1
|
Saito M, McIlvin MR. The Iron Metalloproteome of Pseudomonas aeruginosa Under Oxic and Anoxic Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633287. [PMID: 39868235 PMCID: PMC11760780 DOI: 10.1101/2025.01.15.633287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Pseudomonas aeruginosa is a major contributor to human infections and is widely distributed in the environment. Its ability for growth under aerobic and anaerobic conditions provides adaptability to environmental changes and in confronting immune responses. We applied native 2-dimensional metalloproteomics to P. aeruginosa to examine how use of iron within the metallome responds to oxic and anoxic conditions. Analyses revealed four iron peaks comprised of metalloproteins with synergistic functions, including: 1) respiratory and metabolic enzymes, 2) oxidative stress response enzymes, 3) DNA synthesis and nitrogen assimilation enzymes, and 4) denitrification enzymes and related copper enzymes. Fe peaks were larger under anoxic conditions, consistent with increased iron demand due to anaerobic metabolism and with the denitrification peak absent under oxic conditions. Three ferritins co-eluted with the first and third iron peaks, localizing iron storage with these functions. Several enzymes were more abundant at low oxygen, including alkylhydroperoxide reductase C that deactivates organic radicals produced by denitrification, all three classes of ribonucleotide reductases (including monomers and oligomer forms), ferritin (increasing in ratio relative to bacterioferritin), and denitrification enzymes. Superoxide dismutase and homogentisate 1,2-dioxygenase were more abundant at high oxygen. Several Fe peaks contained iron metalloproteins that co-eluted earlier than their predicted size, implying additional protein-protein interactions and suggestive of cellular organization that contributes to iron prioritization in Pseudomonas with its large genome and flexible metabolism. This study characterized the iron metalloproteome of one of the more complex prokaryotic microorganisms, attributing enhanced iron use under anaerobic denitrifying metabolism to its specific metalloprotein constituents.
Collapse
|
2
|
Bimai O, Banerjee I, Rozman Grinberg I, Huang P, Hultgren L, Ekström S, Lundin D, Sjöberg BM, Logan DT. Nucleotide binding to the ATP-cone in anaerobic ribonucleotide reductases allosterically regulates activity by modulating substrate binding. eLife 2024; 12:RP89292. [PMID: 38968292 PMCID: PMC11226230 DOI: 10.7554/elife.89292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Abstract
A small, nucleotide-binding domain, the ATP-cone, is found at the N-terminus of most ribonucleotide reductase (RNR) catalytic subunits. By binding adenosine triphosphate (ATP) or deoxyadenosine triphosphate (dATP) it regulates the enzyme activity of all classes of RNR. Functional and structural work on aerobic RNRs has revealed a plethora of ways in which dATP inhibits activity by inducing oligomerisation and preventing a productive radical transfer from one subunit to the active site in the other. Anaerobic RNRs, on the other hand, store a stable glycyl radical next to the active site and the basis for their dATP-dependent inhibition is completely unknown. We present biochemical, biophysical, and structural information on the effects of ATP and dATP binding to the anaerobic RNR from Prevotella copri. The enzyme exists in a dimer-tetramer equilibrium biased towards dimers when two ATP molecules are bound to the ATP-cone and tetramers when two dATP molecules are bound. In the presence of ATP, P. copri NrdD is active and has a fully ordered glycyl radical domain (GRD) in one monomer of the dimer. Binding of dATP to the ATP-cone results in loss of activity and increased dynamics of the GRD, such that it cannot be detected in the cryo-EM structures. The glycyl radical is formed even in the dATP-bound form, but the substrate does not bind. The structures implicate a complex network of interactions in activity regulation that involve the GRD more than 30 Å away from the dATP molecules, the allosteric substrate specificity site and a conserved but previously unseen flap over the active site. Taken together, the results suggest that dATP inhibition in anaerobic RNRs acts by increasing the flexibility of the flap and GRD, thereby preventing both substrate binding and radical mobilisation.
Collapse
Affiliation(s)
- Ornella Bimai
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Ipsita Banerjee
- Section for Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund UniversityLundSweden
| | | | - Ping Huang
- Department of Chemistry - Ångström Laboratory, Uppsala UniversityUppsalaSweden
| | - Lucas Hultgren
- Structural Proteomics, SciLifeLab, Lund UniversityLundSweden
| | - Simon Ekström
- Structural Proteomics, SciLifeLab, Lund UniversityLundSweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Derek T Logan
- Section for Biochemistry and Structural Biology, Centre for Molecular Protein Science, Department of Chemistry, Lund UniversityLundSweden
- Cryo-EM for Life Science, SciLifeLab, Lund UniversityLundSweden
| |
Collapse
|
3
|
Burnim AA, Xu D, Spence MA, Jackson CJ, Ando N. Analysis of insertions and extensions in the functional evolution of the ribonucleotide reductase family. Protein Sci 2022; 31:e4483. [PMID: 36307939 PMCID: PMC9669993 DOI: 10.1002/pro.4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductases (RNRs) are used by all free-living organisms and many viruses to catalyze an essential step in the de novo biosynthesis of DNA precursors. RNRs are remarkably diverse by primary sequence and cofactor requirement, while sharing a conserved fold and radical-based mechanism for nucleotide reduction. In this work, we expand on our recent phylogenetic inference of the entire RNR family and describe the evolutionarily relatedness of insertions and extensions around the structurally homologous catalytic barrel. Using evo-velocity and sequence similarity network (SSN) analyses, we show that the N-terminal regulatory motif known as the ATP-cone domain was likely inherited from an ancestral RNR. By combining SSN analysis with AlphaFold2 predictions, we also show that the C-terminal extensions of class II RNRs can contain folded domains that share homology with an Fe-S cluster assembly protein. Finally, using sequence analysis and AlphaFold2, we show that the sequence motif of a catalytically essential insertion known as the finger loop is tightly coupled to the catalytic mechanism. Based on these results, we propose an evolutionary model for the diversification of the RNR family.
