1
|
Prezioso SM, Brown NE, Goldberg JB. Elfamycins: inhibitors of elongation factor-Tu. Mol Microbiol 2017; 106:22-34. [PMID: 28710887 DOI: 10.1111/mmi.13750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 01/26/2023]
Abstract
Elfamycins are a relatively understudied group of antibiotics that target the essential process of translation through impairment of EF-Tu function. For the most part, the utility of these compounds has been as laboratory tools for the study of EF-Tu and the ribosome, as their poor pharmacokinetic profile and solubility has prevented implementation as therapeutic agents. However, due to the slowing of the antibiotic pipeline and the rapid emergence of resistance to approved antibiotics, this group is being reconsidered. Some researchers are using screens for novel naturally produced variants, while others are making directed, systematic chemical improvements on publically disclosed compounds. As an example of the latter approach, a GE2270 A derivative, LFF571, has completed phase 2 clinical trials, thus demonstrating the potential for elfamycins to become more prominent antibiotics in the future.
Collapse
Affiliation(s)
- Samantha M Prezioso
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.,Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicole E Brown
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.,Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Tetracycline does not directly inhibit the function of bacterial elongation factor Tu. PLoS One 2017; 12:e0178523. [PMID: 28552981 PMCID: PMC5446176 DOI: 10.1371/journal.pone.0178523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Understanding the molecular mechanism of antibiotics that are currently in use is important for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a well-established class of antibiotics that still have a role in treating microbial infections in humans. It is generally accepted that the main target of their action is the ribosome. The estimated affinity for tetracycline binding to the ribosome is relatively low compared to the actual potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the translation machinery have been discussed. Structural evidence suggests that tetracycline inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through interaction with the bound nucleotide. Based on this, tetracycline has been predicted to impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies addressing the effect of tetracycline on nucleotide binding have been prevented by the fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Furthermore, using physiologically relevant conditions, we demonstrate that tetracycline does not affect EF-Tu’s intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does not directly impede the function of EF-Tu.
Collapse
|
3
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
4
|
De Laurentiis EI, Mercier E, Wieden HJ. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange. J Biol Chem 2016; 291:23136-23148. [PMID: 27624934 DOI: 10.1074/jbc.m116.740381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts.
Collapse
Affiliation(s)
- Evelina Ines De Laurentiis
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
5
|
Thirup SS, Van LB, Nielsen TK, Knudsen CR. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu. J Struct Biol 2015; 191:10-21. [PMID: 26073967 DOI: 10.1016/j.jsb.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
Abstract
Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented.
Collapse
Affiliation(s)
- Søren S Thirup
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark.
| | - Lan Bich Van
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| | - Tine K Nielsen
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Mercier E, Girodat D, Wieden HJ. A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu. Sci Rep 2015; 5:7677. [PMID: 25566871 PMCID: PMC4286738 DOI: 10.1038/srep07677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu · GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.
Collapse
Affiliation(s)
- Evan Mercier
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Wang D, Luo B, Shan W, Hao M, Sun X, Ge R. The effects of EF-Ts and bismuth on EF-Tu in Helicobacter pylori: implications for an elegant timing for the introduction of EF-Ts in the elongation and EF-Tu as a potential drug target. Metallomics 2014; 5:888-95. [PMID: 23765120 DOI: 10.1039/c3mt20265h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori is a common human pathogen responsible for various gastric diseases. Bismuth can effectively inhibit the growth of this bacterium and is commonly recommended for the treatment of the related diseases. Translation elongation factors EF-Tu and EF-Ts are two important components of the protein translation system. EF-Ts has inhibitory effects on the GTPase activity of EF-Tu and enhances GDP release, a hint that careful timing for the introduction of EF-Ts in the elongation should be accomplished to prevent the complete inhibition of the elongation process. Bismuth inhibits the chaperone activity of EF-Tu, and has opposite effects on the elongation activity: inhibitory effects on the intrinsic GTPase activity and stimulation of GDP release. The present work deepens our understanding of the bacterial elongation process as mediated by EF-Tu and EF-Ts and extends our knowledge about the inhibitory effects of bismuth-based drugs against Helicobacter pylori.
