1
|
Niemand Wolhuter N, Ngakane L, de Wet TJ, Warren RM, Williams MJ. The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis. Microorganisms 2023; 11:1573. [PMID: 37375075 DOI: 10.3390/microorganisms11061573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth.
Collapse
Affiliation(s)
- Nandi Niemand Wolhuter
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Lerato Ngakane
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Robin M Warren
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Monique J Williams
- NRF/DSI Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Frataxins Emerge as New Players of the Intracellular Antioxidant Machinery. Antioxidants (Basel) 2021; 10:antiox10020315. [PMID: 33672495 PMCID: PMC7923443 DOI: 10.3390/antiox10020315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
Frataxin is a mitochondrial protein which deficiency causes Friedreich's ataxia, a cardio-neurodegenerative disease. The lack of frataxin induces the dysregulation of mitochondrial iron homeostasis and oxidative stress, which finally causes the neuronal death. The mechanism through which frataxin regulates the oxidative stress balance is rather complex and poorly understood. While the absence of human (Hfra) and yeast (Yfh1) frataxins turn out cells sensitive to oxidative stress, this does not occur when the frataxin gene is knocked-out in E. coli. To better understand the biological roles of Hfra and Yfh1 as endogenous antioxidants, we have studied their ability to inhibit the formation of reactive oxygen species (ROS) from Cu2+- and Fe3+-catalyzed degradation of ascorbic acid. Both proteins drastically reduce the formation of ROS, and during this process they are not oxidized. In addition, we have also demonstrated that merely the presence of Yfh1 or Hfra is enough to protect a highly oxidation-prone protein such as α-synuclein. This unspecific intervention (without a direct binding) suggests that frataxins could act as a shield to prevent the oxidation of a broad set of intracellular proteins, and reinforces that idea that frataxin can be used to prevent neurological pathologies linked to an enhanced oxidative stress.
Collapse
|
3
|
Abstract
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Collapse
|
4
|
Gao F. Iron-Sulfur Cluster Biogenesis and Iron Homeostasis in Cyanobacteria. Front Microbiol 2020; 11:165. [PMID: 32184761 PMCID: PMC7058544 DOI: 10.3389/fmicb.2020.00165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023] Open
Abstract
Iron–sulfur (Fe–S) clusters are ancient and ubiquitous cofactors and are involved in many important biological processes. Unlike the non-photosynthetic bacteria, cyanobacteria have developed the sulfur utilization factor (SUF) mechanism as their main assembly pathway for Fe–S clusters, supplemented by the iron–sulfur cluster and nitrogen-fixing mechanisms. The SUF system consists of cysteine desulfurase SufS, SufE that can enhance SufS activity, SufBC2D scaffold complex, carrier protein SufA, and regulatory repressor SufR. The S source for the Fe–S cluster assembly mainly originates from L-cysteine, but the Fe donor remains elusive. This minireview mainly focuses on the biogenesis pathway of the Fe–S clusters in cyanobacteria and its relationship with iron homeostasis. Future challenges of studying Fe–S clusters in cyanobacteria are also discussed.
Collapse
Affiliation(s)
- Fudan Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
Fantini M, Malinverni D, De Los Rios P, Pastore A. New Techniques for Ancient Proteins: Direct Coupling Analysis Applied on Proteins Involved in Iron Sulfur Cluster Biogenesis. Front Mol Biosci 2017; 4:40. [PMID: 28664160 PMCID: PMC5471300 DOI: 10.3389/fmolb.2017.00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/24/2017] [Indexed: 12/01/2022] Open
Abstract
Direct coupling analysis (DCA) is a powerful statistical inference tool used to study protein evolution. It was introduced to predict protein folds and protein-protein interactions, and has also been applied to the prediction of entire interactomes. Here, we have used it to analyze three proteins of the iron-sulfur biogenesis machine, an essential metabolic pathway conserved in all organisms. We show that DCA can correctly reproduce structural features of the CyaY/frataxin family (a protein involved in the human disease Friedreich's ataxia) despite being based on the relatively small number of sequences allowed by its genomic distribution. This result gives us confidence in the method. Its application to the iron-sulfur cluster scaffold protein IscU, which has been suggested to function both as an ordered and a disordered form, allows us to distinguish evolutionary traces of the structured species, suggesting that, if present in the cell, the disordered form has not left evolutionary imprinting. We observe instead, for the first time, direct indications of how the protein can dimerize head-to-head and bind 4Fe4S clusters. Analysis of the alternative scaffold protein IscA provides strong support to a coordination of the cluster by a dimeric form rather than a tetramer, as previously suggested. Our analysis also suggests the presence in solution of a mixture of monomeric and dimeric species, and guides us to the prevalent one. Finally, we used DCA to analyze interactions between some of these proteins, and discuss the potentials and limitations of the method.