Collapse
Affiliation(s)
- Audrey A. Burnim
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNew YorkUSA
| | - Da Xu
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNew YorkUSA
| | - Matthew A. Spence
- Research School of ChemistryAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Colin J. Jackson
- Research School of ChemistryAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Australian Research Council Centre of Excellence in Synthetic BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Nozomi Ando
- Department of Chemistry and Chemical BiologyCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
4
|
Berggren G, Sahlin M, Crona M, Tholander F, Sjöberg BM. Compounds with capacity to quench the tyrosyl radical in Pseudomonas aeruginosa ribonucleotide reductase. J Biol Inorg Chem 2019; 24:841-848. [PMID: 31218442 PMCID: PMC6754346 DOI: 10.1007/s00775-019-01679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 11/02/2022]
Abstract
Ribonucleotide reductase (RNR) has been extensively probed as a target enzyme in the search for selective antibiotics. Here we report on the mechanism of inhibition of nine compounds, serving as representative examples of three different inhibitor classes previously identified by us to efficiently inhibit RNR. The interaction between the inhibitors and Pseudomonas aeruginosa RNR was elucidated using a combination of electron paramagnetic resonance spectroscopy and thermal shift analysis. All nine inhibitors were found to efficiently quench the tyrosyl radical present in RNR, required for catalysis. Three different mechanisms of radical quenching were identified, and shown to depend on reduction potential of the assay solution and quaternary structure of the protein complex. These results form a good foundation for further development of P. aeruginosa selective antibiotics. Moreover, this study underscores the complex nature of RNR inhibition and the need for detailed spectroscopic studies to unravel the mechanism of RNR inhibitors.
Collapse
Affiliation(s)
- Gustav Berggren
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mikael Crona
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Swedish Orphan Biovitrum AB, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Pham B, Lindsay RJ, Shen T. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase. Biochemistry 2019; 58:697-705. [PMID: 30571104 DOI: 10.1021/acs.biochem.8b01131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins forming dimers or larger complexes can be strongly influenced by their effector-binding status. We investigated how the effector-binding event is coupled with interface formation via computer simulations, and we quantified the correlation of two types of contact interactions: between the effector and its binding pocket and between protein monomers. This was achieved by connecting the protein dynamics at the monomeric level with the oligomer interface information. We applied this method to ribonucleotide reductase (RNR), an essential enzyme for de novo DNA synthesis. RNR contains two important allosteric sites, the s-site (specificity site) and the a-site (activity site), which bind different effectors. We studied these different binding states with atomistic simulation and used their coarse-grained contact information to analyze the protein dynamics. The results reveal that the effector-protein dynamics at the s-site and dimer interface formation are positively coupled. We further quantify the resonance level between these two events, which can be applied to other similar systems. At the a-site, different effector-binding states (ATP vs dATP) drastically alter the protein dynamics and affect the activity of the enzyme. On the basis of these results, we propose a new mechanism of how the a-site regulates enzyme activation.
Collapse
Affiliation(s)
- Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Richard J Lindsay
- UT-ORNL Graduate School of Genome Science and Technology , Knoxville , Tennessee 37996 , United States
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
6
|
Chen PYT, Funk MA, Brignole EJ, Drennan CL. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2018; 293:10404-10412. [PMID: 29700111 DOI: 10.1074/jbc.ra118.002569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a β2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2β2 state allowing for radical transfer from β2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4β4 ring-like state. Here, we investigate whether the α4β4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-β interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4β4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4β4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-β interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-β interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.
