1
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
2
|
Noomuna P, Hausman JM, Sansoya R, Kalfa T, Risinger M, Low PS. Rapid degradation of protein tyrosine phosphatase 1B in sickle cells: Possible contribution to sickle cell membrane weakening. FASEB J 2022; 36:e22360. [PMID: 35593742 DOI: 10.1096/fj.202100809rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Although both protein tyrosine phosphatases and kinases are constitutively active in healthy human red blood cells (RBCs), the preponderance of phosphatase activities maintains the membrane proteins in a predominantly unphosphorylated state. We report here that unlike healthy RBCs, proteins in sickle cells are heavily tyrosine phosphorylated, raising the question regarding the mechanism underpinning this tyrosine phosphorylation. Upon investigating possible causes, we observe that protein tyrosine phosphatase 1B (PTP1B), the major erythrocyte tyrosine phosphatase, is largely digested to a lower molecular weight fragment in sickle cells. We further find that the resulting truncated form of PTP1B is significantly less active than its intact counterpart, probably accounting for the intense tyrosine phosphorylation of Band 3 in sickle erythrocytes. Because this tyrosine phosphorylation of Band 3 promotes erythrocyte membrane weakening that causes release of both membrane vesicles and cell free hemoglobin that in turn initiates vaso-occlusive events, we conclude that cleavage of PTP1B could contribute to the symptoms of sickle cell disease. We further posit that methods to inhibit proteolysis of PTP1B could mitigate symptoms of the disease.
Collapse
Affiliation(s)
- Panae Noomuna
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.,Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - John M Hausman
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.,Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| | - Ruhani Sansoya
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Theodosia Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mary Risinger
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.,Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
4
|
Sorokoumov VN, Shpakov AO. Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Patil PD, Mahajan UB, Patil KR, Chaudhari S, Patil CR, Agrawal YO, Ojha S, Goyal SN. Past and current perspective on new therapeutic targets for Type-II diabetes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1567-1583. [PMID: 28579755 PMCID: PMC5446975 DOI: 10.2147/dddt.s133453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.
Collapse
Affiliation(s)
- Pradip D Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Kalpesh R Patil
- Department of Pharmacology, H. R. Patel Institute of Pharmaceutical Education and Research
| | - Sandip Chaudhari
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| | - Yogeeta O Agrawal
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, UAE
| | - Sameer N Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research
| |
Collapse
|
6
|
Kobzar OL, Shevchuk MV, Lyashenko AN, Tanchuk VY, Romanenko VD, Kobelev SM, Averin AD, Beletskaya IP, Vovk AI, Kukhar VP. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases. Org Biomol Chem 2015; 13:7437-44. [DOI: 10.1039/c5ob00713e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α,α-Difluoro-β-ketophosphonate derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Oleksandr L. Kobzar
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Michael V. Shevchuk
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Alesya N. Lyashenko
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Vsevolod Yu. Tanchuk
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Vadim D. Romanenko
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Sergei M. Kobelev
- Lomonosov Moscow State University
- Department of Chemistry
- Moscow 119991
- Russian Federation
| | - Alexei D. Averin
- Lomonosov Moscow State University
- Department of Chemistry
- Moscow 119991
- Russian Federation
| | - Irina P. Beletskaya
- Lomonosov Moscow State University
- Department of Chemistry
- Moscow 119991
- Russian Federation
| | - Andriy I. Vovk
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| | - Valery P. Kukhar
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv-94
- Ukraine
| |
Collapse
|
7
|
Li S, Zhang J, Lu S, Huang W, Geng L, Shen Q, Zhang J. The mechanism of allosteric inhibition of protein tyrosine phosphatase 1B. PLoS One 2014; 9:e97668. [PMID: 24831294 PMCID: PMC4022711 DOI: 10.1371/journal.pone.0097668] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022] Open
Abstract
As the prototypical member of the PTP family, protein tyrosine phosphatase 1B (PTP1B) is an attractive target for therapeutic interventions in type 2 diabetes. The extremely conserved catalytic site of PTP1B renders the design of selective PTP1B inhibitors intractable. Although discovered allosteric inhibitors containing a benzofuran sulfonamide scaffold offer fascinating opportunities to overcome selectivity issues, the allosteric inhibitory mechanism of PTP1B has remained elusive. Here, molecular dynamics (MD) simulations, coupled with a dynamic weighted community analysis, were performed to unveil the potential allosteric signal propagation pathway from the allosteric site to the catalytic site in PTP1B. This result revealed that the allosteric inhibitor compound-3 induces a conformational rearrangement in helix α7, disrupting the triangular interaction among helix α7, helix α3, and loop11. Helix α7 then produces a force, pulling helix α3 outward, and promotes Ser190 to interact with Tyr176. As a result, the deviation of Tyr176 abrogates the hydrophobic interactions with Trp179 and leads to the downward movement of the WPD loop, which forms an H-bond between Asp181 and Glu115. The formation of this H-bond constrains the WPD loop to its open conformation and thus inactivates PTP1B. The discovery of this allosteric mechanism provides an overall view of the regulation of PTP1B, which is an important insight for the design of potent allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Jingmiao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Wenkang Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Lv Geng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine (SJTU-SM), Shanghai, China