Collapse
Affiliation(s)
- Marco Fantini
- BioSNS, Faculty of Mathematical and Natural Sciences, Scuola Normale SuperiorePisa, Italy
| | - Duccio Malinverni
- Institute of Physics, School of Basic Sciences, and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanne, Switzerland
| | - Annalisa Pastore
- Maurice Wohl Institute, King's CollegeLondon, United Kingdom.,Molecular Medicine Department, University of PaviaPavia, Italy
| |
Collapse
|
6
|
Uchida T, Kobayashi N, Muneta S, Ishimori K. The Iron Chaperone Protein CyaY from Vibrio cholerae Is a Heme-Binding Protein. Biochemistry 2017; 56:2425-2434. [DOI: 10.1021/acs.biochem.6b01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takeshi Uchida
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Noriyuki Kobayashi
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Souichiro Muneta
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Popovic M, Pastore A. Chemical shift assignment of the alternative scaffold protein IscA. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:227-231. [PMID: 26887894 PMCID: PMC4788688 DOI: 10.1007/s12104-016-9672-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The IscA protein (11.5 kDa) is an essential component of the iron sulphur cluster biogenesis machine. In bacteria, the machine components are clustered in operons, amongst which the most important is the isc operon. Bacterial IscA has direct homologues also in eukaryotes. Like the protein IscU, IscA is thought to assist cluster formation as an alternative scaffold protein which receives the cluster before transferring it further to the final acceptors. Several crystal structures have been published. They all report an IscA dimeric form, although the packing of the protomers in the dimers differs amongst structures. No solution studies have currently been reported. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the cluster-free E. coli IscA as a starting point for further studies of the structure and functions of this still poorly characterized protein. We show that IscA exists in solution as an equilibrium between different species. Spectrum assignment was thus challenging given the heterogeneous nature of the sample but doable through judicious choice of selective labelling and concentration dependent studies.
Collapse
Affiliation(s)
- Matija Popovic
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd., London, SE5 9RT, UK
| | - Annalisa Pastore
- Maurice Wohl Institute, King's College London, 5 Cutcombe Rd., London, SE5 9RT, UK.
| |
Collapse
|
8
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
9
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
10
|
Yang J, Tan G, Zhang T, White RH, Lu J, Ding H. Deletion of the Proposed Iron Chaperones IscA/SufA Results in Accumulation of a Red Intermediate Cysteine Desulfurase IscS in Escherichia coli. J Biol Chem 2015; 290:14226-34. [PMID: 25907559 DOI: 10.1074/jbc.m115.654269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from L-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2'-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5'-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess L-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.
Collapse
Affiliation(s)
- Jing Yang
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Guoqiang Tan
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ting Zhang
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Robert H White
- the Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, and
| | - Jianxin Lu
- the Laboratory of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huangen Ding
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803,
| |
Collapse
|
11
|
Roche B, Huguenot A, Barras F, Py B. The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli. Mol Microbiol 2015; 95:605-23. [PMID: 25430730 DOI: 10.1111/mmi.12888] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 01/18/2023]
Abstract
In eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron-sulfur (Fe-S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe-S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E. coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe-S cluster-containing proteins and (iii) requires iron-rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe-S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC-mediated Fe-S cluster biogenesis pathway in E. coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe-S cluster biogenesis factor.
Collapse
Affiliation(s)
- Béatrice Roche
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009, Marseille, France
| | | | | | | |
Collapse
|
12
|
Beilschmidt LK, Puccio HM. Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 2014; 100:48-60. [PMID: 24440636 DOI: 10.1016/j.biochi.2014.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism.
Collapse
Affiliation(s)
- Lena K Beilschmidt
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Hélène M Puccio
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France.