Collapse
Affiliation(s)
| | | | - Edward J Brignole
- From the Departments of Chemistry and.,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Catherine L Drennan
- From the Departments of Chemistry and .,Biology and.,the Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
7
|
Rozman Grinberg I, Lundin D, Hasan M, Crona M, Jonna VR, Loderer C, Sahlin M, Markova N, Borovok I, Berggren G, Hofer A, Logan DT, Sjöberg BM. Novel ATP-cone-driven allosteric regulation of ribonucleotide reductase via the radical-generating subunit. eLife 2018; 7:31529. [PMID: 29388911 PMCID: PMC5794259 DOI: 10.7554/elife.31529] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/23/2017] [Indexed: 12/27/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are key enzymes in DNA metabolism, with allosteric mechanisms controlling substrate specificity and overall activity. In RNRs, the activity master-switch, the ATP-cone, has been found exclusively in the catalytic subunit. In two class I RNR subclasses whose catalytic subunit lacks the ATP-cone, we discovered ATP-cones in the radical-generating subunit. The ATP-cone in the Leeuwenhoekiella blandensis radical-generating subunit regulates activity via quaternary structure induced by binding of nucleotides. ATP induces enzymatically competent dimers, whereas dATP induces non-productive tetramers, resulting in different holoenzymes. The tetramer forms by interactions between ATP-cones, shown by a 2.45 Å crystal structure. We also present evidence for an MnIIIMnIV metal center. In summary, lack of an ATP-cone domain in the catalytic subunit was compensated by transfer of the domain to the radical-generating subunit. To our knowledge, this represents the first observation of transfer of an allosteric domain between components of the same enzyme complex. When a cell copies its DNA, it uses four different building blocks called deoxyribonucleotides (dNTPs). These consist of one of the four ‘bases’ (A, T, C and G), which pair up to link the two strands of DNA in the double helix, bound to a sugar and a phosphate group. If the cell contains too little or too much of one of these building blocks, an incorrect base may be inserted into the DNA. This results in a mutation, which in bacteria can cause death, and in animals may lead to cancer. The enzyme that fabricates and carefully controls the amount of each dNTP building block inside a cell is called ribonucleotide reductase. Once there are enough building blocks in a cell the enzyme is turned off. A part of the enzyme called the ATP-cone acts as an on/off switch to control this activity. The ribonucleotide reductase consists of a large component and a small component. Until now, studies of the ATP-cone have found it only in the large component of the enzyme. However, when looking through a public database of sequence data, Rozman Grinberg et al. noticed that ribonucleotide reductases in some bacteria have their ATP-cone joined to the small component. Does this ATP-cone also control the amounts of dNTP building blocks inside cells and, if so, how? Rozman Grinberg et al. studied one such ATP-cone in a ribonucleotide reductase from a bacterium (named Leeuwenhoekiella blandensis) found in the Mediterranean Sea. This revealed that when the amount of dNTP building blocks reaches a certain limit, the ATP-cone turns off the enzyme. Examining the three-dimensional structure of the enzyme using a technique called X-ray crystallography revealed that when turned off, the enzyme’s small components are glued together in pairs. This prevents them from working. Rozman Grinberg et al. also discovered that this enzyme contains a new type of metal center with two manganese ions suggesting that a new reaction mechanism may operate in this class of ribonucleotide reductase. These findings support a theory that biological on/off switches can evolve rapidly. In addition to its evolutionary and biomedical interest, understanding how the ATP-cone works might help to improve the enzymes used in industrial processes.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mahmudul Hasan
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | - Christoph Loderer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Margareta Sahlin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Gustav Berggren
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Derek T Logan
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones. Structure 2016; 24:906-17. [PMID: 27133024 DOI: 10.1016/j.str.2016.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 11/22/2022]
Abstract
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone.
Collapse
|
9
|
Crona M, Hofer A, Astorga-Wells J, Sjöberg BM, Tholander F. Biochemical Characterization of the Split Class II Ribonucleotide Reductase from Pseudomonas aeruginosa. PLoS One 2015. [PMID: 26225432 PMCID: PMC4520616 DOI: 10.1371/journal.pone.0134293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can grow under both aerobic and anaerobic conditions. Its flexibility with respect to oxygen load is reflected by the fact that its genome encodes all three existing classes of ribonucleotides reductase (RNR): the oxygen-dependent class I RNR, the oxygen-indifferent class II RNR, and the oxygen-sensitive class III RNR. The P. aeruginosa class II RNR is expressed as two separate polypeptides (NrdJa and NrdJb), a unique example of a split RNR enzyme in a free-living organism. A split class II RNR is also found in a few closely related γ-Proteobacteria. We have characterized the P. aeruginosa class II RNR and show that both subunits are required for formation of a biologically functional enzyme that can sustain vitamin B12-dependent growth. Binding of the B12 coenzyme as well as substrate and allosteric effectors resides in the NrdJa subunit, whereas the NrdJb subunit mediates efficient reductive dithiol exchange during catalysis. A combination of activity assays and activity-independent methods like surface plasmon resonance and gas phase electrophoretic macromolecule analysis suggests that the enzymatically active form of the enzyme is a (NrdJa-NrdJb)2 homodimer of heterodimers, and a combination of hydrogen-deuterium exchange experiments and molecular modeling suggests a plausible region in NrdJa that interacts with NrdJb. Our detailed characterization of the split NrdJ from P. aeruginosa provides insight into the biochemical function of a unique enzyme known to have central roles in biofilm formation and anaerobic growth.