Collapse
Affiliation(s)
- Dongxian Wang
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
8
|
Burnett BJ, Altman RB, Ferrao R, Alejo JL, Kaur N, Kanji J, Blanchard SC. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex. J Biol Chem 2013; 288:13917-28. [PMID: 23539628 DOI: 10.1074/jbc.m113.460014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. RESULTS EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). CONCLUSION EF-Ts directly facilitates the formation and disassociation of ternary complex. SIGNIFICANCE This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.
Collapse
Affiliation(s)
- Benjamin J Burnett
- Departments of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Massier S, Bouffartigues E, Rincé A, Maillot O, Feuilloley MGJ, Orange N, Chevalier S. Effects of a pulsed light-induced stress on Enterococcus faecalis. J Appl Microbiol 2012; 114:186-95. [PMID: 23035907 DOI: 10.1111/jam.12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/16/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023]
Abstract
AIMS Pulsed light (PL) technology is a surface decontamination process that can be used on food, packaging or water. PL efficiency may be limited by its low degree of penetration or because of a shadow effect. In these cases, surviving bacteria will be able to perceive PL as a stress. Such a stress was mimicked using low transmitted energy conditions, and its effects were investigated on the highly environmental adaptable bacterium Enterococcus faecalis V583. METHODS AND RESULTS In these laboratory conditions, a complete decontamination of the artificially inoculated medium was performed using energy doses as low as 1.8 J cm(-2) , while a treatment of 0.5, 1 and 1.2 J cm(-2) led to a 2.2, 6 and 7-log(10) CFU ml(-1) reduction in the initial bacterial population, respectively. Application of a 0.5 J cm(-2) pretreatment allowed the bacteria to resist more efficiently a 1.2 J cm(-2) subsequent PL dose. This 0.5 J cm(-2) treatment increased the bacterial mutation frequency and affected the abundance of 19 proteins as revealed by a global proteome analysis. CONCLUSIONS Enterococcus faecalis is able to adapt to a PL treatment, providing a molecular response to low-energy PL dose, leading to enhanced resistance to a subsequent treatment and increasing the mutation frequency. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives further insights on Ent. faecalis capacities to adapt and to resist to stress.
Collapse
Affiliation(s)
- S Massier
- LMSM, Laboratoire de Microbiologie-Signaux et Microenvironnement, EA 4312, Université de Rouen, Evreux, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Kavaliauskas D, Nissen P, Knudsen CR. The busiest of all ribosomal assistants: elongation factor Tu. Biochemistry 2012; 51:2642-51. [PMID: 22409271 DOI: 10.1021/bi300077s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review.
Collapse
Affiliation(s)
- Darius Kavaliauskas
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
11
|
Wieden HJ, Mercier E, Gray J, Steed B, Yawney D. A combined molecular dynamics and rapid kinetics approach to identify conserved three-dimensional communication networks in elongation factor Tu. Biophys J 2011; 99:3735-43. [PMID: 21112298 DOI: 10.1016/j.bpj.2010.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 10/18/2022] Open
Abstract
Elongation factor (EF) Tu delivers aminoacyl-tRNAs to the actively translating bacterial ribosome in a GTP-hydrolysis-dependent process. Rapid recycling of EF-Tu, catalyzed by EF-Ts, is required for efficient protein synthesis in vivo. Here we report a combined theoretical and experimental approach aimed at identifying three-dimensional communication networks in EF-Tu. As an example, we focus on the mechanistic role of second-shell residue Asp(109). We constructed full-length structural models of EF-Tu from Escherichia coli in the GDP-/GTP-bound state and performed several 10-ns-long molecular-dynamics simulations. During these simulations, the side chain of Asp(109) formed a previously undetected transient hydrogen bond to His(22), an invariant residue in the phosphate-binding loop (P-loop). To experimentally validate our molecular-dynamics results and further analyze the role of this hydrogen bond, we determined all rate constants for the multistep reaction between EF-Tu (wild-type and two mutants), EF-Ts, GDP, and GTP using the stopped-flow technique. This mutational analysis revealed that the side chain of Asp(109) is important for acceleration of GDP, but not for GTP dissociation by EF-Ts. The possibility that the Asp(109) side chain has a role in transition-state stabilization and coupling of P-loop movements with rearrangements at the base side of the nucleotide is discussed.