| |
Collapse
|
13
|
Distinct roles of the Salmonella enterica serovar Typhimurium CyaY and YggX proteins in the biosynthesis and repair of iron-sulfur clusters. Infect Immun 2014; 82:1390-401. [PMID: 24421039 DOI: 10.1128/iai.01022-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Labile [4Fe-4S](2+) clusters found at the active sites of many dehydratases are susceptible to damage by univalent oxidants that convert the clusters to an inactive [3Fe-4S](1+) form. Bacteria repair damaged clusters in a process that does not require de novo protein synthesis or the Isc and Suf cluster assembly pathways. The current study investigates the participation of the bacterial frataxin ortholog CyaY and the YggX protein, which are proposed to play roles in iron trafficking and iron-sulfur cluster repair. Previous reports found that individual mutations in cyaY or yggX were not associated with phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and YggX might have functionally redundant roles. However, we have found that individual mutations in cyaY or yggX confer enhanced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium. In addition, inactivation of the stm3944 open reading frame, which is located immediately upstream of cyaY and which encodes a putative inner membrane protein, dramatically enhances the hydrogen peroxide sensitivity of a cyaY mutant. Overexpression of STM3944 reduces the elevated intracellular free iron levels observed in an S. Typhimurium fur mutant and also reduces the total cellular iron content under conditions of iron overload, suggesting that the stm3944-encoded protein may mediate iron efflux. Mutations in cyaY and yggX have different effects on the activities of the iron-sulfur cluster-containing aconitase, serine deaminase, and NADH dehydrogenase I enzymes of S. Typhimurium under basal conditions or following recovery from oxidative stress. In addition, cyaY and yggX mutations have additive effects on 6-phosphogluconate dehydratase-dependent growth during nitrosative stress, and a cyaY mutation reduces Salmonella virulence in mice. Collectively, these results indicate that CyaY and YggX play distinct supporting roles in iron-sulfur cluster biosynthesis and the repair of labile clusters damaged by univalent oxidants. Salmonella experiences oxidative and nitrosative stress within host phagocytes, and CyaY-dependent maintenance of labile iron-sulfur clusters appears to be important for Salmonella virulence.
Collapse
|
14
|
Qian L, Zheng C, Liu J. Characterization of iron-sulfur cluster assembly protein IscA from Acidithiobacillus ferrooxidans. BIOCHEMISTRY (MOSCOW) 2013; 78:244-51. [PMID: 23586717 DOI: 10.1134/s000629791303005x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·10(20) M(-1). The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters.
Collapse
Affiliation(s)
- Lin Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
| | | | | |
Collapse
|
15
|
Vaubel RA, Isaya G. Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia. Mol Cell Neurosci 2013; 55:50-61. [PMID: 22917739 PMCID: PMC3530001 DOI: 10.1016/j.mcn.2012.08.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/01/2012] [Accepted: 08/05/2012] [Indexed: 12/21/2022] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive, multi-systemic degenerative disease that results from reduced synthesis of the mitochondrial protein frataxin. Frataxin has been intensely studied since its deficiency was linked to FRDA in 1996. The defining properties of frataxin - (i) the ability to bind iron, (ii) the ability to interact with, and donate iron to, other iron-binding proteins, and (iii) the ability to oligomerize, store iron and control iron redox chemistry - have been extensively characterized with different frataxin orthologs and their interacting protein partners. This very large body of biochemical and structural data [reviewed in (Bencze et al., 2006)] supports equally extensive biological evidence that frataxin is critical for mitochondrial iron metabolism and overall cellular iron homeostasis and antioxidant protection [reviewed in (Wilson, 2006)]. However, the precise biological role of frataxin remains a matter of debate. Here, we review seminal and recent data that strongly link frataxin to the synthesis of iron-sulfur cluster cofactors (ISC), as well as controversial data that nevertheless link frataxin to additional iron-related processes. Finally, we discuss how defects in ISC synthesis could be a major (although likely not unique) contributor to the pathophysiology of FRDA via (i) loss of ISC-dependent enzymes, (ii) mitochondrial and cellular iron dysregulation, and (iii) enhanced iron-mediated oxidative stress. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Rachael A Vaubel
- Department of Pediatric & Adolescent Medicine and the Mayo Clinic Children's Center, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
16
|
Landry AP, Cheng Z, Ding H. Iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis. Dalton Trans 2013; 42:3100-6. [PMID: 23258274 PMCID: PMC3569480 DOI: 10.1039/c2dt32000b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron-sulphur cluster biogenesis requires coordinated delivery of iron and sulphur to scaffold proteins, followed by transfer of the assembled clusters from scaffold proteins to target proteins. This complex process is accomplished by a group of dedicated iron-sulphur cluster assembly proteins that are conserved from bacteria to humans. While sulphur in iron-sulphur clusters is provided by L-cysteine via cysteine desulfurase, the iron donor(s) for iron-sulphur cluster assembly remains largely elusive. Here we report that among the primary iron-sulphur cluster assembly proteins, IscA has a unique and strong binding activity for mononuclear iron in vitro and in vivo. Furthermore, the ferric iron centre tightly bound in IscA can be readily extruded by l-cysteine, followed by reduction to ferrous iron for iron-sulphur cluster biogenesis. Substitution of the highly conserved residue tyrosine 40 with phenylalanine (Y40F) in IscA results in a mutant protein that has a diminished iron binding affinity but retains the iron-sulphur cluster binding activity. Genetic complementation studies show that the IscA Y40F mutant is inactive in vivo, suggesting that the iron binding activity is essential for the function of IscA in iron-sulphur cluster biogenesis.