Collapse
Affiliation(s)
- Mikael Crona
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187, Umeå, Sweden
| | - Juan Astorga-Wells
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Fredrik Tholander
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Jonna VR, Crona M, Rofougaran R, Lundin D, Johansson S, Brännström K, Sjöberg BM, Hofer A. Diversity in Overall Activity Regulation of Ribonucleotide Reductase. J Biol Chem 2015; 290:17339-48. [PMID: 25971975 DOI: 10.1074/jbc.m115.649624] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of α and β subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive α6 and α4β4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each α polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an α4 complex, which can interact with β2 to form a non-productive α4β2 complex. Other allosteric effectors induce a mixture of α2 and α4 forms, with the former being able to interact with β2 to form active α2β2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.
Collapse
Affiliation(s)
- Venkateswara Rao Jonna
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå and
| | - Mikael Crona
- the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Reza Rofougaran
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå and
| | - Daniel Lundin
- the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Samuel Johansson
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå and
| | - Kristoffer Brännström
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå and
| | - Britt-Marie Sjöberg
- the Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Anders Hofer
- From the Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå and
| |
Collapse
|
11
|
Crespo A, Pedraz L, Torrents E. Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression. PLoS One 2015; 10:e0123571. [PMID: 25909779 PMCID: PMC4409342 DOI: 10.1371/journal.pone.0123571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are a family of sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides (dNTPs), the building blocks for DNA synthesis and repair. Although any living cell must contain one RNR activity to continue living, bacteria have the capacity to encode different RNR classes in the same genome, allowing them to adapt to different environments and growing conditions. Pseudomonas aeruginosa is well known for its adaptability and surprisingly encodes all three known RNR classes (Ia, II and III). There must be a complex transcriptional regulation network behind this RNR activity, dictating which RNR class will be expressed according to specific growing conditions. In this work, we aim to uncover the role of the transcriptional regulator NrdR in P. aeruginosa. We demonstrate that NrdR regulates all three RNR classes, being involved in differential control depending on whether the growth conditions are aerobic or anaerobic. Moreover, we also identify for the first time that NrdR is not only involved in controlling RNR expression but also regulates topoisomerase I (topA) transcription. Finally, to obtain the entire picture of NrdR regulon, we performed a global transcriptomic analysis comparing the transcription profile of wild-type and nrdR mutant strains. The results provide many new data about the regulatory network that controls P. aeruginosa RNR transcription, bringing us a step closer to the understanding of this complex system.
Collapse
Affiliation(s)
- Anna Crespo
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15–21, 08028, Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15–21, 08028, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15–21, 08028, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Julián E, Baelo A, Gavaldà J, Torrents E. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme. PLoS One 2015; 10:e0122049. [PMID: 25782003 PMCID: PMC4363900 DOI: 10.1371/journal.pone.0122049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.
Collapse
Affiliation(s)
- Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Baelo
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
| | - Joan Gavaldà
- Infectious Diseases Research Laboratory, Infectious Diseases Department, Vall d’Hebron Research Institute, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
- * E-mail:
| |
Collapse
|
13
|
Torrents E. Ribonucleotide reductases: essential enzymes for bacterial life. Front Cell Infect Microbiol 2014; 4:52. [PMID: 24809024 PMCID: PMC4009431 DOI: 10.3389/fcimb.2014.00052] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.
Collapse
Affiliation(s)
- Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
14
|
Fu Y, Long MJC, Rigney M, Parvez S, Blessing WA, Aye Y. Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase. Biochemistry 2013; 52:7050-9. [PMID: 24024562 DOI: 10.1021/bi400781z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An N-terminal-domain (NTD) and adjacent catalytic body (CB) make up subunit-α of ribonucleotide reductase (RNR), the rate-limiting enzyme for de novo dNTP biosynthesis. A strong linkage exists between ligand binding at the NTD and oligomerization-coupled RNR inhibition, inducible by both dATP and nucleotide chemotherapeutics. These observations have distinguished the NTD as an oligomeric regulation domain dictating the assembly of inactive RNR oligomers. Inactive states of RNR differ between eukaryotes and prokaryotes (α6 in human versus α4β4 in Escherichia coli , wherein β is RNR's other subunit); however, the NTD structurally interconnects individual α2 or α2 and β2 dimeric motifs within the respective α6 or α4β4 complexes. To elucidate the influence of NTD ligand binding on RNR allosteric and oligomeric regulation, we engineered a human- E. coli hybrid enzyme (HE) where human-NTD is fused to E. coli -CB. Both the NTD and the CB of the HE bind dATP. The HE specifically partners with E. coli -β to form an active holocomplex. However, although the NTD is the sole physical tether to support α2 and/or β2 associations in the dATP-bound α6 or α4β4 fully inhibited RNR complexes, the binding of dATP to the HE NTD only partially suppresses HE activity and fully precludes formation of higher-order HE oligomers. We postulate that oligomeric regulation is the ultimate mechanism for potent RNR inhibition, requiring species-specific NTD-CB interactions. Such interdomain cooperativity in RNR oligomerization is unexpected from structural studies alone or biochemical studies of point mutants.
