed: 02/01/2023] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) are DNA photoproducts linked to skin cancer, whose mutagenicity depends in part on their frequency of formation and deamination. Nucleosomes modulate CPD formation, favoring outside facing sites and disfavoring inward facing sites. A similar pattern of CPD formation in protein-free DNA loops suggests that DNA bending causes the modulation in nucleosomes. To systematically study the cause and effect of nucleosome structure on CPD formation and deamination, we have developed a circular permutation synthesis strategy for positioning a target sequence at different superhelix locations (SHLs) across a nucleosome in which the DNA has been rotationally phased with respect to the histone octamer by TG motifs. We have used this system to show that the nucleosome dramatically modulates CPD formation in a T11-tract that covers one full turn of the nucleosome helix at seven different SHLs, and that the position of maximum CPD formation at all locations is shifted to the 5΄-side of that found in mixed-sequence nucleosomes. We also show that an 80-mer minicircle DNA using the same TG-motifs faithfully reproduces the CPD pattern in the nucleosome, indicating that it is a good model for protein-free rotationally phased bent DNA of the same curvature as in a nucleosome, and that bending is modulating CPD formation.
Collapse
Affiliation(s)
- Kesai Wang
- Department of Chemistry, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
6
|
|
7
|
Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution. Proc Natl Acad Sci U S A 2016; 113:9057-62. [PMID: 27457959 DOI: 10.1073/pnas.1606667113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UV-induced DNA lesions are important contributors to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. Genome-wide profiling of repair activity in UV irradiated cells has revealed significant variations in repair kinetics across the genome, not only among large chromatin domains, but also at individual transcription factor binding sites. Here we report that there is also a striking but predictable variation in initial UV damage levels across a eukaryotic genome. We used a new high-throughput sequencing method, known as CPD-seq, to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at single-nucleotide resolution throughout the yeast genome. This analysis revealed that individual nucleosomes significantly alter CPD formation, protecting nucleosomal DNA with an inward rotational setting, even though such DNA is, on average, more intrinsically prone to form CPD lesions. CPD formation is also inhibited by DNA-bound transcription factors, in effect shielding important DNA elements from UV damage. Analysis of CPD repair revealed that initial differences in CPD damage formation often persist, even at later repair time points. Furthermore, our high-resolution data demonstrate, to our knowledge for the first time, that CPD repair is significantly less efficient at translational positions near the dyad of strongly positioned nucleosomes in the yeast genome. These findings define the global roles of nucleosomes and transcription factors in both UV damage formation and repair, and have important implications for our understanding of UV-induced mutagenesis in human cancers.
Collapse
|
8
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
9
|
Abstract
How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.
Collapse
|
10
|
Moriwaki T, Kato Y, Nakamura C, Ishikawa S, Zhang-Akiyama QM. A novel DNA damage response mediated by DNA mismatch repair in Caenorhabditis elegans: induction of programmed autophagic cell death in non-dividing cells. Genes Cancer 2015; 6:341-55. [PMID: 26413217 PMCID: PMC4575921 DOI: 10.18632/genesandcancer.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/28/2015] [Indexed: 12/11/2022] Open
Abstract
DNA mismatch repair (MMR) contributes to genome integrity by correcting errors of DNA polymerase and inducing cell death in response to DNA damage. Dysfunction of MMR results in increased mutation frequency and cancer risk. Clinical researches revealed that MMR abnormalities induce cancers of non-dividing tissues, such as kidney and liver. However, how MMR suppresses cancer in non-dividing tissues is not understood. To address that mechanism, we analyzed the roles of MMR in non-dividing cells using Caenorhabditis elegans (C. elegans), in which all somatic cells are non-dividing in the adult stage. In this study, we used stable MMR-mutant lines with a balancer chromosome. First, we confirmed that deficiency of MMR leads to resistance to various mutagens in C. elegans dividing cells. Next, we performed drug resistance assays, and found that MMR-deficient adult worms were resistant to SN1-type alkylating and oxidizing agents. In addition, dead cell staining and reporter assays of an autophagy-related gene demonstrated that the cell death was autophagic cell death. Interestingly, this autophagic cell death was not suppressed by caffeine, implying that MMR induces death of non-dividing cells in an atl-1-independent manner. Hence, we propose the hypothesis that MMR prevents cancers in non-dividing tissues by directly inducing cell death.