Collapse
Affiliation(s)
- Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
17
|
Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA. Biochemistry 2012; 51:8056-70. [PMID: 23003563 DOI: 10.1021/bi300664j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.
Collapse
Affiliation(s)
- Daphne T Mapolelo
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
18
|
Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J Biol Chem 2011; 286:41205-41216. [PMID: 21987576 DOI: 10.1074/jbc.m111.296152] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.
Collapse
Affiliation(s)
- Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Nadine Richter
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Ophry Pines
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
19
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
20
|
Expression, purification, and characterization of an iron chaperon protein CyaY from Acidithiobacillus ferrooxidans. Curr Microbiol 2011; 62:733-8. [PMID: 20957368 DOI: 10.1007/s00284-010-9775-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CyaY is the bacterial homolog of frataxin, proposed to be involved in the assembly of iron-sulfur clusters. While, the physiological iron donor for the iron-sulfur clusters assembly remains controversial. In this study, the gene of CyaY from Acidithiobacillus ferrooxidans was cloned and expressed in Escherichia coli, the protein was purified by one-step affinity chromatography to homogeneity. The CyaY protein can bind ferric iron and serve as an iron donor for the biogenesis of iron-sulfur clusters on the scaffold protein IscU in the presence of IscS and L-cysteine in vitro.
Collapse
|
21
|
Wang W, Huang H, Tan G, Si F, Min L, Landry AP, Lu J, Ding H. In vivo evidence for the iron-binding activity of an iron-sulfur cluster assembly protein IscA in Escherichia coli. Biochem J 2010; 432:429-36. [PMID: 20942799 PMCID: PMC2992610 DOI: 10.1042/bj20101507] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IscA is a key member of the iron-sulfur cluster assembly machinery in prokaryotic and eukaryotic organisms; however, the physiological function of IscA still remains elusive. In the present paper we report the in vivo evidence demonstrating the iron-binding activity of IscA in Escherichia coli cells. Supplement of exogenous iron (1 μM) in M9 minimal medium is sufficient to maximize the iron binding in IscA expressed in E. coli cells under aerobic growth conditions. In contrast, IscU, an iron-sulfur cluster assembly scaffold protein, or CyaY, a bacterial frataxin homologue, fails to bind any iron in E. coli cells under the same experimental conditions. Interestingly, the strong iron-binding activity of IscA is greatly diminished in E. coli cells under anaerobic growth conditions. Additional studies reveal that oxygen in medium promotes the iron binding in IscA, and that the iron binding in IscA in turn prevents formation of biologically inaccessible ferric hydroxide under aerobic conditions. Consistent with the differential iron-binding activity of IscA under aerobic and anaerobic conditions, we find that IscA and its paralogue SufA are essential for the iron-sulfur cluster assembly in E. coli cells under aerobic growth conditions, but not under anaerobic growth conditions. The results provide in vivo evidence that IscA may act as an iron chaperone for the biogenesis of iron-sulfur clusters in E. coli cells under aerobic conditions.
Collapse
Affiliation(s)
- Wu Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Fan Si
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Liu Min
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Aaron P. Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| | - Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Zhejiang, 325035, P. R. China
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA and
| |
Collapse
|
22
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
23
|
Lu J, Bitoun JP, Tan G, Wang W, Min W, Ding H. Iron-binding activity of human iron-sulfur cluster assembly protein hIscA1. Biochem J 2010; 428:125-31. [PMID: 20302570 PMCID: PMC2878720 DOI: 10.1042/bj20100122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A human homologue of the iron-sulfur cluster assembly protein IscA (hIscA1) has been cloned and expressed in Escherichia coli cells. The UV-visible absorption and EPR (electron paramagnetic resonance) measurements reveal that hIscA1 purified from E. coli cells contains a mononuclear iron centre and that the iron binding in hIscA1 expressed in E. coli cells can be further modulated by the iron content in the cell growth medium. Additional studies show that purified hIscA1 binds iron with an iron association constant of approx. 2x1019 M-1, and that the iron-bound hIscA1 is able to provide the iron for the iron-sulfur cluster assembly in a proposed scaffold protein, IscU of E. coli, in vitro. The complementation experiments indicate that hIscA1 can partially substitute for IscA in restoring the cell growth of E. coli in the M9 minimal medium under aerobic conditions. The results suggest that hIscA1, like E. coli IscA, is an iron-binding protein that may act as an iron chaperone for biogenesis of iron-sulfur clusters.
