1
|
Hardy SA, Liesinger L, Patrick R, Poettler M, Rech L, Gindlhuber J, Mabotuwana NS, Ashour D, Stangl V, Bigland M, Murtha LA, Starkey MR, Scherr D, Hansbro PM, Hoefler G, Campos Ramos G, Cochain C, Harvey RP, Birner-Gruenberger R, Boyle AJ, Rainer PP. Extracellular Matrix Protein-1 as a Mediator of Inflammation-Induced Fibrosis After Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1539-1554. [PMID: 38205347 PMCID: PMC10774582 DOI: 10.1016/j.jacbts.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 01/12/2024]
Abstract
Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.
Collapse
Affiliation(s)
- Sean A. Hardy
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ralph Patrick
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Maria Poettler
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Lavinia Rech
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Nishani S. Mabotuwana
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - DiyaaEldin Ashour
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Mark Bigland
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lucy A. Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Malcolm R. Starkey
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Daniel Scherr
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gustavo Campos Ramos
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine 1, University Hospital of Würzburg, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Richard P. Harvey
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, Australia
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytical Chemistry, Technische Universität Wien, Vienna, Austria
- BioTechMed Graz, Graz, Austria
| | - Andrew J. Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Department of Cardiovascular Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Peter P. Rainer
- Department of Internal Medicine and University Heart Center, Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Department of Medicine, St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| |
Collapse
|
2
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
3
|
Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal YC, Yalcin-Ozuysal O, Mese G, Tekin HC, Ozcivici E. Scaffold-free biofabrication of adipocyte structures with magnetic levitation. Biotechnol Bioeng 2020; 118:1127-1140. [PMID: 33205833 DOI: 10.1002/bit.27631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Tissue engineering research aims to repair the form and/or function of impaired tissues. Tissue engineering studies mostly rely on scaffold-based techniques. However, these techniques have certain challenges, such as the selection of proper scaffold material, including mechanical properties, sterilization, and fabrication processes. As an alternative, we propose a novel scaffold-free adipose tissue biofabrication technique based on magnetic levitation. In this study, a label-free magnetic levitation technique was used to form three-dimensional (3D) scaffold-free adipocyte structures with various fabrication strategies in a microcapillary-based setup. Adipogenic-differentiated 7F2 cells and growth D1 ORL UVA stem cells were used as model cells. The morphological properties of the 3D structures of single and cocultured cells were analyzed. The developed procedure leads to the formation of different patterns of single and cocultured adipocytes without a scaffold. Our results indicated that adipocytes formed loose structures while growth cells were tightly packed during 3D culture in the magnetic levitation platform. This system has potential for ex vivo modeling of adipose tissue for drug testing and transplantation applications for cell therapy in soft tissue damage. Also, it will be possible to extend this technique to other cell and tissue types.
Collapse
Affiliation(s)
- Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
4
|
α-catenin isoforms are regulated by glucose and involved in regulating insulin secretion in rat clonal β-cell models. Biochem J 2020; 477:763-772. [PMID: 32003420 PMCID: PMC7036346 DOI: 10.1042/bcj20190832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
The recent finding that β-catenin levels play an important rate-limiting role in processes regulating insulin secretion lead us to investigate whether its binding partner α-catenin also plays a role in this process. We find that levels of both α-E-catenin and α-N-catenin are rapidly up-regulated as levels of glucose are increased in rat clonal β-cell models INS-1E and INS-832/3. Lowering in levels of either α-catenin isoform using siRNA resulted in significant increases in glucose stimulated insulin secretion (GSIS) and this effect was attenuated when β-catenin levels were lowered indicating these proteins have opposing effects on insulin release. This effect of α-catenin knockdown on GSIS was not due to increases in insulin expression but was associated with increases in calcium influx into cells. Moreover, simultaneous depletion of α-E catenin and α-N catenin decreased the actin polymerisation to a similar degree as latrunculin treatment and inhibition of ARP 2/3 mediated actin branching with CK666 attenuated the α-catenin depletion effect on GSIS. This suggests α-catenin mediated actin remodelling may be involved in the regulation of insulin secretion. Together this indicates that α-catenin and β-catenin can play opposing roles in regulating insulin secretion, with some degree of functional redundancy in roles of α-E-catenin and α-N-catenin. The finding that, at least in β-cell models, the levels of each can be regulated in the longer term by glucose also provides a potential mechanism by which sustained changes in glucose levels might impact on the magnitude of GSIS.