Collapse
Affiliation(s)
- Takahito Moriwaki
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Yuichi Kato
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Chihiro Nakamura
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Satoru Ishikawa
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
11
|
Cai Y, Kropachev K, Terzidis MA, Masi A, Chatgilialoglu C, Shafirovich V, Geacintov NE, Broyde S. Differences in the Access of Lesions to the Nucleotide Excision Repair Machinery in Nucleosomes. Biochemistry 2015; 54:4181-5. [PMID: 26091016 PMCID: PMC4862310 DOI: 10.1021/acs.biochem.5b00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nucleosomes, the access of DNA lesions to nucleotide excision repair is hindered by histone proteins. However, evidence that the nature of the DNA lesions may play a role in facilitating access is emerging, but these phenomena are not well-understood. We have used molecular dynamics simulations to elucidate the structural, dynamic, and energetic properties of the R and S 5'-8-cyclo-2'-dG and the (+)-cis-anti-B[a]P-dG lesions in a nucleosome. Our results show that the (+)-cis-anti-B[a]P-dG adduct is more dynamic and more destabilizing than the smaller and more constrained 5',8-cyclo-2'-dG lesions, suggesting more facile access to the more bulky (+)-cis-anti-B[a]P-dG lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, 40129, Italy
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, 15341 Agia, Paraskevi, Athens, Greece
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003, United States
| |
Collapse
|
12
|
Song Q, Cannistraro VJ, Taylor JS. Synergistic modulation of cyclobutane pyrimidine dimer photoproduct formation and deamination at a TmCG site over a full helical DNA turn in a nucleosome core particle. Nucleic Acids Res 2014; 42:13122-33. [PMID: 25389265 PMCID: PMC4245940 DOI: 10.1093/nar/gku1049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=mCG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=mCG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
13
|
Hinz JM. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mutat Res 2014; 766-767:19-24. [PMID: 25083139 DOI: 10.1016/j.mrfmmm.2014.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 01/10/2023]
Abstract
Glycosylases responsible for recognizing DNA lesions and initiating Base Excision Repair (BER) are impeded by the presence of histones, which are essential for compaction of the genetic material in the nucleus. Abasic sites are an abundant mutagenic lesion in the DNA, arising spontaneously and as the product of glycosylase activity, making it a common intermediate in BER. The apurinic/apyrimidinic endonuclease 1 (APE1) recognizes abasic sites and cleaves the DNA backbone adjacent to the lesion, creating the single-strand break essential for the subsequent steps of BER. In this study the endonuclease activity of human APE1 was measured on reconstituted nucleosome core particles (NCPs) with DNA containing enzymatically-created abasic sites (AP) or the abasic site analog tetrahydrofuran (TF) at different rotational positions relative to the histone core surface. The presence of histones on the DNA reduced APE1 activity overall, and the magnitude was greatly influenced by differences in orientation of the lesions along the DNA gyre relative to the histone core. Abasic moieties oriented with their phosphate backbones adjacent to the underlying histones (In) were cleaved less efficiently than those oriented away from the histone core (Out) or between the In and Out orientations (Mid). The impact on APE1 at each orientation was very similar between the AP and TF lesions, highlighting the dependability of the TF abasic analog in APE1 activity measurements in nucleosomes. Measurement of APE1 binding to the NCP substrates reveals a substantial reduction in its interaction with nucleosomes compared to naked DNA, also in a lesion orientation-dependent manner, reinforcing the concept that reduction in APE1 activity on nucleosomes is due to occlusion from its abasic DNA substrate by the histones. These results suggest that APE1 activity in nucleosomes, like BER glycosylases, is primarily regulated by its chance interactions with transiently exposed lesions.
