1
|
Guo H, Lv J, Su X, Chen L, Ren J, Liu L, Ren M, Liu S, Dai M, Ren G, Gao F. Rice OseIF6.1 encodes a eukaryotic translation initiation factor and is essential for the development of grain and anther. FRONTIERS IN PLANT SCIENCE 2024; 15:1366986. [PMID: 38576779 PMCID: PMC10991840 DOI: 10.3389/fpls.2024.1366986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
The eIF6 proteins are distributed extensively in eukaryotes and play diverse and essential roles. The bona fide eIF6 protein in Arabidopsis, At-eIF6;1, is essential for embryogenesis. However, the role of eIF6 proteins in rice growth and development remains elusive and requires further investigation. Here, we characterized the functions of OseIF6.1, which is homologous to At-eIF6;1. OseIF6.1 encodes an eukaryotic translation initiation factor with a conserved eIF6 domain. The knockdown of OseIF6.1 resulted in a decrease in grain length and pollen sterility, whereas the overexpression of OseIF6.1 displayed opposite phenotypes. Further studies revealed that OseIF6.1 regulates grain shape by influencing cell expansion and proliferation. In addition, OseIF6.1 interacts with OsNMD3, which is a nuclear export adaptor for the 60S ribosomal subunit. The knockdown of OsNMD3 in plants exhibited reduced fertility and seed setting. Therefore, our findings have significantly enriched the current understanding of the role of OseIF6.1 in rice growth and development.
Collapse
Affiliation(s)
- Hongming Guo
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianqun Lv
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiangwen Su
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juansheng Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Mingxin Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Song Liu
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Mingli Dai
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangjun Ren
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Fangyuan Gao
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
2
|
Transcriptomic analysis of the mechanisms involved in enhanced antagonistic efficacy of Meyerozyma guilliermondii by methyl jasmonate and disease resistance of postharvest apples. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhou Y, Musalgaonkar S, Johnson AW, Taylor DW. Tightly-orchestrated rearrangements govern catalytic center assembly of the ribosome. Nat Commun 2019; 10:958. [PMID: 30814529 PMCID: PMC6393466 DOI: 10.1038/s41467-019-08880-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
The catalytic activity of the ribosome is mediated by RNA, yet proteins are essential for the function of the peptidyl transferase center (PTC). In eukaryotes, final assembly of the PTC occurs in the cytoplasm by insertion of the ribosomal protein Rpl10 (uL16). We determine structures of six intermediates in late nuclear and cytoplasmic maturation of the large subunit that reveal a tightly-choreographed sequence of protein and RNA rearrangements controlling the insertion of Rpl10. We also determine the structure of the biogenesis factor Yvh1 and show how it promotes assembly of the P stalk, a critical element for recruitment of GTPases that drive translation. Together, our structures provide a blueprint for final assembly of a functional ribosome. In eukaryotes, ribosome biogenesis culminates in the cytoplasm with the maturation of the peptidyl transfer center (PTC). Here the authors describe several structures of intermediates in late nuclear and cytoplasmic maturation of the large ribosomal subunit that reveal the tightly-choreographed sequence of protein and RNA rearrangements that lead to the completion of the PTC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Arlen W Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA. .,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.,LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Malyutin AG, Musalgaonkar S, Patchett S, Frank J, Johnson AW. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J 2017; 36:854-868. [PMID: 28179369 PMCID: PMC5376978 DOI: 10.15252/embj.201696012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.
Collapse
Affiliation(s)
- Andrey G Malyutin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Stephanie Patchett
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Structural snapshot of cytoplasmic pre-60S ribosomal particles bound by Nmd3, Lsg1, Tif6 and Reh1. Nat Struct Mol Biol 2017; 24:214-220. [PMID: 28112732 DOI: 10.1038/nsmb.3364] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
A key step in ribosome biogenesis is the nuclear export of pre-ribosomal particles. Nmd3, a highly conserved protein in eukaryotes, is a specific adaptor required for the export of pre-60S particles. Here we used cryo-electron microscopy (cryo-EM) to characterize Saccharomyces cerevisiae pre-60S particles purified with epitope-tagged Nmd3. Our structural analysis indicates that these particles belong to a specific late stage of cytoplasmic pre-60S maturation in which ribosomal proteins uL16, uL10, uL11, eL40 and eL41 are deficient, but ribosome assembly factors Nmd3, Lsg1, Tif6 and Reh1 are present. Nmd3 and Lsg1 are located near the peptidyl-transferase center (PTC). In particular, Nmd3 recognizes the PTC in its near-mature conformation. In contrast, Reh1 is anchored to the exit of the polypeptide tunnel, with its C terminus inserted into the tunnel. These findings pinpoint a structural checkpoint role for Nmd3 in PTC assembly, and provide information about functional and mechanistic roles of these assembly factors in the maturation of the 60S ribosomal subunit.
