1
|
Deng MR, Chik SY, Li Y, Zhu H. An in-cluster Sfp-type phosphopantetheinyl transferase instead of the holo-ACP synthase activates the granaticin biosynthesis under natural physiological conditions. Front Chem 2022; 10:1112362. [PMID: 36618868 PMCID: PMC9813960 DOI: 10.3389/fchem.2022.1112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial aromatic polyketides are mainly biosynthesized by type II polyketide synthases (PKSs). The PKSs cannot be functional unless their acyl carrier proteins (ACPs) are phosphopantetheinylated by phosphopantetheinyl transferases (PPTases). Gra-ORF32 was identified as an in-cluster PPTase dedicated for granaticin biosynthesis in Streptomyces vietnamensis and the Arg- and Pro-rich N terminus was found to be crucial for catalytic activity. Overexpression of the encoding genes of the holo-ACP synthases of fatty acid synthases (FAS ACPSs) of both E. coli and S. vietnamensis could efficiently activate the production of granaticins in the Δgra-orf32 mutant, suggesting the ACP of granaticin (graACP) is an efficient substrate for FAS ACPSs. However, Gra-ORF32, the cognate PPTase of the graACP, could not compensate the conditional deficiency of ACPS in E. coli HT253, indicating that it has evolved to be functionally segregated from fatty acid biosynthesis. Nine out of eleven endogenous and all the tested exogenous non-cognate PPTases could activate the production of granaticins to varied extents when overexpressed in the Δgra-orf32 mutant, indicating that ACPs of type II PKSs could also be widely recognized as effective substrates by the Sfp-type PPTases. The exogenous PPTases of type II PKSs activated the production of granaticins with much higher efficiency, suggesting that the phylogenetically distant in-cluster PPTases of type II PKSs could share substrate preferences for the ACPs of type II PKSs. A significantly elevated production of granaticins was observed when the mutant Δgra-orf32 was cultivated on ISP2 plates, which was a consequence of crosstalk between the granaticin pathway and a kinamycin-like pathway as revealed by transcriptome analysis and pathway inactivations. Although the host FAS ACPS could efficiently activate the production of granaticins when overexpressed, only Gra-ORF32 activated the efficient production of granaticins under natural physiological conditions, indicating that the activity of the host FAS ACPS was strictly regulated, possibly by binding the FAS holo-ACP product with high affinity. Our findings would contribute to a more comprehensive understanding of how the ACPs of type II PKSs are activated and facilitate the future functional reconstitutions of type II PKSs in E. coli.
Collapse
Affiliation(s)
- Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Enhanced Rishirilide Biosynthesis by a Rare In-Cluster Phosphopantetheinyl Transferase in Streptomyces xanthophaeus. Microbiol Spectr 2022; 10:e0324722. [PMID: 36326495 PMCID: PMC9769936 DOI: 10.1128/spectrum.03247-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Phosphopantetheinyl transferases (PPTases) play important roles in activating apo-acyl carrier proteins (apo-ACPs) and apo-peptidyl carrier proteins (apo-PCPs) in both primary and secondary metabolism. PPTases catalyze the posttranslational modifications of those carrier proteins by covalent attachment of the 4'-phosphopantetheine group to a conserved serine residue. The protein-protein interactions between a PPTase and a cognate acyl or peptidyl carrier protein have important regulatory functions in microbial biosynthesis, but the molecular mechanism underlying their specific recognition remains elusive. In this study, we identified a new rishirilide biosynthetic gene cluster with a rare in-cluster PPTase from Streptomyces xanthophaeus no2. The function of this Sfp-type PPTase, SxrX, in rishirilide production was confirmed using genetic mutagenesis and biochemical characterization. We applied molecular modeling and site-directed mutagenesis to identify key residues mediating the protein-protein interaction between SxrX and its cognate ACP. In addition, six natural products were isolated from wild-type S. xanthophaeus no2 and the ΔsxrX mutant, including rishirilide A and lupinacidin A, that exhibited antimicrobial and anticancer activities, respectively. SxrX is the first Sfp-type PPTase identified from an aromatic polyketide biosynthetic gene cluster and shown to be responsible for high-level production of rishirilide derivatives. IMPORTANCE Genome mining has been a vital means for natural product drug discovery in the postgenomic era. The rishirilide-type polyketides have attracted attention due to their potent bioactivity, but the poor robustness of production hosts has limited further research and development. This study not only identifies a hyperproducer of rishirilides but also reveals a rare, in-cluster PPTase SxrX that plays an important role in boosting rishirilide biosynthesis. Experimental and computational investigations revealed new insights on the protein-protein interaction between SxrX and its cognate ACP with wide implications for understanding polyketide biosynthesis.