Collapse
Affiliation(s)
- John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
14
|
Finch AS, Davis WB, Rokita SE. Accumulation of the cyclobutane thymine dimer in defined sequences of free and nucleosomal DNA. Photochem Photobiol Sci 2014; 12:1474-82. [PMID: 23801267 DOI: 10.1039/c3pp50147g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Photochemical cyclobutane dimerization of adjacent thymines generates the major lesion in DNA caused by exposure to sunlight. Not all nucleotide sequences and structures are equally susceptible to this reaction or its potential to create mutations. Photostationary levels of the cyclobutane thymine dimer have now been quantified in homogenous samples of DNA reconstituted into nucleosome core particles to examine the basis for previous observations that such structures could induce a periodicity in dimer yield when libraries of heterogeneous sequences were used. Initial rate studies did not reveal a similar periodicity when a homogenous core particle was analyzed, but this approach examined only formation of this photochemically reversible cyclobutane dimer. Photostationary levels result from competition between dimerization and reversion and, as described in this study, still express none of the periodicity within two alternative core particles that was evident in heterogeneous samples. Such periodicity likely arises from only a limited set of sequences and structural environments that are not present in the homogeneous and well-characterized assemblies available to date.
Collapse
Affiliation(s)
- Amethist S Finch
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
15
|
Svedružić ŽM. Dnmt1 structure and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:221-54. [PMID: 21507353 DOI: 10.1016/b978-0-12-387685-0.00006-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dnmt1, the principal DNA methyltransferase in mammalian cells, is a large and a highly dynamic enzyme with multiple regulatory features that can control DNA methylation in cells. This chapter highlights how insights into Dnmt1 structure and function can advance our understanding of DNA methylation in cells. The allosteric site(s) on Dnmt1 can regulate processes of de novo and maintenance DNA methylation in cells. Remaining open questions include which molecules, by what mechanism, bind at the allosteric site(s) in cells? Different phosphorylation sites on Dnmt1 can change its activity or ability to bind DNA target sites. Thirty-one different molecules are currently known to have physical and/or functional interaction with Dnmt1 in cells. The Dnmt1 structure and enzymatic mechanism offer unique insights into those interactions. The interacting molecules are involved in chromatin organization, DNA repair, cell cycle regulation, and apoptosis and also include RNA polymerase II, some RNA-binding proteins, and some specific Dnmt1-inhibitory RNA molecules. Combined insights from studies of different enzymatic features of Dnmt1 offer novel ideas for development of drug candidates, and can be used in selection of promising drug candidates from more than 15 different compounds that have been identified as possible inhibitors of DNA methylation in cells.
Collapse
Affiliation(s)
- Željko M Svedružić
- Medical Biochemistry, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia
| |
Collapse
|
16
|
Song Q, Cannistraro VJ, Taylor JS. Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate. J Biol Chem 2010; 286:6329-35. [PMID: 21160086 DOI: 10.1074/jbc.m110.183178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. These mutations are proposed to arise from the insertion of A by DNA polymerase η opposite the T that results from deamination of the methylC ((m)C) within the CPD. Although the frequency of CPD formation and repair is modestly modulated by its rotational position within a nucleosome, the effect of position on the rate of (m)C deamination in a CPD has not been previously studied. We now report that deamination of a T(m)C CPD whose sugar phosphate backbone is positioned against the histone core surface decreases by a factor of 4.7, whereas that of a T(m)C CPD positioned away from the surface increases by a factor of 8.9 when compared with unbound DNA. Because the (m)Cs undergoing deamination are in similar steric environments, the difference in rate appears to be a consequence of a difference in the flexibility and compression of the two sites due to DNA bending. Considering that formation of the CPD positioned away from the surface is also enhanced by a factor of two, a T(m)CG site in this position might be expected to have up to an 84-fold higher probability of resulting in a UV-induced (m)C to T mutation than one positioned against the surface. These results indicate that rotational position may play an important role in the formation of UV-induced C to T mutation hotspots, as well as in the mutagenic mechanism of other DNA lesions.