Collapse
Affiliation(s)
- Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jacob P. Bitoun
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Guoqiang Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
| | - Wu Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenguang Min
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
24
|
Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 2010; 8:e1000354. [PMID: 20404999 PMCID: PMC2854127 DOI: 10.1371/journal.pbio.1000354] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/08/2010] [Indexed: 11/30/2022] Open
Abstract
Crystal structures reveal how distinct sites on the cysteine desulfurase IscS bind two different sulfur-acceptor proteins, IscU and TusA, to transfer sulfur atoms for iron-sulfur cluster biosynthesis and tRNA thiolation. The cysteine desulfurase IscS is a highly conserved master enzyme initiating sulfur transfer via persulfide to a range of acceptor proteins involved in Fe-S cluster assembly, tRNA modifications, and sulfur-containing cofactor biosynthesis. Several IscS-interacting partners including IscU, a scaffold for Fe-S cluster assembly; TusA, the first member of a sulfur relay leading to sulfur incorporation into the wobble uridine of several tRNAs; ThiI, involved in tRNA modification and thiamine biosynthesis; and rhodanese RhdA are sulfur acceptors. Other proteins, such as CyaY/frataxin and IscX, also bind to IscS, but their functional roles are not directly related to sulfur transfer. We have determined the crystal structures of IscS-IscU and IscS-TusA complexes providing the first insight into their different modes of binding and the mechanism of sulfur transfer. Exhaustive mutational analysis of the IscS surface allowed us to map the binding sites of various partner proteins and to determine the functional and biochemical role of selected IscS and TusA residues. IscS interacts with its partners through an extensive surface area centered on the active site Cys328. The structures indicate that the acceptor proteins approach Cys328 from different directions and suggest that the conformational plasticity of a long loop containing this cysteine is essential for the ability of IscS to transfer sulfur to multiple acceptor proteins. The sulfur acceptors can only bind to IscS one at a time, while frataxin and IscX can form a ternary complex with IscU and IscS. Our data support the role of frataxin as an iron donor for IscU to form the Fe-S clusters. Sulfur is incorporated into the backbone of almost all proteins in the form of the amino acids cysteine and methionine. In some proteins, sulfur is also present as iron–sulfur clusters, sulfur-containing vitamins, and cofactors. What's more, sulfur is important in the structure of tRNAs, which are crucial for translation of the genetic code from messenger RNA for protein synthesis. The biosynthetic pathways for assembly of these sulfur-containing molecules are generally well known, but the molecular details of how sulfur is delivered from protein to protein are less well understood. In bacteria, one of three pathways for sulfur delivery is the isc (iron-sulfur clusters) system. First, an enzyme called IscS extracts sulfur atoms from cysteine. This versatile enzyme can then interact with several proteins to deliver sulfur to various pathways that make iron–sulfur clusters or transfer sulfur to cofactors and tRNAs. This study describes in atomic detail precisely how IscS binds in a specific and yet distinct way to two different proteins: IscU (a scaffold protein for iron–sulfur cluster formation) and TusA (which delivers sulfur for tRNA modification). Furthermore, by introducing mutations into IscS, we have identified the region on the surface of this protein that is involved in binding its target proteins. These findings provide a molecular view of the protein–protein interactions involved in sulfur transfer and advance our understanding of how sulfur is delivered from one protein to another during biosynthesis of iron–sulfur clusters.
Collapse
Affiliation(s)
- Rong Shi
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Correia AR, Ow SY, Wright PC, Gomes CM. The conserved Trp155 in human frataxin as a hotspot for oxidative stress related chemical modifications. Biochem Biophys Res Commun 2009; 390:1007-11. [PMID: 19853582 DOI: 10.1016/j.bbrc.2009.10.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/19/2009] [Indexed: 11/26/2022]
Abstract
Frataxin is a mitochondrial protein that is defective in Friedreich's ataxia resulting in iron accumulation and an environment prone to Fenton reactions. We report that frataxin is susceptible to carbonylation and nitration modifications in residues from the beta-sheet surface (Tyr143, Tyr174, Tyr205 and Trp155). Frataxin functions are not significantly affected: frataxin-mediated protection against ROS is still observed, as well as iron-binding (5 Fe(3+)mol(-1), K(d) from 13-36 microM) necessary for the metallochaperone activity. However, the protein is up to 1.0 kcal mol(-1) destabilized, with conformational opening. Interestingly, the strictly conserved Trp155, which is mutated in patients, may be a functional hotspot in frataxin.