Collapse
|
3
|
Zong G, Fu J, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. Use of elicitors to enhance or activate the antibiotic production in streptomyces. Crit Rev Biotechnol 2021; 42:1260-1283. [PMID: 34706600 DOI: 10.1080/07388551.2021.1987856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Streptomyces is the largest and most significant genus of Actinobacteria, comprising 961 species. These Gram-positive bacteria produce many versatile and important bioactive compounds; of these, antibiotics, specifically the enhancement or activation of their production, have received extensive research attention. Recently, various biotic and abiotic elicitors have been reported to modify the antibiotic metabolism of Streptomyces, which promotes the production of new antibiotics and bioactive metabolites for improvement in the yields of endogenous products. However, some elicitors that obviously contribute to secondary metabolite production have not yet received sufficient attention. In this study, we have reviewed the functions and mechanisms of chemicals, novel microbial metabolic elicitors, microbial interactions, enzymes, enzyme inhibitors, environmental factors, and novel combination methods regarding antibiotic production in Streptomyces. This review has aimed to identify potentially valuable elicitors for stimulating the production of latent antibiotics or enhancing the synthesis of subsistent antibiotics in Streptomyces. Future applications and challenges in the discovery of new antibiotics and enhancement of existing antibiotic production using elicitors are discussed.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Kim M, Bae M, Jung Y, Kim JM, Hwang S, Song MC, Ban YH, Bae ES, Hong S, Lee SK, Cha S, Oh D, Yoon YJ. Unprecedented Noncanonical Features of the Nonlinear Nonribosomal Peptide Synthetase Assembly Line for WS9326A Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Myoun‐Su Kim
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ye‐Eun Jung
- Department of Chemistry and Nanoscience Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Jung Min Kim
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yeon Hee Ban
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sun‐Shin Cha
- Department of Chemistry and Nanoscience Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Dong‐Chan Oh
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
5
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Kim M, Bae M, Jung Y, Kim JM, Hwang S, Song MC, Ban YH, Bae ES, Hong S, Lee SK, Cha S, Oh D, Yoon YJ. Unprecedented Noncanonical Features of the Nonlinear Nonribosomal Peptide Synthetase Assembly Line for WS9326A Biosynthesis. Angew Chem Int Ed Engl 2021; 60:19766-19773. [DOI: 10.1002/anie.202103872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/04/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Myoun‐Su Kim
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ye‐Eun Jung
- Department of Chemistry and Nanoscience Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Jung Min Kim
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yeon Hee Ban
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sun‐Shin Cha
- Department of Chemistry and Nanoscience Ewha Womans University 52 Ewhayeodae-gil, Seodaemun-gu Seoul 03760 Republic of Korea
| | - Dong‐Chan Oh
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Martín JF, Liras P, Sánchez S. Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Front Microbiol 2021; 12:630694. [PMID: 33796086 PMCID: PMC8007912 DOI: 10.3389/fmicb.2021.630694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Different types of post-translational modifications are present in bacteria that play essential roles in bacterial metabolism modulation. Nevertheless, limited information is available on these types of modifications in actinobacteria, particularly on their effects on secondary metabolite biosynthesis. Recently, phosphorylation, acetylation, or phosphopantetheneylation of transcriptional factors and key enzymes involved in secondary metabolite biosynthesis have been reported. There are two types of phosphorylations involved in the control of transcriptional factors: (1) phosphorylation of sensor kinases and transfer of the phosphate group to the receiver domain of response regulators, which alters the expression of regulator target genes. (2) Phosphorylation systems involving promiscuous serine/threonine/tyrosine kinases that modify proteins at several amino acid residues, e.g., the phosphorylation of the global nitrogen regulator GlnR. Another post-translational modification is the acetylation at the epsilon amino group of lysine residues. The protein acetylation/deacetylation controls the activity of many short and long-chain acyl-CoA synthetases, transcriptional factors, key proteins of bacterial metabolism, and enzymes for the biosynthesis of non-ribosomal peptides, desferrioxamine, streptomycin, or phosphinic acid-derived antibiotics. Acetyltransferases catalyze acetylation reactions showing different specificity for the acyl-CoA donor. Although it functions as acetyltransferase, there are examples of malonylation, crotonylation, succinylation, or in a few cases acylation activities using bulky acyl-CoA derivatives. Substrates activation by nucleoside triphosphates is one of the central reactions inhibited by lysine acetyltransferases. Phosphorylation/dephosphorylation or acylation/deacylation reactions on global regulators like PhoP, GlnR, AfsR, and the carbon catabolite regulator glucokinase strongly affects the expression of genes controlled by these regulators. Finally, a different type of post-translational protein modification is the phosphopantetheinylation, catalized by phosphopantetheinyl transferases (PPTases). This reaction is essential to modify those enzymes requiring phosphopantetheine groups like non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. Up to five PPTases are present in S. tsukubaensis and S. avermitilis. Different PPTases modify substrate proteins in the PCP or ACP domains of tacrolimus biosynthetic enzymes. Directed mutations of genes encoding enzymes involved in the post-translational modification is a promising tool to enhance the production of bioactive metabolites.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
8
|
Ji Z, Nie Q, Yin Y, Zhang M, Pan H, Hou X, Tang G. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Yu Ji
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiu‐Yue Nie
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xian‐Feng Hou
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
9
|
Ji ZY, Nie QY, Yin Y, Zhang M, Pan HX, Hou XF, Tang GL. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019; 58:18046-18054. [PMID: 31553109 DOI: 10.1002/anie.201910882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/15/2022]
Abstract
One biosynthetic gene cluster (BGC) usually governs the biosynthesis of a series of compounds exhibiting either the same or similar molecular scaffolds. Reported here is a multiplex activation strategy to awaken a cryptic BGC associated with tetracycline polyketides, resulting in the discovery of compounds having different core structures. By constitutively expressing a positive regulator gene in tandem mode, a single BGC directed the biosynthesis of eight aromatic polyketides with two types of frameworks, two pentacyclic isomers and six glycosylated tetracyclines. The proposed biosynthetic pathway, based on systematic gene inactivation and identification of intermediates, employs two sets of tailoring enzymes with a branching point from the same intermediate. These findings not only provide new insights into the role of tailoring enzymes in the diversification of polyketides, but also highlight a reliable strategy for genome mining of natural products.