Collapse
Affiliation(s)
- Qian Song
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
17
|
Abstract
The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased “intrinsic exposure” of nucleosome-associated DNA lesions in chromatin to repair proteins.
Collapse
Affiliation(s)
- Ming-Rui Duan
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
18
|
Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc Natl Acad Sci U S A 2010; 107:4646-51. [PMID: 20176960 DOI: 10.1073/pnas.0914443107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histones play a crucial role in the organization of DNA in the nucleus, but their presence can prevent interactions with DNA binding proteins responsible for repair of DNA damage. Uracil is an abundant mutagenic lesion recognized by uracil DNA glycosylase (UDG) in the first step of base excision repair (BER). In nucleosome core particles (NCPs), we find substantial differences in UDG-directed cleavage at uracils rotationally positioned toward (U-In) or away from (U-Out) the histone core, or midway between these orientations (U-Mid). Whereas U-Out NCPs show a cleavage rate just below that of naked DNA, U-In and U-Mid NCPs have markedly slower rates of cleavage. Crosslinking of U-In DNA to histones in NCPs yields a greater reduction in cleavage rate but, surprisingly, yields a higher rate of cleavage in U-Out NCPs compared with uncrosslinked NCPs. Moreover, the next enzyme in BER, APE1, stimulates the activity of human UDG in U-Out NCPs, suggesting these enzymes interact on the surface of histones in orientations accessible to UDG. These data indicate that the activity of UDG likely requires "trapping" transiently exposed states arising from the rotational dynamics of DNA on histones.
Collapse
|
19
|
Nag R, Smerdon MJ. Altering the chromatin landscape for nucleotide excision repair. Mutat Res 2009; 682:13-20. [PMID: 19167517 DOI: 10.1016/j.mrrev.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 12/15/2022]
Abstract
DNA acts as a 'workbench' for various nuclear processes that occur inside living cells. In eukaryotic cells, DNA is highly compacted in a structural hierarchy with histones and other proteins into chromatin. This compaction affects DNA structure and coordinates the accessibility to site-specific nuclear factors during DNA processing events. DNA repair is no exception to this general rule and several reviews have appeared recently that discuss this topic in detail [1-3]. Here, we focus on recent findings correlating changes in DNA repair with subtle variations in the chromatin landscape.
Collapse
Affiliation(s)
- Ronita Nag
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, United States
| | | |
Collapse
|
20
|
|
21
|
MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol Cell Biol 2008; 28:4734-44. [PMID: 18519584 DOI: 10.1128/mcb.00588-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the MBD4 glycosylase to excise a mismatched base from DNA has been assessed in vitro using DNA substrates with different extents of cytosine methylation, in the presence or absence of reconstituted nucleosomes. Despite the enhanced ability of MBD4 to bind to methylated cytosines, the efficiency of its glycosylase activity on T/G mismatches was slightly dependent on the extent of methylation of the DNA substrate. The reduction in activity caused by competitor DNA was likewise unaffected by the methylation status of the substrate or the competitor. Our results also show that MBD4 efficiently processed T/G mismatches within the nucleosome. Furthermore, the glycolytic activity of the enzyme was not affected by the positioning of the mismatch within the nucleosome. However, histone hyperacetylation facilitated the efficiency with which the bases were excised from the nucleosome templates, irrespective of the position of the mismatch relative to the pseudodyad axis of symmetry of the nucleosome.