Collapse
|
6
|
Merwin JR, Bogar LB, Poggi SB, Fitch RM, Johnson AW, Lycan DE. Genetic analysis of the ribosome biogenesis factor Ltv1 of Saccharomyces cerevisiae. Genetics 2014; 198:1071-85. [PMID: 25213169 PMCID: PMC4224153 DOI: 10.1534/genetics.114.168294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/04/2014] [Indexed: 01/24/2023] Open
Abstract
Ribosome biogenesis has been studied extensively in the yeast Saccharomyces cerevisiae. Yeast Ltv1 is a conserved 40S-associated biogenesis factor that has been proposed to function in small subunit nuclear export. Here we show that Ltv1 has a canonical leucine-rich nuclear export signal (NES) at its extreme C terminus that is both necessary for Crm1 interaction and Ltv1 export. The C terminus of Ltv1 can substitute for the NES in the 60S-export adapter Nmd3, demonstrating that it is a functional NES. Overexpression of an Ltv1 lacking its NES (Ltv1∆C13) was strongly dominant negative and resulted in the nuclear accumulation of RpS3-GFP; however, export of the pre-40S was not affected. In addition, expression of endogenous levels of Ltv1∆C protein complemented both the slow-growth phenotype and the 40S biogenesis defect of an ltv1 deletion mutant. Thus, if Ltv1 is a nuclear export adapter for the pre-40S subunit, its function must be fully redundant with additional export factors. The dominant negative phenotype of Ltv1∆NES overexpression was suppressed by co-overexpressing RpS3 and its chaperone, Yar1, or by deletion of the RpS3-binding site in Ltv1∆NES, suggesting that titration of RpS3 by Ltv1∆NES is deleterious in yeast. The dominant-negative phenotype did not correlate with a decrease in 40S levels but rather with a reduction in the polysome-to-monosome ratio, indicating reduced rates of translation. We suggest that titration of RpS3 by excess nuclear Ltv1 interferes with 40S function or with a nonribosomal function of RpS3.
Collapse
Affiliation(s)
- Jason R Merwin
- Biochemistry and Molecular Biology Program, Lewis & Clark College, Portland, Oregon 97219
| | - Lucien B Bogar
- Biochemistry and Molecular Biology Program, Lewis & Clark College, Portland, Oregon 97219
| | - Sarah B Poggi
- Biochemistry and Molecular Biology Program, Lewis & Clark College, Portland, Oregon 97219
| | - Rebecca M Fitch
- Biochemistry and Molecular Biology Program, Lewis & Clark College, Portland, Oregon 97219
| | - Arlen W Johnson
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712
| | - Deborah E Lycan
- Biochemistry and Molecular Biology Program, Lewis & Clark College, Portland, Oregon 97219
| |
Collapse
|
7
|
Shi Y, Liu X, Li R, Gao Y, Xu Z, Zhang B, Zhou Y. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3055-69. [PMID: 24723395 PMCID: PMC4071826 DOI: 10.1093/jxb/eru150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency.