Collapse
Affiliation(s)
- Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Kudo F, Zhang J, Sato S, Hirayama A, Eguchi T. Functional Characterization of 3-Aminobenzoic Acid Adenylation Enzyme PctU and UDP-N-Acetyl-d-Glucosamine: 3-Aminobenzoyl-ACP Glycosyltransferase PctL in Pactamycin Biosynthesis. Chembiochem 2019; 20:2458-2462. [PMID: 31059166 DOI: 10.1002/cbic.201900239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 12/27/2022]
Abstract
Pactamycin is an antibiotic produced by Streptomyces pactum with antitumor and antimalarial properties. Pactamycin has a unique aminocyclitol core that is decorated with 3-aminoacetophenone, 6-methylsaliciate, and an N,N-dimethylcarbamoyl group. Herein, we show that the adenylation enzyme PctU activates 3-aminobenzoic acid (3ABA) with adenosine triphosphate and ligates it to the holo form of the discrete acyl carrier protein PctK to yield 3ABA-PctK. Then, 3ABA-PctK is N-glycosylated with uridine diphosphate-N-acetyl-d-glucosamine (UDP-GlcNAc) by the glycosyltransferase PctL to yield GlcNAc-3ABA-PctK. Because 3ABA is known to be a precursor of the 3-aminoacetophenone moiety, PctU appears to be a gatekeeper that selects the appropriate 3-aminobenzoate starter unit. Overall, we propose that acyl carrier protein-bound glycosylated 3ABA derivatives are biosynthetic intermediates of pactamycin biosynthesis.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Jiahao Zhang
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shusuke Sato
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Akane Hirayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Liu T, Mazmouz R, Neilan BA. An In Vitro and In Vivo Study of Broad-Range Phosphopantetheinyl Transferases for Heterologous Expression of Cyanobacterial Natural Products. ACS Synth Biol 2018; 7:1143-1151. [PMID: 29562128 DOI: 10.1021/acssynbio.8b00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphopantetheinyl transferases catalyze the post-translational modification of carrier proteins involved in both primary and secondary metabolism. The functional expression of polyketide synthases and nonribosomal peptide synthetases requires the activation of all carrier protein domains by phosphopantetheinyl transferases. Here we describe the characterization of five bacterial phosphopantetheinyl transferases by their substrate specificity and catalytic efficiency of four cyanobacterial carrier proteins. Comparative in vitro phosphopantetheinylation analysis showed Sfp possesses the highest catalytic efficiency over various carrier proteins. In vivo coexpression of phosphopantetheinyl transferases with carrier proteins revealed a broad range substrate specificity of phosphopantetheinyl transferases; all studied phosphopantetheinyl transferases were capable of converting apo- carrier proteins, sourced from diverse biosynthetic enzymes, to their active holo form. Phosphopantetheinyl transferase coexpression with the hybrid nonribosomal peptide synthetases/polyketide synthases responsible for microcystin biosynthesis confirmed that the higher in vitro activity of Sfp translated in vivo to a higher yield of production.
Collapse
Affiliation(s)
- Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
12
|
Bitok JK, Lemetre C, Ternei MA, Brady SF. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. FEMS Microbiol Lett 2018; 364:3983257. [PMID: 28817927 DOI: 10.1093/femsle/fnx155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023] Open
Abstract
The majority of environmental bacteria are not readily cultured in the lab, leaving the natural products they make inaccessible using culture-dependent discovery methods. Cloning and heterologous expression of DNA extracted from environmental samples (environmental DNA, eDNA) provides a means of circumventing this discovery bottleneck. To facilitate the identification of clones containing biosynthetic gene clusters, we developed a model heterologous expression reporter strain Streptomyces albus::bpsA ΔPPTase. This strain carries a 4΄-phosphopantetheinyl transferase (PPTase)-dependent blue pigment synthase A gene, bpsA, in a PPTase deletion background. eDNA clones that express a functional PPTase restore production of the blue pigment, indigoidine. As PPTase genes often occur in biosynthetic gene clusters (BGCs), indigoidine production can be used to identify eDNA clones containing BGCs. We screened a soil eDNA library hosted in S. albus::bpsA ΔPPTase and identified clones containing non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS) and mixed NRPS/PKS biosynthetic gene clusters. One NRPS gene cluster was shown to confer the production of myxochelin A to S. albus::bpsA ΔPPTase.