Collapse
|
22
|
Ober M, Lippard SJ. A 1,2-d(GpG) cisplatin intrastrand cross-link influences the rotational and translational setting of DNA in nucleosomes. J Am Chem Soc 2008; 130:2851-61. [PMID: 18269283 PMCID: PMC2739446 DOI: 10.1021/ja710220x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of action of platinum-based anticancer drugs such as cis-diamminedichloroplatinum(II), or cisplatin, involves three early steps: cell entry, drug activation, and target binding. A major target in the cell, responsible for the anticancer activity, is nuclear DNA, which is packaged in nucleosomes that comprise chromatin. It is important to understand the nature of platinum-DNA interactions at the level of the nucleosome. The cis-{Pt(NH3)2}2+ 1,2-d(GpG) intrastrand cross-link is the DNA lesion most commonly encountered following cisplatin treatment. We therefore assembled two site-specifically platinated nucleosomes using synthetic DNA containing defined cis-{Pt(NH3)2}2+ 1,2-d(GpG) cross-links and core histones from HeLa-S3 cancer cells. The structures of these complexes were investigated by hydroxyl radical footprinting and exonuclease III mapping. Our experiments demonstrate that the 1,2-d(GpG) cross-link alters the rotational setting of the DNA on the histone octamer core such that the lesion faces inward, with disposition angles of the major groove relative to the core of xi approximately -20 degrees and xi approximately 40 degrees . We observe increased solvent accessibility of the platinated DNA strand, which may be caused by a structural perturbation in proximity of the 1,2-d(GpG) cisplatin lesion. The effect of the 1,2-d(GpG) cisplatin adduct on the translational setting of the nucleosomal DNA depends strongly on the position of the adduct within the sequence. If the cross-link is located at a site that is in phase with the preferred rotational setting of the unplatinated nucleosomal DNA, the effect on the translational position is negligible. Minor exonuclease III digestion products in this substrate indicate that the cisplatin adduct permits only those translational settings that differ from one another by integral numbers of DNA helical turns. If the lesion is located out of phase with the preferred rotational setting, the translational position of the main conformation was shifted by 5 bp. Additionally, a fraction of platinated nucleosomes with widely distributed translational positions was observed, suggesting increased nucleosome sliding relative to platinated nucleosomes containing the 1,3-intrastrand d(GpTpG) cross-link investigated previously (Ober, M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 6278-6286).
Collapse
Affiliation(s)
- Matthias Ober
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen J. Lippard
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
23
|
Ober M, Lippard SJ. Cisplatin damage overrides the predefined rotational setting of positioned nucleosomes. J Am Chem Soc 2007; 129:6278-86. [PMID: 17432860 PMCID: PMC2501106 DOI: 10.1021/ja0706145] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cisplatin and carboplatin are used successfully to treat various types of cancer. The drugs target the nucleosomes of cancer cells and form intrastrand DNA cross-links that are located in the major groove. We constructed two site-specifically modified nucleosomes containing defined intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links. Histones from HeLa-S3 cancer cells were transferred onto synthetic DNA duplexes having nucleosome positioning sequences. The structures of these complexes were investigated by hydroxyl radical footprinting. Employing nucleosome positioning sequences allowed us to quantify the structural deviation induced by the cisplatin adduct. Our experiments demonstrate that a platinum cross-link locally overrides the rotational setting predefined in the nucleosome positioning sequence such that the lesion faces toward the histone core. Identical results were obtained for two DNA duplexes in which the sites of platination differed by approximately half a helical turn. Additionally, we determined that cisplatin unwinds nucleosomal DNA globally by approximately 24 degree. The intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links are located in an area of the nucleosome that contains locally overwound DNA in undamaged reference nucleosomes. Because most nucleosome positions in vivo are defined by the intrinsic DNA sequence, the ability of cisplatin to influence the structure of these positioned nucleosomes may be of physiological relevance.
Collapse
Affiliation(s)
- Matthias Ober
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen J. Lippard
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
24
|
Osley MA, Tsukuda T, Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 2007; 618:65-80. [PMID: 17291544 PMCID: PMC1904433 DOI: 10.1016/j.mrfmmm.2006.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA damage repair. In this review, we focus on the role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair. NER and DSB repair use very different enzymatic machineries, and these two modes of DNA damage repair are also differentially affected by chromatin. Only a small number of nucleosomes are likely to be involved in NER, while a more extensive region of chromatin is involved in DSB repair. However, a key feature of both NER and DSB repair pathways is the participation of ATP-dependent chromatin remodeling factors at various points in the repair process. We discuss recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|