Collapse
Affiliation(s)
- Yanyun Shi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaping Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Occhipinti L, Chang Y, Altvater M, Menet AM, Kemmler S, Panse VG. Non-FG mediated transport of the large pre-ribosomal subunit through the nuclear pore complex by the mRNA export factor Gle2. Nucleic Acids Res 2013; 41:8266-79. [PMID: 23907389 PMCID: PMC3783196 DOI: 10.1093/nar/gkt675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multiple export receptors passage bound pre-ribosomes through nuclear pore complexes (NPCs) by transiently interacting with the Phe-Gly (FG) meshwork of their transport channels. Here, we reveal how the non-FG interacting yeast mRNA export factor Gly-Leu-FG lethal 2 (Gle2) functions in the export of the large pre-ribosomal subunit (pre-60S). Structure-guided studies uncovered conserved platforms used by Gle2 to export pre-60S: an uncharacterized basic patch required to bind pre-60S, and a second surface that makes non-FG contacts with the nucleoporin Nup116. A basic patch mutant of Gle2 is able to function in mRNA export, but not pre-60S export. Thus, Gle2 provides a distinct interaction platform to transport pre-60S to the cytoplasm. Notably, Gle2’s interaction platforms become crucial for pre-60S export when FG-interacting receptors are either not recruited to pre-60S or are impaired. We propose that large complex cargos rely on non-FG as well as FG-interactions for their efficient translocation through the nuclear pore complex channel.
Collapse
Affiliation(s)
- Laura Occhipinti
- Department of Biology (D-BIOL), Institute of Biochemistry (IBC), ETH Zurich, Schafmattstrasse 18, CH-8093 Zurich, Switzerland and MLS Program, Life Sciences Zurich Graduate School, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
10
|
Sun Y, Yang P, Zhang Y, Bao X, Li J, Hou W, Yao X, Han J, Zhang H. A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi. Protein Cell 2011; 2:918-39. [PMID: 22180091 DOI: 10.1007/s13238-011-1119-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022] Open
Abstract
Cytoplasmic processing bodies, termed P bodies, are involved in diverse post-transcriptional processes including mRNA decay, nonsense-mediated RNA decay (NMD), RNAi, miRNA-mediated translational repression and storage of translationally silenced mRNAs. Regulation of the formation of P bodies in the context of multicellular organisms is poorly understood. Here we describe a systematic RNAi screen in C. elegans that identified 224 genes with diverse cellular functions whose inactivations result in a dramatic increase in the number of P bodies. 83 of these genes form a complex functional interaction network regulating NMD. We demonstrate that NMD interfaces with many cellular processes including translation, ubiquitin-mediated protein degradation, intracellular trafficking and cytoskeleton structure.We also uncover an extensive link between translation and RNAi, with different steps in protein synthesis appearing to have distinct effects on RNAi efficiency. Moreover, the intracellular vesicular trafficking network plays an important role in the regulation of RNAi. A subset of genes enhancing P body formation also regulate the formation of stress granules in C. elegans. Our study offers insights into the cellular mechanisms that regulate the formation of P bodies and also provides a framework for system-level understanding of NMD and RNAi in the context of the development of multicellular organisms.
Collapse
Affiliation(s)
- Yinyan Sun
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sengupta J, Bussiere C, Pallesen J, West M, Johnson AW, Frank J. Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. ACTA ACUST UNITED AC 2010; 189:1079-86. [PMID: 20584915 PMCID: PMC2894450 DOI: 10.1083/jcb.201001124] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nucleocytoplasmic shuttling protein Nmd3 is an adaptor for export of the 60S ribosomal subunit from the nucleus. Nmd3 binds to nascent 60S subunits in the nucleus and recruits the export receptor Crm1 to facilitate passage through the nuclear pore complex. In this study, we present a cryoelectron microscopy (cryo-EM) reconstruction of the 60S subunit in complex with Nmd3 from Saccharomyces cerevisiae. The density corresponding to Nmd3 is directly visible in the cryo-EM map and is attached to the regions around helices 38, 69, and 95 of the 25S ribosomal RNA (rRNA), the helix 95 region being adjacent to the protein Rpl10. We identify the intersubunit side of the large subunit as the binding site for Nmd3. rRNA protection experiments corroborate the structural data. Furthermore, Nmd3 binding to 60S subunits is blocked in 80S ribosomes, which is consistent with the assigned binding site on the subunit joining face. This cryo-EM map is a first step toward a molecular understanding of the functional role and release mechanism of Nmd3.
Collapse
Affiliation(s)
- Jayati Sengupta
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lo KY, Li Z, Bussiere C, Bresson S, Marcotte EM, Johnson AW. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol Cell 2010; 39:196-208. [PMID: 20670889 PMCID: PMC2925414 DOI: 10.1016/j.molcel.2010.06.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 11/23/2022]
Abstract
In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adaptor Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation.