Collapse
Affiliation(s)
- J Kipchirchir Bitok
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Christophe Lemetre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
13
|
Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network. Sci Rep 2016; 6:24255. [PMID: 27052100 PMCID: PMC4823652 DOI: 10.1038/srep24255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/23/2016] [Indexed: 11/08/2022] Open
Abstract
Phosphopantetheinyl transferases (PPTases) play essential roles in both primary metabolisms and secondary metabolisms via post-translational modification of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). In this study, an industrial FK506 producing strain Streptomyces tsukubaensis L19, together with Streptomyces avermitilis, was identified to contain the highest number (five) of discrete PPTases known among any species thus far examined. Characterization of the five PPTases in S. tsukubaensis L19 unveiled that stw ACP, an ACP in a type II PKS, was phosphopantetheinylated by three PPTases FKPPT1, FKPPT3, and FKACPS; sts FAS ACP, the ACP in fatty acid synthase (FAS), was phosphopantetheinylated by three PPTases FKPPT2, FKPPT3, and FKACPS; TcsA-ACP, an ACP involved in FK506 biosynthesis, was phosphopantetheinylated by two PPTases FKPPT3 and FKACPS; FkbP-PCP, an PCP involved in FK506 biosynthesis, was phosphopantetheinylated by all of these five PPTases FKPPT1-4 and FKACPS. Our results here indicate that the functions of these PPTases complement each other for ACPs/PCPs substrates, suggesting a complicate phosphopantetheinylation network in S. tsukubaensis L19. Engineering of these PPTases in S. tsukubaensis L19 resulted in a mutant strain that can improve FK506 production.
Collapse
|
14
|
The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins. Arch Microbiol 2016; 198:193-7. [PMID: 26748983 DOI: 10.1007/s00203-015-1179-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.
Collapse
|
15
|
Zainudin NAIM, Condon B, De Bruyne L, Van Poucke C, Bi Q, Li W, Höfte M, Turgeon BG. Virulence, Host-Selective Toxin Production, and Development of Three Cochliobolus Phytopathogens Lacking the Sfp-Type 4'-Phosphopantetheinyl Transferase Ppt1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1130-1141. [PMID: 26168137 DOI: 10.1094/mpmi-03-15-0068-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
Collapse
Affiliation(s)
- Nur Ain Izzati Mohd Zainudin
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 2 Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Bradford Condon
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Lieselotte De Bruyne
- 3 Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christof Van Poucke
- 4 Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University; and
| | - Qing Bi
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Wei Li
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 5 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, P.R. China
| | - Monica Höfte
- 3 Department of Crop Protection, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - B Gillian Turgeon
- 1 Section of Plant Pathology & Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
16
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
17
|
Wang YY, Zhang XS, Ren NN, Guo YY, Jiang XH, Jiang H, Li YD, Li YQ. Two bacterial group II phosphopantetheinyl transferases involved in both primary metabolism and secondary metabolism. Curr Microbiol 2014; 70:390-7. [PMID: 25413605 DOI: 10.1007/s00284-014-0735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
It is known that bacterial group II phosphopantetheinyl transferases (PPTases) usually phosphopantetheinylate acyl carrier proteins (ACPs) involved in the secondary metabolism. For example, a bacterial group II PPTase SchPPT has been known to phosphopantetheinylate only ACPs involved in secondary metabolism, such as scn ACP0-2 and scn ACP7. In this study, we found two bacterial group II PPTases, Hppt and Sppt, could phosphopantetheinylate not only scn ACP0-2 and scn ACP7, but also sch FAS ACP, an ACP involved in primary metabolism. Swapping of the N terminus and C terminus of PPTases showed that (i) both the hybrids Hppt-Sppt and Sppt-Hppt could phosphopantetheinylate sch FAS ACP but not scn ACP0-2; (ii) both the hybrids Sppt-SchPPT and SchPPT-Sppt lost abilities to phosphopantetheinylate sch FAS ACP and scn ACP0-2. Hppt and Sppt represent group II PPTases which phosphopantetheinylate both ACPs involved in primary metabolism and ACPs involved in secondary metabolism.
Collapse
Affiliation(s)
- Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang YY, Li YD, Liu JB, Ran XX, Guo YY, Ren NN, Chen X, Jiang H, Li YQ. Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases. PLoS One 2014; 9:e103031. [PMID: 25036863 PMCID: PMC4103896 DOI: 10.1371/journal.pone.0103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023] Open
Abstract
Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.