Collapse
|
5
|
The role of adherens junction proteins in the regulation of insulin secretion. Biosci Rep 2018; 38:BSR20170989. [PMID: 29459424 PMCID: PMC5861323 DOI: 10.1042/bsr20170989] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
In healthy individuals, any rise in blood glucose levels is rapidly countered by the release of insulin from the β-cells of the pancreas which in turn promotes the uptake and storage of the glucose in peripheral tissues. The β-cells possess exquisite mechanisms regulating the secretion of insulin to ensure that the correct amount of insulin is released. These mechanisms involve tight control of the movement of insulin containing secretory vesicles within the β-cells, initially preventing most vesicles being able to move to the plasma membrane. Elevated glucose levels trigger an influx of Ca2+ that allows fusion of the small number of insulin containing vesicles that are pre-docked at the plasma membrane but glucose also stimulates processes that allow other insulin containing vesicles located further in the cell to move to and fuse with the plasma membrane. The mechanisms controlling these processes are complex and not fully understood but it is clear that the interaction of the β-cells with other β-cells in the islets is very important for their ability to develop the appropriate machinery for proper regulation of insulin secretion. Emerging evidence indicates one factor that is key for this is the formation of homotypic cadherin mediated adherens junctions between β-cells. Here, we review the evidence for this and discuss the mechanisms by which these adherens junctions might regulate insulin vesicle trafficking as well as the implications this has for understanding the dysregulation of insulin secretion seen in pathogenic states.
Collapse
|
6
|
Dissanayake WC, Sorrenson B, Cognard E, Hughes WE, Shepherd PR. β-catenin is important for the development of an insulin responsive pool of GLUT4 glucose transporters in 3T3-L1 adipocytes. Exp Cell Res 2018. [PMID: 29540328 DOI: 10.1016/j.yexcr.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GLUT4 is unique among specialized glucose transporters in being exclusively expressed in muscle and adipocytes. In the absence of insulin the distribution of GLUT4 is preferentially intracellular and insulin stimulation results in the movement of GLUT4 containing vesicles to the plasma membrane. This process is responsible for the insulin stimulation of glucose uptake in muscle and fat. While signalling pathways triggering the translocation of GLUT4 are well understood, the mechanisms regulating the intracellular retention of GLUT4 are less well understood. Here we report a role for β-catenin in this process. In 3T3-L1 adipocytes in which β-catenin is depleted, the levels of GLUT4 at and near the plasma membrane rise in unstimulated cells while the subsequent increase in GLUT4 at the plasma membrane upon insulin stimulation is reduced. Small molecule approaches to acutely activate or inhibit β-catenin give results that support the results obtained with siRNA and these changes are accompanied by matching changes in glucose transport into these cells. Together these results indicate that β-catenin is a previously unrecognized regulator of the mechanisms that control the insulin sensitive pool of GLUT4 transporters inside these adipocyte cells.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Emmanuelle Cognard
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William E Hughes
- Department of Medicine, St. Vincent's Hospital, Victoria Street, Sydney 2010, Australia; The Garvan Institute of Medical Research, 384 Victoria Street, Sydney 2010, Australia
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Harada K, Kitaguchi T, Kamiya T, Aung KH, Nakamura K, Ohta K, Tsuboi T. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells. J Biol Chem 2017; 292:10855-10864. [PMID: 28533434 DOI: 10.1074/jbc.m117.788653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Indexed: 01/07/2023] Open
Abstract
The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca2+ concentrations ([Ca2+] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca2+] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of Gq and G12/13 signaling pathways in the LPI-induced increased [Ca2+] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca2+] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca2+] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by Gq and G12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation.