Collapse
Affiliation(s)
- Yuan Fu
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | |
Collapse
|
15
|
McKethan BL, Spiro S. Cooperative and allosterically controlled nucleotide binding regulates the DNA binding activity of NrdR. Mol Microbiol 2013; 90:278-89. [PMID: 23941567 DOI: 10.1111/mmi.12364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductases (RNRs) are required for the synthesis of deoxyribonucleoside triphosphates (dNTPs) from ribonucleotides. In Escherichia coli, regulation of RNR expression is co-ordinated with the cell cycle, and involves several regulatory proteins. One of these, NrdR, has recently been shown to regulate all three nrd operons that encode RNR isoenzymes. Repression by NrdR is believed to be stimulated by elevated dNTPs, although there is no direct evidence for this model. Here, we sought to elucidate the mechanism by which NrdR regulates nrd expression according to the abundance of (d)NTPs. We determined that ATP and dATP bind to NrdR in a negatively cooperative fashion, such that neither can fully occupy the protein. Both nucleotides also appear to act as positive heterotropic effectors, since the binding of one stimulates binding of the other. Nucleotide binding stimulates self-association of NrdR, with tri- and diphosphates stimulating oligomerization more effectively than monophosphates. As-prepared NrdR contains (deoxy)nucleoside monophosphates, diphosphates and triphosphates, and its DNA binding activity is inhibited by triphosphates and diphosphates but not by monophosphates. We propose a model in which NrdR selectively binds (deoxy)nucleoside triphosphates, which are hydrolysed to their monophosphate counterparts in order to regulate DNA binding.
Collapse
Affiliation(s)
- Brandon L McKethan
- Department of Molecular and Cell Biology, The University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, 75080, USA
| | | |
Collapse
|
16
|
Aye Y, Long MJC, Stubbe J. Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J Biol Chem 2012; 287:35768-35778. [PMID: 22915594 DOI: 10.1074/jbc.m112.396911] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Triapine® (3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP)) is a drug in Phase II trials. One of its established cellular targets is the β(2) subunit of ribonucleotide reductase that requires a diferric-tyrosyl-radical [(Fe(III)(2)-Y·)(Fe(III)(2))] cofactor for de novo DNA biosynthesis. Several mechanisms for 3-AP inhibition of β(2) have been proposed; one involves direct iron chelation from β(2), whereas a second involves Y· destruction by reactive oxygen species formed in situ in the presence of O(2) and reductant by Fe(II)-(3-AP). Inactivation of β(2) can thus arise from cofactor destruction by loss of iron or Y·. In vitro kinetic data on the rates of (55)Fe and Y· loss from [((55)Fe(III)(2)-Y·)((55)Fe(III)(2))]-β(2) under aerobic and anaerobic conditions reveal that Y· loss alone is sufficient for rapid β(2) inactivation. Oxyblot(TM) and mass spectrometric analyses of trypsin-digested inhibited β(2), and lack of Y· loss from H(2)O(2) and O(2)(•) treatment together preclude reactive oxygen species involvement in Y· loss. Three mammalian cell lines treated with 5 μm 3-AP reveal Y· loss and β(2) inactivation within 30-min of 3-AP-exposure, analyzed by whole-cell EPR and lysate assays, respectively. Selective degradation of apo- over [(Fe(III)(2)-Y·)(Fe(III)(2))]-β(2) in lysates, similar iron-content in β(2) immunoprecipitated from 3-AP-treated and untreated [(55)Fe]-prelabeled cells, and prolonged (12 h) stability of the inhibited β(2) are most consistent with Y· loss being the predominant mode of inhibition, with β(2) remaining iron-loaded and stable. A model consistent with in vitro and cell-based biochemical studies is presented in which Fe(II)-(3-AP), which can be cycled with reductant, directly reduces Y· of the [(Fe(III)(2)-Y·)(Fe(III)(2))] cofactor of β(2).
Collapse
Affiliation(s)
- Yimon Aye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, Massachusetts 02454
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
17
|
Rorick M. Quantifying protein modularity and evolvability: a comparison of different techniques. Biosystems 2012; 110:22-33. [PMID: 22796584 DOI: 10.1016/j.biosystems.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Modularity increases evolvability by reducing constraints on adaptation and by allowing preexisting parts to function in new contexts for novel uses. Protein evolution provides an excellent context to study the causes and consequences of biological modularity. In order to address such questions, however, an index for protein modularity is necessary. This paper proposes a simple index for protein modularity-"module density"-which is the number of evolutionarily independent modules that compose a protein divided by the number of amino acids in the protein. The decomposition of proteins into constituent modules can be accomplished by either of two classes of methods. The first class of methods relies on "suppositional" criteria to assign amino acids to modules, whereas the second class of methods relies on "coevolutionary" criteria for this task. One simple and practical method from the first class consists of approximating the number of modules in a protein as the number of regular secondary structure elements (i.e., helices and sheets). Methods based on coevolutionary criteria require more elaborate data, but they have the advantage of being able to specify modules without prior assumptions about why they exist. Given the increasing availability of datasets sampling protein mutational spectra (e.g., from comparative genomics, experimental evolution, and computational prediction), methods based on coevolutionary criteria will likely become more promising in the near future. The ability to meaningfully quantify protein modularity via simple indices has the potential to aid future efforts to understand protein evolutionary rate determinants, improve molecular evolution models and engineer novel proteins.