Collapse
Affiliation(s)
- Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu-Dong Li
- Department of Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jian-Bo Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Xin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni-Ni Ren
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (HJ); (YQL)
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail: (HJ); (YQL)
| |
Collapse
|
19
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
20
|
Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10. Appl Environ Microbiol 2013; 79:3346-54. [PMID: 23524668 DOI: 10.1128/aem.00099-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphopantetheinyl transferases (PPTases) are essential to the activities of type I/II polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) through converting acyl carrier proteins (ACPs) in PKSs and peptidyl carrier proteins (PCPs) in NRPSs from inactive apo-forms into active holo-forms, leading to biosynthesis of polyketides and nonribosomal peptides. The industrial natamycin (NTM) producer, Streptomyces chattanoogensis L10, contains two PPTases (SchPPT and SchACPS) and five PKSs. Biochemical characterization of these two PPTases shows that SchPPT catalyzes the phosphopantetheinylation of ACPs in both type I PKSs and type II PKSs, SchACPS catalyzes the phosphopantetheinylation of ACPs in type II PKSs and fatty acid synthases (FASs), and the specificity of SchPPT is possibly controlled by its C terminus. Inactivation of SchPPT in S. chattanoogensis L10 abolished production of NTM but not the spore pigment, while overexpression of the SchPPT gene not only increased NTM production by about 40% but also accelerated productions of both NTM and the spore pigment. Thus, we elucidated a comprehensive phosphopantetheinylation network of PKSs and improved polyketide production by engineering the cognate PPTase in bacteria.
Collapse
|
21
|
Nair DR, Ghosh R, Manocha A, Mohanty D, Saran S, Gokhale RS. Two functionally distinctive phosphopantetheinyl transferases from amoeba Dictyostelium discoideum. PLoS One 2011; 6:e24262. [PMID: 21931666 PMCID: PMC3171403 DOI: 10.1371/journal.pone.0024262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/03/2011] [Indexed: 12/16/2022] Open
Abstract
The life cycle of Dictyostelium discoideum is proposed to be regulated by expression of small metabolites. Genome sequencing studies have revealed a remarkable array of genes homologous to polyketide synthases (PKSs) that are known to synthesize secondary metabolites in bacteria and fungi. A crucial step in functional activation of PKSs involves their post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases). PPTases have been recently characterized from several bacteria; however, their relevance in complex life cycle of protozoa remains largely unexplored. Here we have identified and characterized two phosphopantetheinyl transferases from D. discoideum that exhibit distinct functional specificity. DiAcpS specifically modifies a stand-alone acyl carrier protein (ACP) that possesses a mitochondrial import signal. DiSfp in contrast is specific to Type I multifunctional PKS/fatty acid synthase proteins and cannot modify the stand-alone ACP. The mRNA of two PPTases can be detected during the vegetative as well as starvation-induced developmental pathway and the disruption of either of these genes results in non-viable amoebae. Our studies show that both PPTases play an important role in Dictyostelium biology and provide insight into the importance of PPTases in lower eukaryotes.
Collapse
Affiliation(s)
- Divya R Nair
- National Institute of Immunology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
22
|
Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun 2011; 406:341-7. [DOI: 10.1016/j.bbrc.2011.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
23
|
Zaleta-Rivera K, Charkoudian LK, Ridley CP, Khosla C. Cloning, sequencing, heterologous expression, and mechanistic analysis of A-74528 biosynthesis. J Am Chem Soc 2010; 132:9122-8. [PMID: 20550125 DOI: 10.1021/ja102519v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A-74528 is a recently discovered natural product of Streptomyces sp. SANK 61196 that inhibits 2',5'-oligoadenylate phosphodiesterase (2'-PDE), a key regulatory enzyme of the interferon pathway. Inhibition of 2'-PDE by A-74528 reduces viral replication, and therefore shows promise as a new type of antiviral drug. The complete A-74528 gene cluster, comprising 29 open reading frames, was cloned and sequenced, and shown to possess a type II polyketide synthase (PKS) at its core. Its identity was confirmed by analysis of a mutant generated by targeted disruption of a PKS gene, and by functional expression in a heterologous Streptomyces host. Remarkably, it showed exceptional end-to-end sequence identity to the gene cluster responsible for biosynthesis of fredericamycin A, a structurally unrelated antitumor antibiotic with a distinct mode of action. Whereas the fredericamycin producing strain, Streptomyces griseus, produced undetectable quantities of A-74528, the A-74528 gene cluster was capable of producing both antibiotics. The biosynthetic roles of three genes, including one that represents the only qualitative difference between the two gene clusters, were investigated by targeted gene disruption. The implications for the evolution of antibiotics with different biological activities from the same gene cluster are discussed.