Collapse
Affiliation(s)
- Kazuki Harada
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore.,Comprehensive Research Organization, Waseda University, Tokyo 162-0041, Japan, and
| | - Taichi Kamiya
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kyaw Htet Aung
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuaki Nakamura
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kunihiro Ohta
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Tsuboi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan,
| |
Collapse
|
8
|
Shen LF, Chen YJ, Liu KM, Haddad ANS, Song IW, Roan HY, Chen LY, Yen JJY, Chen YJ, Wu JY, Chen YT. Role of S-Palmitoylation by ZDHHC13 in Mitochondrial function and Metabolism in Liver. Sci Rep 2017; 7:2182. [PMID: 28526873 PMCID: PMC5438363 DOI: 10.1038/s41598-017-02159-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/12/2017] [Indexed: 11/17/2022] Open
Abstract
Palmitoyltransferase (PAT) catalyses protein S-palmitoylation which adds 16-carbon palmitate to specific cysteines and contributes to various biological functions. We previously reported that in mice, deficiency of Zdhhc13, a member of the PAT family, causes severe phenotypes including amyloidosis, alopecia, and osteoporosis. Here, we show that Zdhhc13 deficiency results in abnormal liver function, lipid abnormalities, and hypermetabolism. To elucidate the molecular mechanisms underlying these disease phenotypes, we applied a site-specific quantitative approach integrating an alkylating resin-assisted capture and mass spectrometry-based label-free strategy for studying the liver S-palmitoylome. We identified 2,190 S-palmitoylated peptides corresponding to 883 S-palmitoylated proteins. After normalization using the membrane proteome with TMT10-plex labelling, 400 (31%) of S-palmitoylation sites on 254 proteins were down-regulated in Zdhhc13-deficient mice, representing potential ZDHHC13 substrates. Among these, lipid metabolism and mitochondrial dysfunction proteins were overrepresented. MCAT and CTNND1 were confirmed to be specific ZDHHC13 substrates. Furthermore, we found impaired mitochondrial function in hepatocytes of Zdhhc13-deficient mice and Zdhhc13-knockdown Hep1–6 cells. These results indicate that ZDHHC13 is an important regulator of mitochondrial activity. Collectively, our study allows for a systematic view of S-palmitoylation for identification of ZDHHC13 substrates and demonstrates the role of ZDHHC13 in mitochondrial function and metabolism in liver.
Collapse
Affiliation(s)
- Li-Fen Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kai-Ming Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Amir N Saleem Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - I-Wen Song
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Ying Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jeffrey J Y Yen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America.
| |
Collapse
|
9
|
Bahn YJ, Lee KP, Lee SM, Choi JY, Seo YS, Kwon KS. Nucleoredoxin promotes adipogenic differentiation through regulation of Wnt/β-catenin signaling. J Lipid Res 2014; 56:294-303. [PMID: 25548260 DOI: 10.1194/jlr.m054056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.
Collapse
Affiliation(s)
- Young Jae Bahn
- Department of Biological Science, Korea Advanced Institute Science and Technology (KAIST), Daejeon 305-701, Republic of Korea Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Kwang-Pyo Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Seung-Min Lee
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Jeong Yi Choi
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Yeon-Soo Seo
- Department of Biological Science, Korea Advanced Institute Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| |
Collapse
|
10
|
Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 2014; 15:18677-92. [PMID: 25325535 PMCID: PMC4227239 DOI: 10.3390/ijms151018677] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
11
|
Abstract
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology; Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| |
Collapse
|
12
|
Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JEJ, Tiganis T, Macaulay SL, Mitchell CA. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 2011; 286:43229-40. [PMID: 22002247 DOI: 10.1074/jbc.m111.306621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Demis Balamatsias
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim WK, Jung H, Kim EY, Kim DH, Cho YS, Park BC, Park SG, Ko Y, Bae KH, Lee SC. RPTPμ tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation. Mol Biol Cell 2011; 22:4883-91. [PMID: 21998202 PMCID: PMC3237630 DOI: 10.1091/mbc.e11-03-0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.