Collapse
Affiliation(s)
- Ana R Correia
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-756 Oeiras, Portugal
| | | | | | | |
Collapse
|
26
|
Chahal HK, Dai Y, Saini A, Ayala-Castro C, Outten FW. The SufBCD Fe-S scaffold complex interacts with SufA for Fe-S cluster transfer. Biochemistry 2009; 48:10644-53. [PMID: 19810706 DOI: 10.1021/bi901518y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Iron-sulfur clusters are key iron cofactors in biological pathways ranging from nitrogen fixation to respiration. Because of the toxicity of ferrous iron and sulfide to the cell, in vivo Fe-S cluster assembly transpires via multiprotein biosynthetic pathways. Fe-S cluster assembly proteins traffic iron and sulfide, assemble nascent Fe-S clusters, and correctly transfer Fe-S clusters to the appropriate target metalloproteins in vivo. The Gram-negative bacterium Escherichia coli contains a stress-responsive Fe-S cluster assembly system, the SufABCDSE pathway, that functions under iron starvation and oxidative stress conditions that compromise Fe-S homeostasis. Using a combination of protein-protein interaction and in vitro Fe-S cluster assembly assays, we have characterized the relative roles of the SufBCD complex and the SufA protein during Suf Fe-S cluster biosynthesis. These studies reveal that SufA interacts with SufBCD to accept Fe-S clusters formed de novo on the SufBCD complex. Our results represent the first biochemical evidence that the SufBCD complex within the Suf pathway functions as a novel Fe-S scaffold system to assemble nascent clusters and transfer them to the SufA Fe-S shuttle.
Collapse
Affiliation(s)
- Harsimranjit K Chahal
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
27
|
Carranza P, Hartmann I, Lehner A, Stephan R, Gehrig P, Grossmann J, Barkow-Oesterreicher S, Roschitzki B, Eberl L, Riedel K. Proteomic profiling of Cronobacter turicensis
3032, a food-borne opportunistic pathogen. Proteomics 2009; 9:3564-79. [DOI: 10.1002/pmic.200900016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Tan G, Lu J, Bitoun JP, Huang H, Ding H. IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions. Biochem J 2009; 420:463-72. [PMID: 19309314 PMCID: PMC2776711 DOI: 10.1042/bj20090206] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IscA/SufA paralogues are the members of the iron-sulfur cluster assembly machinery in Escherichia coli. Whereas deletion of either IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA results in a null-growth phenotype in minimal medium under aerobic growth conditions. Here we report that cell growth of the iscA/sufA double mutant (E. coli strain in which both iscA and sufA had been in-frame-deleted) can be partially restored by supplementing with BCAAs (branched-chain amino acids) and thiamin. We further demonstrate that deletion of IscA/SufA paralogues blocks the [4Fe-4S] cluster assembly in IlvD (dihydroxyacid dehydratase) of the BCAA biosynthetic pathway in E. coli cells under aerobic conditions and that addition of the iron-bound IscA/SufA efficiently promotes the [4Fe-4S] cluster assembly in IlvD and restores the enzyme activity in vitro, suggesting that IscA/SufA may act as an iron donor for the [4Fe-4S] cluster assembly under aerobic conditions. Additional studies reveal that IscA/SufA are also required for the [4Fe-4S] cluster assembly in enzyme ThiC of the thiamin-biosynthetic pathway, aconitase B of the citrate acid cycle and endonuclease III of the DNA-base-excision-repair pathway in E. coli under aerobic conditions. Nevertheless, deletion of IscA/SufA does not significantly affect the [2Fe-2S] cluster assembly in the redox transcription factor SoxR, ferredoxin and the siderophore-iron reductase FhuF. The results suggest that the biogenesis of the [4Fe-4S] clusters and the [2Fe-2S] clusters may have distinct pathways and that IscA/SufA paralogues are essential for the [4Fe-4S] cluster assembly, but are dispensable for the [2Fe-2S] cluster assembly in E. coli under aerobic conditions.
Collapse
Affiliation(s)
- Guoqiang Tan
- Zhejiang Provincial Key laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Jianxin Lu
- Zhejiang Provincial Key laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jacob P. Bitoun
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Hao Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 USA
| |
Collapse
|
29
|
Thorgersen MP, Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. MICROBIOLOGY-SGM 2009; 155:295-304. [PMID: 19118370 DOI: 10.1099/mic.0.020727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A yggX gshA cyaY mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe-S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
30
|
Bitoun JP, Wu G, Ding H. Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Biometals 2008; 21:693-703. [PMID: 18618270 PMCID: PMC2576483 DOI: 10.1007/s10534-008-9154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Iron-sulfur clusters are one of the most ubiquitous redox centers in biology. Ironically, iron-sulfur clusters are highly sensitive to reactive oxygen species. Disruption of iron-sulfur clusters will not only change the activity of proteins that host iron-sulfur clusters, the iron released from the disrupted iron-sulfur clusters will further promote the production of deleterious hydroxyl free radicals via the Fenton reaction. Here, we report that ferritin A (FtnA), a major iron-storage protein in Escherichia coli, is able to scavenge the iron released from the disrupted iron-sulfur clusters and alleviates the production of hydroxyl free radicals. Furthermore, we find that the iron stored in FtnA can be retrieved by an iron chaperon IscA for the re-assembly of the iron-sulfur cluster in a proposed scaffold IscU in the presence of the thioredoxin reductase system which emulates normal intracellular redox potential. The results suggest that E. coli FtnA may act as an iron buffer to sequester the iron released from the disrupted iron-sulfur clusters under oxidative stress conditions and to facilitate the re-assembly of the disrupted iron-sulfur clusters under normal physiological conditions.