Collapse
|
24
|
Das A, Szu PH, Fitzgerald JT, Khosla C. Mechanism and engineering of polyketide chain initiation in fredericamycin biosynthesis. J Am Chem Soc 2010; 132:8831-3. [PMID: 20540492 PMCID: PMC2904946 DOI: 10.1021/ja102517q] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability to incorporate atypical primer units through the use of dedicated initiation polyketide synthase (PKS) modules offers opportunities to expand the molecular diversity of polyketide natural products. Here we identify the initiation PKS module responsible for hexadienyl priming of the antibiotic fredericamycin and investigate its biochemical properties. We also exploit this PKS module for the design and in vivo biosynthesis of unusually primed analogues of a representative polyketide product, thereby emphasizing its utility to the metabolic engineer.
Collapse
Affiliation(s)
- Abhirup Das
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Ping-Hui Szu
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Jay T. Fitzgerald
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
25
|
Green KD, Garneau-Tsodikova S. Posttranslational Modification of Proteins. COMPREHENSIVE NATURAL PRODUCTS II 2010:433-468. [DOI: 10.1016/b978-008045382-8.00662-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Shields JA, Rahman AS, Arthur CJ, Crosby J, Hothersall J, Simpson TJ, Thomas CM. Phosphopantetheinylation and Specificity of Acyl Carrier Proteins in the Mupirocin Biosynthetic Cluster. Chembiochem 2009; 11:248-55. [DOI: 10.1002/cbic.200900565] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Zhan J, Watanabe K, Tang Y. Synergistic Actions of a Monooxygenase and Cyclases in Aromatic Polyketide Biosynthesis. Chembiochem 2008; 9:1710-5. [DOI: 10.1002/cbic.200800178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Murugan E, Liang ZX. Evidence for a novel phosphopantetheinyl transferase domain in the polyketide synthase for enediyne biosynthesis. FEBS Lett 2008; 582:1097-103. [DOI: 10.1016/j.febslet.2008.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/23/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
|
29
|
Kudo F, Kasama Y, Hirayama T, Eguchi T. Cloning of the Pactamycin Biosynthetic Gene Cluster and Characterization of a Crucial Glycosyltransferase Prior to a Unique Cyclopentane Ring Formation. J Antibiot (Tokyo) 2007; 60:492-503. [PMID: 17827660 DOI: 10.1038/ja.2007.63] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biosynthetic gene (pct) cluster for an antitumor antibiotic pactamycin was identified by use of a gene for putative radical S-adenosylmethionine methyltransferase as a probe. The pct gene cluster is localized to a 34 kb contiguous DNA from Streptomyces pactum NBRC 13433 and contains 24 open reading frames. Based on the bioinformatic analysis, a plausible biosynthetic pathway for pactamycin comprising of a unique cyclopentane ring, 3-aminoacetophenone, and 6-methylsalicylate was proposed. The pctL gene encoding a glycosyltransferase was speculated to be involved in an N-glycoside formation between 3-aminoacetophenone and UDP-N-acetyl-alpha-D-glucosamine prior to a unique cyclopentane ring formation. The pctL gene was then heterologously expressed in Escherichia coli and the enzymatic activity of the recombinant PctL protein was investigated. Consequently, the PctL protein was found to catalyze the expected reaction forming beta-N-glycoside. The enzymatic activity of the PctL protein clearly confirmed that the present identified gene cluster is for the biosynthesis of pactamycin. Also, a glycosylation prior to cyclopentane ring formation was proposed to be a general strategy in the biosynthesis of the structurally related cyclopentane containing compounds.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | |
Collapse
|