Collapse
Affiliation(s)
- Won Kon Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang ZQ, Zhao Y, Liu Y, Zhang JY, Zhang S, Jiang GY, Zhang PX, Yang LH, Liu D, Li QC, Wang EH. Downregulation of HDPR1 is associated with poor prognosis and affects expression levels of p120-catenin and beta-catenin in nonsmall cell lung cancer. Mol Carcinog 2010; 49:508-19. [PMID: 20232357 DOI: 10.1002/mc.20622] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HDPR1 (human homologue of Dapper) is considered as a Dishevelled (DVL) antagonist in WNT signaling. We recently reported that DVL was associated with cytoplasmic accumulation of beta-catenin in nonsmall cell lung cancer (NSCLC). Whether cytoplasmic accumulation of beta-catenin is correlated with HDPR1 is unclear. Xenopus Dapper (XDpr) was found to stabilize p120-catenin (p120ctn) in Xenopus embryogenesis. However, whether HDPR1 can regulate p120ctn expression level is not reported. Furthermore, how HDPR1 influences invasiveness in lung carcinogenesis is also not well understood. In this study, our aims were to explore the effects of HDPR1 on the lung carcinogenesis and to examine the relationship among HDPR1, beta-catenin, and p120ctn. Immunohistochemical analysis in 120 NSCLC tissues showed that HDPR1 was significantly lower in 82 specimens (68.3%). Reverse transcription (RT)-polymerase chain reaction (PCR) and Western blotting analysis showed that the mRNA and protein expression of HDPR1 were lower in tumor tissues as compared to corresponding nontumorous tissues. Moreover, reduced HDPR1 expression was related to the clinicopathological factors and was an independent risk factor for prognosis of the patients with NSCLC. In addition, HDPR1 expression was also associated with the expression of p120ctn and beta-catenin in lung cancer tissues. Knockdown of HDPR1 gene enhanced the invasive ability of lung cancer cells, which was dependent on p120ctn and independent of beta-catenin. In conclusion, the function of HDPR1 on regulating p120ctn may play an important role in human lung carcinogenesis. Restoration of HDPR1 gene may be a new therapeutic target of lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Yang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Heping District, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Koeck T, Willard B, Crabb JW, Kinter M, Stuehr DJ, Aulak KS. Glucose-mediated tyrosine nitration in adipocytes: targets and consequences. Free Radic Biol Med 2009; 46:884-92. [PMID: 19135148 PMCID: PMC2888280 DOI: 10.1016/j.freeradbiomed.2008.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/03/2008] [Accepted: 12/11/2008] [Indexed: 12/20/2022]
Abstract
Hyperglycemia, a key factor in insulin resistance and diabetic pathology, is associated with cellular oxidative stress that promotes oxidative protein modifications. We report that protein nitration is responsive to changes in glucose concentrations in 3T3-L1 adipocytes. Alterations in the extent of tyrosine nitration as well as the cellular nitroproteome profile correlated tightly with changing glucose concentrations. The target proteins we identified are involved in fatty acid binding, cell signaling, protein folding, energy metabolism, antioxidant capacity, and membrane permeability. The nitration of adipocyte fatty acid binding protein (FABP4) at Tyr19 decreases, similar to phosphorylation, the binding of palmitic acid to the fatty acid-free protein. This potentially alters intracellular fatty acid transport, nuclear translocation of FABP4, and agonism of PPAR gamma. Our results suggest that protein tyrosine nitration may be a factor in obesity, insulin resistance, and the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
| | - Belinda Willard
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - John W. Crabb
- Departments of Ophthalmic Research and Cell Biology, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mike Kinter
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44118, USA
| |
Collapse
|
17
|
Liu Y, Dong QZ, Zhao Y, Dong XJ, Miao Y, Dai SD, Yang ZQ, Zhang D, Wang Y, Li QC, Zhao C, Wang EH. P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells. Exp Cell Res 2009; 315:890-8. [PMID: 19150613 DOI: 10.1016/j.yexcr.2008.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/14/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
Abstract
Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and beta-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University and Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Capilla E, Suzuki N, Pessin JE, Hou JC. The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment. Mol Endocrinol 2007; 21:3087-99. [PMID: 17761952 DOI: 10.1210/me.2006-0476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized gamma-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Collapse
Affiliation(s)
- Encarnación Capilla
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
19
|
Anastasiadis PZ. p120-ctn: A nexus for contextual signaling via Rho GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:34-46. [PMID: 17028013 DOI: 10.1016/j.bbamcr.2006.08.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120) is the prototypic member of a subfamily of armadillo repeat domain proteins involved in intercellular adhesion. Recent evidence indicates that p120 associates with classical cadherins and regulates their stability. Ectopic p120 expression results in a variety of morphological effects, and promotes cell migration. There is now strong evidence that p120 acts, at least in part, through regulation of Rho GTPases. The data suggest that p120 may act as a signaling nexus, conveying messages from the cellular micro- and macro-environment to the cell's interior. By regulating Rho GTPases in a context-dependent manner p120 can exert profound effects on cellular responses from synaptic plasticity to vesicle trafficking, as well as regulate the motile vs. sessile, and possibly the proliferative vs. quiescent phenotype of epithelial cells. Here, we review the new evidence on the relationship of p120 to Rho GTPases, and discuss potential roles for the p120-Rho connection in normal and malignant cells.
Collapse
Affiliation(s)
- Panos Z Anastasiadis
- Department Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Rm. 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|