Collapse
Affiliation(s)
- Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Canada.
| | | | | | | | | |
Collapse
|
12
|
Biswas S, Lim EE, Gupta A, Saqib U, Mir SS, Siddiqi MI, Ralph SA, Habib S. Interaction of apicoplast-encoded elongation factor (EF) EF-Tu with nuclear-encoded EF-Ts mediates translation in the Plasmodium falciparum plastid. Int J Parasitol 2011; 41:417-27. [DOI: 10.1016/j.ijpara.2010.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 11/16/2022]
|
13
|
Rodnina MV, Wintermeyer W. Recent mechanistic insights into eukaryotic ribosomes. Curr Opin Cell Biol 2009; 21:435-43. [PMID: 19243929 DOI: 10.1016/j.ceb.2009.01.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Ribosomes are supramolecular ribonucleoprotein particles that synthesize proteins in all cells. Protein synthesis proceeds through four major phases: initiation, elongation, termination, and ribosome recycling. In each phase, a number of phase-specific translation factors cooperate with the ribosome. Whereas elongation in prokaryotes and eukaryotes involve similar factors and proceed by similar mechanisms, mechanisms of initiation, termination, and ribosome recycling, as well as the factors involved, appear quite different. Here, we summarize recent progress in deciphering molecular mechanisms of eukaryotic translation. Comparisons with prokaryotic translation are included, emphasizing emerging patterns of common design.
Collapse
Affiliation(s)
- Marina V Rodnina
- Max-Planck-Institute for Biophysical Chemistry, Department of Physical Biochemistry, 37077 Göttingen, Germany.
| | | |
Collapse
|
14
|
Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci U S A 2009; 106:1063-8. [PMID: 19122150 DOI: 10.1073/pnas.0811370106] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism.
Collapse
|
15
|
Gromadski KB, Schümmer T, Strømgaard A, Knudsen CR, Kinzy TG, Rodnina MV. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA. J Biol Chem 2007; 282:35629-37. [PMID: 17925388 PMCID: PMC3269240 DOI: 10.1074/jbc.m707245200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions of elongation factor 1A (eEF1A) from Saccharomyces cerevisiae with elongation factor 1Balpha (eEF1Balpha), guanine nucleotides, and aminoacyl-tRNA were studied kinetically by fluorescence stopped-flow. eEF1A has similar affinities for GDP and GTP, 0.4 and 1.1 microm, respectively. Dissociation of nucleotides from eEF1A in the absence of the guanine nucleotide exchange factor is slow (about 0.1 s(-1)) and is accelerated by eEF1Balpha by 320-fold and 250-fold for GDP and GTP, respectively. The rate constant of eEF1Balpha binding to eEF1A (10(7)-10(8) M (-1) s(-1)) is independent of guanine nucleotides. At the concentrations of nucleotides and factors prevailing in the cell, the overall exchange rate is expected to be in the range of 6 s(-1), which is compatible with the rate of protein synthesis in the cell. eEF1A.GTP binds Phe-tRNA(Phe) with a K(d) of 3 nm, whereas eEF1A.GDP shows no significant binding, indicating that eEF1A has similar tRNA binding properties as its prokaryotic homolog, EF-Tu.
Collapse
Affiliation(s)
- Kirill B. Gromadski
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | - Tobias Schümmer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | - Anne Strømgaard
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Århus C, Denmark
| | - Charlotte R. Knudsen
- Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Århus C, Denmark
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Marina V. Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| |
Collapse
|