Collapse
Affiliation(s)
- Jacob P. Bitoun
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Genfu Wu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
31
|
Abstract
Iron-sulfur (Fe-S) clusters are present in more than 200 different types of enzymes or proteins and constitute one of the most ancient, ubiquitous and structurally diverse classes of biological prosthetic groups. Hence the process of Fe-S cluster biosynthesis is essential to almost all forms of life and is remarkably conserved in prokaryotic and eukaryotic organisms. Three distinct types of Fe-S cluster assembly machinery have been established in bacteria, termed the NIF, ISC and SUF systems, and, in each case, the overall mechanism involves cysteine desulfurase-mediated assembly of transient clusters on scaffold proteins and subsequent transfer of pre-formed clusters to apo proteins. A molecular level understanding of the complex processes of Fe-S cluster assembly and transfer is now beginning to emerge from the combination of in vivo and in vitro approaches. The present review highlights recent developments in understanding the mechanism of Fe-S cluster assembly and transfer involving the ubiquitous U-type scaffold proteins and the potential roles of accessory proteins such as Nfu proteins and monothiol glutaredoxins in the assembly, storage or transfer of Fe-S clusters.
Collapse
Affiliation(s)
- Sibali Bandyopadhyay
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | - Kala Chandramouli
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | - Michael K. Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
32
|
Expert D, Boughammoura A, Franza T. Siderophore-controlled iron assimilation in the enterobacterium Erwinia chrysanthemi: evidence for the involvement of bacterioferritin and the Suf iron-sulfur cluster assembly machinery. J Biol Chem 2008; 283:36564-72. [PMID: 18990691 DOI: 10.1074/jbc.m807749200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular fate of iron acquired by bacteria during siderophore-mediated assimilation is poorly understood. We investigated this question in the pathogenic enterobacterium Erwinia chrysanthemi. This bacterium produces two siderophores, chrysobactin and achromobactin, during plant infection. We analyzed the distribution of iron into cytosolic proteins in bacterial cells supplied with 59Fe-chrysobactin using native gel electrophoresis. A parental strain and mutants deficient in bacterioferritin (bfr), miniferritin (dps), ferritin (ftnA), bacterioferredoxin (bfd), or iron-sulfur cluster assembly machinery (sufABCDSE) were studied. In the parental strain, we observed two rapidly 59Fe-labeled protein signals identified as bacterioferritin and an iron pool associated to the protein chain-elongation process. In the presence of increased 59Fe-chrysobactin concentrations, we detected mini-ferritin-bound iron. Iron incorporation into bacterioferritin was severely reduced in nonpolar sufA, sufB, sufD, sufS, and sufE mutants but not in a sufC background. Iron recycling from bacterioferritin did not occur in bfd and sufC mutants. Iron depletion caused a loss of aconitase activity, whereas ferric chrysobactin supplementation stimulated the production of active aconitase in parental cells and in bfr and bfd mutants. Aconitase activity in sufA, sufB, sufD, sufS, and sufE mutant strains was 10 times lower than that in parental cells. In the sufC mutant, it was twice as low as that in the parental strain. Defects observed in the mutants were not caused by altered ferric chrysobactin transport. Our data demonstrate a functional link between bacterioferritin, bacterioferredoxin, and the Suf protein machinery resulting in optimal bacterial growth and a balanced distribution of iron between essential metalloproteins.