Collapse
Affiliation(s)
- Kai-Yin Lo
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihua Li
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry University of Texas at Austin, Austin, TX 78712, USA
| | - Cyril Bussiere
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Stefan Bresson
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry University of Texas at Austin, Austin, TX 78712, USA
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, TX 78712, USA
- The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
13
|
Driving ribosome assembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:673-83. [DOI: 10.1016/j.bbamcr.2009.10.009] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/13/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022]
|
14
|
Merl J, Jakob S, Ridinger K, Hierlmeier T, Deutzmann R, Milkereit P, Tschochner H. Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-ribosomes. Nucleic Acids Res 2010; 38:3068-80. [PMID: 20100801 PMCID: PMC2875017 DOI: 10.1093/nar/gkp1244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks.
Collapse
Affiliation(s)
- Juliane Merl
- Institut für Biochemie, Genetik und Mikrobiologie, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Lo KY, Johnson AW. Reengineering ribosome export. Mol Biol Cell 2009; 20:1545-54. [PMID: 19144820 PMCID: PMC2649259 DOI: 10.1091/mbc.e08-10-1000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/08/2008] [Accepted: 01/05/2009] [Indexed: 12/20/2022] Open
Abstract
Large cargoes require multiple receptors for efficient transport through the nuclear pore complex. The 60S ribosomal subunit is one of the bulkiest transport cargoes, and in yeast three different receptors, Crm1, Mex67/Mtr2, and Arx1, collaborate in its export. However, only Crm1, recruited by the adapter Nmd3, appears to be conserved for 60S export in higher eukaryotes. We asked if export of the large subunit requires specific receptors. We made protein fusions between mutant Nmd3 and various export receptors. Surprisingly, fusions of Mex67, the tRNA exportin Los1, Mtr2, Cse1, or Msn5 to Nmd3, lacking its Crm1-dependent nuclear export signal (NES), all functioned in export. Furthermore, these chimeric proteins supported 60S export even in the presence of the Crm1 inhibitor leptomycin B, indicating that export was now independent of Crm1. These results suggest that there is not a requirement for a specific export receptor for the large subunit, as recruitment of any receptor will suffice. Finally we show that the addition of an NES directly to the 60S ribosomal subunit protein Rpl3 promotes export. These results imply remarkable flexibility in the export pathway for the 60S subunit and help explain how different export receptors could have evolved in different eukaryotic lineages.
Collapse
MESH Headings
- Fatty Acids, Unsaturated/pharmacology
- GTP-Binding Proteins/physiology
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/physiology
- Models, Molecular
- Nuclear Export Signals
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- Nucleocytoplasmic Transport Proteins/physiology
- Protein Transport/genetics
- Protein Transport/physiology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/physiology
- Ribosomes/drug effects
- Ribosomes/metabolism
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/physiology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Kai-Yin Lo
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX 78712
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
16
|
Vanrobays E, Leplus A, Osheim YN, Beyer AL, Wacheul L, Lafontaine DLJ. TOR regulates the subcellular distribution of DIM2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA (NEW YORK, N.Y.) 2008; 14:2061-73. [PMID: 18755838 PMCID: PMC2553727 DOI: 10.1261/rna.1176708] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/30/2008] [Indexed: 05/20/2023]
Abstract
Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.
Collapse
Affiliation(s)
- Emmanuel Vanrobays
- Fonds de la Recherche Scientifique (FRS-FNRS), Académie Wallonie-Bruxelles, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Charleroi-Gosselies, B-6041, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Grespin ME, Bonamy GMC, Roggero VR, Cameron NG, Adam LE, Atchison AP, Fratto VM, Allison LA. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J Biol Chem 2008; 283:25576-25588. [PMID: 18641393 PMCID: PMC2533095 DOI: 10.1074/jbc.m710482200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 06/09/2008] [Indexed: 12/20/2022] Open
Abstract
The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm.