Collapse
Affiliation(s)
- Mary Rorick
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI 48109-1048, United States.
| |
Collapse
|
18
|
Tholander F, Sjöberg BM. Discovery of antimicrobial ribonucleotide reductase inhibitors by screening in microwell format. Proc Natl Acad Sci U S A 2012; 109:9798-803. [PMID: 22665797 PMCID: PMC3382500 DOI: 10.1073/pnas.1113051109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes reduction of the four different ribonucleotides to their corresponding deoxyribonucleotides and is the rate-limiting enzyme in DNA synthesis. RNR is a well-established target for the antiproliferative drugs Gemzar and Hydrea, for antisense therapy, and in combination chemotherapies. Surprisingly, few novel drugs that target RNR have emerged, partly because RNR activity assays are laboratory-intense and exclude high-throughput methodologies. Here, we present a previously undescribed PCR-based assay for RNR activity measurements in microplate format. We validated the approach by screening a diverse library of 1,364 compounds for inhibitors of class I RNR from the opportunistic pathogen Pseudomonas aeruginosa, and we identified 27 inhibitors with IC(50) values from ∼200 nM to 30 μM. Interestingly, a majority of the identified inhibitors have been found inactive in human cell lines as well as in anticancer and in vivo tumor tests as reported by the PubChem BioAssay database. Four of the RNR inhibitors inhibited growth of P. aeruginosa, and two were also found to affect the transcription of RNR genes and to decrease the cellular deoxyribonucleotide pools. This unique PCR-based assay works with any RNR enzyme and any substrate nucleotide, and thus opens the door to high-throughput screening for RNR inhibitors in drug discovery.
Collapse
Affiliation(s)
- Fredrik Tholander
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; and
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; and
| |
Collapse
|
19
|
Abstract
Ribonucleotide reductase (RNR) is the only source for de novo production of the four deoxyribonucleoside triphosphate (dNTP) building blocks needed for DNA synthesis and repair. It is crucial that these dNTP pools are carefully balanced, since mutation rates increase when dNTP levels are either unbalanced or elevated. RNR is the major player in this homeostasis, and with its four different substrates, four different allosteric effectors and two different effector binding sites, it has one of the most sophisticated allosteric regulations known today. In the past few years, the structures of RNRs from several bacteria, yeast and man have been determined in the presence of allosteric effectors and substrates, revealing new information about the mechanisms behind the allosteric regulation. A common theme for all studied RNRs is a flexible loop that mediates modulatory effects from the allosteric specificity site (s-site) to the catalytic site for discrimination between the four substrates. Much less is known about the allosteric activity site (a-site), which functions as an on-off switch for the enzyme's overall activity by binding ATP (activator) or dATP (inhibitor). The two nucleotides induce formation of different enzyme oligomers, and a recent structure of a dATP-inhibited α(6)β(2) complex from yeast suggested how its subunits interacted non-productively. Interestingly, the oligomers formed and the details of their allosteric regulation differ between eukaryotes and Escherichia coli. Nevertheless, these differences serve a common purpose in an essential enzyme whose allosteric regulation might date back to the era when the molecular mechanisms behind the central dogma evolved.
Collapse
Affiliation(s)
- Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
20
|
|
21
|
Shift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection. Infect Immun 2011; 79:2663-9. [PMID: 21502590 DOI: 10.1128/iai.01212-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR chromosomal mutants exhibited reduced virulence in this model. Translational reporter fusions of RNR gene nrdA, nrdJ, or nrdD to the green fluorescent protein were constructed to measure the expression of each class during the infection process. Analysis of the P. aeruginosa infection by flow cytometry revealed increased expression of nrdJ and nrdD and decreased nrdA expression during the infection process. Expression of each RNR class fits with the pathogenicities of the chromosomal deletion mutants. An extended understanding of the pathogenicity and physiology of P. aeruginosa will be important for the development of novel drugs against infections in cystic fibrosis patients.