Collapse
Affiliation(s)
- Dominique Expert
- Laboratoire Interactions Plantes-Pathogènes, Unité Mixte de Recherche 217, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris 6, 75005 Paris, France.
| | | | | |
Collapse
|
33
|
Long S, Jirků M, Mach J, Ginger ML, Sutak R, Richardson D, Tachezy J, Lukes J. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol 2008; 69:94-109. [PMID: 18433447 DOI: 10.1111/j.1365-2958.2008.06260.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Frataxin is a small conserved mitochondrial protein; in humans, mutations affecting frataxin expression or function result in Friedreich's ataxia. Much of the current understanding of frataxin function comes from informative studies with yeast models, but considerable debates remain with regard to the primary functions of this ubiquitous protein. We exploit the tractable reverse genetics of Trypanosoma brucei in order to specifically consider the importance of frataxin in an early branching lineage. Using inducible RNAi, we show that frataxin is essential in T. brucei and that its loss results in reduced activity of the marker Fe-S cluster-containing enzyme aconitase in both the mitochondrion and cytosol. Activities of mitochondrial succinate dehydrogenase and fumarase also decreased, but the concentration of reactive oxygen species increased. Trypanosomes lacking frataxin also exhibited a low mitochondrial membrane potential and reduced oxygen consumption. Crucially, however, iron did not accumulate in frataxin-depleted mitochondria, and as T. brucei frataxin does not form large complexes, it suggests that it plays no role in iron storage. Interestingly, RNAi phenotypes were ameliorated by expression of frataxin homologues from hydrogenosomes of another divergent protist Trichomonas vaginalis. Collectively, the data suggest trypanosome frataxin functions primarily only in Fe-S cluster biogenesis and protection from reactive oxygen species.
Collapse
Affiliation(s)
- Shaojun Long
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Natural Sciences, University of South Bohemia, Ceské Budejovice (Budweis), Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kang HJ, Choi SW, Heo DH, Jeong MY, Sung HC, Yun CW. A novel role for thioredoxin reductase in the iron metabolism of S. cerevisiae. Biochem Biophys Res Commun 2008; 371:63-8. [DOI: 10.1016/j.bbrc.2008.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 03/30/2008] [Indexed: 12/30/2022]
|
35
|
Abstract
Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is providing a partial picture of in vivo Fe-S cluster assembly, a number of mechanistic questions remain unanswered. Furthermore, new factors involved in Fe-S cluster assembly and repair have recently been identified and are expanding the complexity of current models. Here we attempt to summarize recent advances and to highlight new avenues of research in the field of Fe-S cluster assembly.
Collapse
|
36
|
Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli. Biochem J 2008; 409:535-43. [PMID: 17941825 DOI: 10.1042/bj20071166] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biogenesis of iron-sulfur clusters requires a concerted delivery of iron and sulfur to target proteins. It is now clear that sulfur in iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. However, the specific iron donor for the iron-sulfur cluster assembly still remains elusive. Previous studies showed that IscA, a member of the iron-sulfur cluster assembly machinery in Escherichia coli, is a novel iron-binding protein, and that the iron-bound IscA can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU in vitro. However, genetic studies have indicated that IscA is not essential for the cell growth of E. coli. In the present paper, we report that SufA, an IscA paralogue in E. coli, may represent the redundant activity of IscA. Although deletion of IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA in E. coli results in a severe growth phenotype in minimal medium under aerobic growth conditions. Cell growth is restored when either IscA or SufA is re-introduced into the iscA-/sufA- double mutant, demonstrating further that either IscA or SufA is sufficient for their functions in vivo. Purified SufA, like IscA, is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU in the presence of a thioredoxin reductase system which emulates the intracellular redox potential. Site-directed mutagenesis studies show that the SufA/IscA variants that lose the specific iron-binding activity fail to restore the cell growth of the iscA-/sufA- double mutant. The results suggest that SufA and IscA may constitute the redundant cellular activities to recruit intracellular iron and deliver iron for the iron-sulfur cluster assembly in E. coli.
Collapse
|
37
|
Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH:ubiquinone oxidoreductase. BMC BIOCHEMISTRY 2007; 8:13. [PMID: 17650323 PMCID: PMC1959517 DOI: 10.1186/1471-2091-8-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 07/24/2007] [Indexed: 11/30/2022]
Abstract
Background Frataxin is discussed as involved in the biogenesis of iron-sulfur clusters. Recently it was discovered that a frataxin homologue is a structural component of the respiratory NADH:ubiquinone oxidoreductase (complex I) in Thermus thermophilus. It was not clear whether frataxin is in general a component of complex I from bacteria. The Escherichia coli homologue of frataxin is coined CyaY. Results We report that complex I is completely assembled to a stable and active enzyme complex equipped with all known iron-sulfur clusters in a cyaY mutant of E. coli. However, the amount of complex I is reduced by one third compared to the parental strain. Western blot analysis and live cell imaging of CyaY engineered with a GFP demonstrated that CyaY is located in the cytoplasm and not attached to the membrane as to be expected if it were a component of complex I. Conclusion CyaY plays a non-essential role in the assembly of complex I in E. coli. It is not a structural component but may transiently interact with the complex.
Collapse
|