Collapse
Affiliation(s)
- Matthew E Grespin
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Ghislain M C Bonamy
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Vincent R Roggero
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Nicole G Cameron
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Lindsay E Adam
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Andrew P Atchison
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Victoria M Fratto
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187
| | - Lizabeth A Allison
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187.
| |
Collapse
|
18
|
Hung NJ, Lo KY, Patel SS, Helmke K, Johnson AW. Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell 2007; 19:735-44. [PMID: 18077551 DOI: 10.1091/mbc.e07-09-0968] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that nuclear export of the large (60S) ribosomal subunit relies on Nmd3 in a Crm1-dependent manner. Recently the general mRNA export factor, the Mtr2/Mex67 heterodimer, was shown to act as an export receptor in parallel with Crm1. These observations raise the possibility that nuclear export of the 60S subunit in Saccharomyces cerevisiae requires multiple export receptors. Here, we show that the previously characterized 60S subunit biogenesis factor, Arx1, also acts as an export receptor for the 60S subunit. We found that deletion of ARX1 was synthetic lethal with nmd3 and mtr2 mutants and was synthetic sick with several nucleoporin mutants. Deletion of ARX1 led to accumulation of pre-60S particles in the nucleus that were enriched for Nmd3, Crm1, Mex67, and Mtr2, suggesting that in the absence of Arx1, 60S export is impaired even though the subunit is loaded with export receptors. Finally, Arx1 interacted with several nucleoporins in yeast two-hybrid as well as in vitro assays. These results show that Arx1 can directly bridge the interaction between the pre-60S particle and the NPC and thus is a third export receptor for the 60S subunit in yeast.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
19
|
Hofer A, Bussiere C, Johnson AW. Mutational analysis of the ribosomal protein Rpl10 from yeast. J Biol Chem 2007; 282:32630-9. [PMID: 17761675 DOI: 10.1074/jbc.m705057200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.
Collapse
Affiliation(s)
- Anne Hofer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| | | | | |
Collapse
|
20
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
West M, Hedges JB, Lo KY, Johnson AW. Novel interaction of the 60S ribosomal subunit export adapter Nmd3 at the nuclear pore complex. J Biol Chem 2007; 282:14028-37. [PMID: 17347149 DOI: 10.1074/jbc.m700256200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nuclear export of the large (60S) ribosomal subunit depends on the adapter protein Nmd3 to provide a nuclear export signal (NES). The leucine-rich NES is recognized by the export receptor Crm1 to mediate export via interaction with the nuclear pore complex (NPC). Here, we show that certain mutant Nmd3 proteins that are impaired for binding to the 60S subunit accumulate at the nuclear envelope. These mutant proteins also show enhanced binding to Crm1, both in vivo and in vitro. Although their interaction with the NPC is dependent on recognition of the NES by Crm1, their interaction with Crm1 is not strictly dependent on RanGTP. Using a collection of GFP-tagged nucleoporin mutants, we identified several nucleoporins, including components of the Nup82 complex that copurified with the mutant Nmd3. The Nup82 complex is on the cytoplasmic face of the NPC and has previously been shown to be important as a terminal binding site for Crm1-mediated export. Mutations in the Nup82 complex led to accumulation of wild-type Nmd3 in the nucleoplasm, suggesting that the interaction of mutant Nmd3 with the Nup82 complex reflects a defect in the bona fide export pathway for the 60S subunit. These results suggest that in the absence of the ribosome, Nmd3 is not efficiently released from Crm1 at the NPC.
Collapse
Affiliation(s)
- Matthew West
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
22
|
Hutten S, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 2007; 17:193-201. [PMID: 17317185 DOI: 10.1016/j.tcb.2007.02.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/11/2007] [Accepted: 02/09/2007] [Indexed: 02/07/2023]
Abstract
CRM1 (chromosome region maintenance 1; also referred to as exportin1 or Xpo1) is a member of the importin beta superfamily of nuclear transport receptors, recognizing proteins bearing a leucine-rich nuclear export sequence. CRM1 is the major receptor for the export of proteins out of the nucleus and is also required for transport of many RNAs. Besides its established role in nuclear export, CRM1 is also implicated in various steps during mitosis, widening its functional spectrum within the cell.
Collapse
Affiliation(s)
- Saskia Hutten
- Universität Göttingen; Zentrum für Biochemie und Molekulare Zellbiologie; Humboldtallee 23; 37073 Göttingen, Germany
| | | |
Collapse
|