Collapse
|
22
|
Lundin D, Gribaldo S, Torrents E, Sjöberg BM, Poole AM. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evol Biol 2010; 10:383. [PMID: 21143941 PMCID: PMC3019208 DOI: 10.1186/1471-2148-10-383] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/10/2010] [Indexed: 11/29/2022] Open
Abstract
Background Ribonucleotide reduction is the only de novo pathway for synthesis of deoxyribonucleotides, the building blocks of DNA. The reaction is catalysed by ribonucleotide reductases (RNRs), an ancient enzyme family comprised of three classes. Each class has distinct operational constraints, and are broadly distributed across organisms from all three domains, though few class I RNRs have been identified in archaeal genomes, and classes II and III likewise appear rare across eukaryotes. In this study, we examine whether this distribution is best explained by presence of all three classes in the Last Universal Common Ancestor (LUCA), or by horizontal gene transfer (HGT) of RNR genes. We also examine to what extent environmental factors may have impacted the distribution of RNR classes. Results Our phylogenies show that the Last Eukaryotic Common Ancestor (LECA) possessed a class I RNR, but that the eukaryotic class I enzymes are not directly descended from class I RNRs in Archaea. Instead, our results indicate that archaeal class I RNR genes have been independently transferred from bacteria on two occasions. While LECA possessed a class I RNR, our trees indicate that this is ultimately bacterial in origin. We also find convincing evidence that eukaryotic class I RNR has been transferred to the Bacteroidetes, providing a stunning example of HGT from eukaryotes back to Bacteria. Based on our phylogenies and available genetic and genomic evidence, class II and III RNRs in eukaryotes also appear to have been transferred from Bacteria, with subsequent within-domain transfer between distantly-related eukaryotes. Under the three-domains hypothesis the RNR present in the last common ancestor of Archaea and eukaryotes appears, through a process of elimination, to have been a dimeric class II RNR, though limited sampling of eukaryotes precludes a firm conclusion as the data may be equally well accounted for by HGT. Conclusions Horizontal gene transfer has clearly played an important role in the evolution of the RNR repertoire of organisms from all three domains of life. Our results clearly show that class I RNRs have spread to Archaea and eukaryotes via transfers from the bacterial domain, indicating that class I likely evolved in the Bacteria. However, against the backdrop of ongoing transfers, it is harder to establish whether class II or III RNRs were present in the LUCA, despite the fact that ribonucleotide reduction is an essential cellular reaction and was pivotal to the transition from RNA to DNA genomes. Instead, a general pattern of ongoing horizontal transmission emerges wherein environmental and enzyme operational constraints, especially the presence or absence of oxygen, are likely to be major determinants of the RNR repertoire of genomes.
Collapse
Affiliation(s)
- Daniel Lundin
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
23
|
Torrents E, Sjöberg BM. Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis. Biol Chem 2010; 391:229-234. [PMID: 20030587 DOI: 10.1515/bc.2010.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis is a severe mammalian pathogen. The deoxyribonucleotides necessary for DNA replication and repair are provided via the ribonucleotide reductase (RNR) enzyme. RNR is also important for spore germination and cell proliferation upon infection. We show that the expression of B. anthracis class Ib RNR responds to the environment that the pathogen encounters upon infection. We also show that several anti-proliferative agents (radical scavengers) specifically inhibit the B. anthracis RNR. Owing to the importance of RNR in the pathogenic infection process, our results highlight a promising potential to inhibit the growth of B. anthracis early during infection.
Collapse
Affiliation(s)
- Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691 Stockholm, Sweden
- Cellular Biotechnology, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, E-08028 Barcelona, Spain
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
24
|
Functional analysis of the Streptomyces coelicolor NrdR ATP-cone domain: role in nucleotide binding, oligomerization, and DNA interactions. J Bacteriol 2008; 191:1169-79. [PMID: 19047342 DOI: 10.1128/jb.01145-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides (dNTPs), the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of dNTPs during the cell cycle. Streptomyces species contain genes, nrdAB and nrdJ, coding for oxygen-dependent class I and oxygen-independent class II RNRs, either of which is sufficient for vegetative growth. Both sets of genes are transcriptionally repressed by NrdR. NrdR contains a zinc ribbon DNA-binding domain and an ATP-cone domain similar to that present in the allosteric activity site of many class I and class III RNRs. Purified NrdR contains up to 1 mol of tightly bound ATP or dATP per mol of protein and binds to tandem 16-bp sequences, termed NrdR-boxes, present in the upstream regulatory regions of bacterial RNR operons. Previously, we showed that the ATP-cone domain alone determines nucleotide binding and that an NrdR mutant defective in nucleotide binding was unable to bind to DNA probes containing NrdR-boxes. These observations led us to propose that when NrdR binds ATP/dATP it undergoes a conformational change that affects DNA binding and hence RNR gene expression. In this study, we analyzed a collection of ATP-cone mutant proteins containing changes in residues inferred to be implicated in nucleotide binding and show that they result in pleiotrophic effects on ATP/dATP binding, on protein oligomerization, and on DNA binding. A model is proposed to integrate these observations.
Collapse
|
25
|
Rofougaran R, Crona M, Vodnala M, Sjöberg BM, Hofer A. Oligomerization status directs overall activity regulation of the Escherichia coli class Ia ribonucleotide reductase. J Biol Chem 2008; 283:35310-8. [PMID: 18835811 DOI: 10.1074/jbc.m806738200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribonucleotide reductase (RNR) is a key enzyme for the synthesis of the four DNA building blocks. Class Ia RNRs contain two subunits, denoted R1 (alpha) and R2 (beta). These enzymes are regulated via two nucleotide-binding allosteric sites on the R1 subunit, termed the specificity and overall activity sites. The specificity site binds ATP, dATP, dTTP, or dGTP and determines the substrate to be reduced, whereas the overall activity site binds dATP (inhibitor) or ATP. By using gas-phase electrophoretic mobility macromolecule analysis and enzyme assays, we found that the Escherichia coli class Ia RNR formed an inhibited alpha(4)beta(4) complex in the presence of dATP and an active alpha(2)beta(2) complex in the presence of ATP (main substrate: CDP), dTTP (substrate: GDP) or dGTP (substrate: ADP). The R1-R2 interaction was 30-50 times stronger in the alpha(4)beta(4) complex than in the alpha(2)beta(2) complex, which was in equilibrium with free alpha(2) and beta(2) subunits. Studies of a known E. coli R1 mutant (H59A) showed that deficient dATP inhibition correlated with reduced ability to form alpha(4)beta(4) complexes. ATP could also induce the formation of a generally inhibited alpha(4)beta(4) complex in the E. coli RNR but only when used in combination with high concentrations of the specificity site effectors, dTTP/dGTP. Both allosteric sites are therefore important for alpha(4)beta(4) formation and overall activity regulation. The E. coli RNR differs from the mammalian enzyme, which is stimulated by ATP also in combination with dGTP/dTTP and forms active and inactive alpha(6)beta(2) complexes.
Collapse
Affiliation(s)
- Reza Rofougaran
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå
| | | | | | | | | |
Collapse
|
26
|
Hristova D, Wu CH, Jiang W, Krebs C, Stubbe J. Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry 2008; 47:3989-99. [PMID: 18314964 PMCID: PMC2801593 DOI: 10.1021/bi702408k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR is composed of α and β subunits that form an α2β2 active complex. β contains the diferric tyrosyl radical (Y•) cofactor that is essential for the reduction process that occurs on α. [Y•] in vitro is proportional to RNR activity, and its regulation in vivo potentially represents a mechanism for controlling RNR activity. To examine this thesis, N- and C-terminal StrepII-tagged β under the control of an l-arabinose promoter were constructed. Using these constructs and with [l-arabinose] varying from 0 to 0.5 mM in the growth medium, [β] could be varied from 4 to 3300 µM. [Y•] in vivo and on affinity-purified Strep-β in vitro was determined by EPR spectroscopy and Western analysis. In both cases, there was 0.1–0.3 Y• radical per β. To determine if the substoichiometric Y• level was associated with apo β or diferric β, titrations of crude cell extracts from these growths were carried out with reduced YfaE, a 2Fe2S ferredoxin involved in cofactor maintenance and assembly. Each titration, followed by addition of O2 to assemble the cofactor and EPR analysis to quantitate Y•, revealed that β is completely loaded with a diferric cluster even when its concentration in vivo is 244 µM. These titrations, furthermore, resulted in 1 Y• radical per β, the highest levels reported. Whole cell Mössbauer analysis on cells induced with 0.5 mM arabinose supports high iron loading in β. These results suggest that modulation of the level of Y• in vivo in E. coli is a mechanism of regulating RNR activity.
Collapse
Affiliation(s)
- Daniela Hristova
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Friedrich NC, Torrents E, Gibb EA, Sahlin M, Sjöberg BM, Edgell DR. Insertion of a homing endonuclease creates a genes-in-pieces ribonucleotide reductase that retains function. Proc Natl Acad Sci U S A 2007; 104:6176-81. [PMID: 17395719 PMCID: PMC1851037 DOI: 10.1073/pnas.0609915104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In bacterial and phage genomes, coding regions are sometimes interrupted by self-splicing introns or inteins, which can encode mobility-promoting homing endonucleases. Homing endonuclease genes are also found free-standing (not intron- or intein-encoded) in phage genomes where they are inserted in intergenic regions. One example is the HNH family endonuclease, mobE, inserted between the large (nrdA) and small (nrdB) subunit genes of aerobic ribonucleotide reductase (RNR) of T-even phages T4, RB2, RB3, RB15, and LZ7. Here, we describe an insertion of mobE into the nrdA gene of Aeromonas hydrophila phage Aeh1. The insertion creates a unique genes-in-pieces arrangement, where nrdA is split into two independent genes, nrdA-a and nrdA-b, each encoding cysteine residues that correspond to the active-site residues of uninterrupted NrdA proteins. Remarkably, the mobE insertion does not inactivate NrdA function, although the insertion is not a self-splicing intron or intein. We copurified the NrdA-a, NrdA-b, and NrdB proteins as complex from Aeh1-infected cells and also showed that a reconstituted complex has RNR activity. Class I RNR activity in phage Aeh1 is thus assembled from separate proteins that interact to form a composite active site, demonstrating that the mobE insertion is phenotypically neutral in that its presence as an intervening sequence does not disrupt the function of the surrounding gene.
Collapse
Affiliation(s)
- Nancy C. Friedrich
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
| | - Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ewan A. Gibb
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
| | - Margareta Sahlin
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | - David R. Edgell
- *Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada N6A 1C7; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|