- Medicinal Bioinformatics Center, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Larrouy-Maumus G, Kelly G, de Carvalho LPS. Chemical mechanism of glycerol 3-phosphate phosphatase: pH-dependent changes in the rate-limiting step. Biochemistry 2014; 53:143-51. [PMID: 24359335 DOI: 10.1021/bi400856y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The halo-acid dehalogenase (HAD) superfamily comprises a large number of enzymes that share a conserved core domain responsible for a diverse array of chemical transformations (e.g., phosphonatase, dehalogenase, phosphohexomutase, and phosphatase) and a cap domain that controls substrate specificity. Phosphate hydrolysis is thought to proceed via an aspartyl-phosphate intermediate, and X-ray crystallography has shown that protein active site conformational changes are required for catalytic competency. Using a combination of steady-state and pre-steady-state kinetics, pL-rate studies, solvent kinetic isotope effects, (18)O molecular isotope exchange, and partition experiments, we provide a detailed description of the chemical mechanism of a glycerol 3-phosphate phosphatase. This phosphatase has been recently recognized as a rate-limiting factor in lipid polar head recycling in Mycobacterium tuberculosis [Larrouy-Maumus, G., et al. (2013) Proc. Natl. Acad. Sci. 110 (28), 11320-11325]. Our results clearly establish the existence of an aspartyl-phosphate intermediate in this newly discovered member of the HAD superfamily. No ionizable groups are rate-limiting from pH 5.5 to 9.5, consistent with the pK values of the catalytic aspartate residues. The formation and decay of this intermediate are partially rate-limiting below pH 7.0, and a conformational change preceding catalysis is rate-limiting above pH 7.0.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- Mycobacterial Research Division, MRC, National Institute for Medical Research , and ‡MRC Biomolecular NMR Centre, The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | | | | |
Collapse
|
9
|
Eren D, Alakent B. Frequency response of a protein to local conformational perturbations. PLoS Comput Biol 2013; 9:e1003238. [PMID: 24086121 PMCID: PMC3784495 DOI: 10.1371/journal.pcbi.1003238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency and upper harmonics of 1/f distributed spectral density of atomic variables, such as Cα atoms, dihedral angles, or polar interaction distances. Frequency of perturbation was adjusted high enough (simulation length >∼10×period of a perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (<∼0.8 ns(-1)) not to attenuate the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns yielded Cα displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements. Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins.
Collapse
Affiliation(s)
- Dilek Eren
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Burak Alakent
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
10
|
Molecular dynamics simulation of the interaction between protein tyrosine phosphatase 1B and aryl diketoacid derivatives. J Mol Graph Model 2012; 38:186-93. [PMID: 23085163 DOI: 10.1016/j.jmgm.2012.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
The protein tyrosine phosphatase 1B (PTP-1B) is acknowledged as an outstanding therapeutic target for the treatment of diabetes, obesity and cancer. In this work, six aryl diketoacid compounds have been studied on the basis of molecular dynamics simulations. Hydrogen bonds, binding energies and conformation changes of the WPD loop have been analyzed. The results indicated that their activation model falls into two parts: the target region of the monomeric aryl diketoacid compounds is the active site, whereas the target region of the dimeric aryl diketoacid compounds is the WPD loop or the R loop. The van der Waals interactions exhibit stronger effects than the short-range electrostatic interactions. The van der Waals interaction energy and the IC50 values exhibit an approximately exponential relationship. Furthermore, the van der Waals interactions cooperate with the hydrogen bond interactions. This study provides a more thorough understanding of the PTP-1B inhibitor binding processes.
Collapse
|
11
|
Zeng F, Ni E, Wang S, Lv S, Cao C, Zhang H, Lv H, Chen X, Yan J, Luo F. A monoclonal antibody against the catalytic domain of PTP1B. Hybridoma (Larchmt) 2012; 31:209-13. [PMID: 22741586 DOI: 10.1089/hyb.2011.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a member of the protein tyrosine phosphatase (PTP) family, plays a crucial role in metabolic signaling, with insulin and leptin signaling being well studied. New evidence indicates that PTP1B is also involved in cancer. In the present study, we report on the establishment of a monoclonal antibody specific for catalytic domain of PTP1B (PTP1Bc) generated through the hybridoma method. The monoclonal antibody is measured to have a titer of 4.1×10(6) against PTP1Bc in indirect ELISA. Western blot and immunofluorescent analyses indicated that this antibody can specifically combine native PTP1B in MDA-MB-231 and MDA-MB-453 cells. This monoclonal antibody against PTP1Bc can help enhance the understanding of PTP1B-related physiological and pathological mechanisms and may act as a therapeutic agent for diabetes, obesity, and cancer in the future.
Collapse
Affiliation(s)
- Fanwei Zeng
- Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Arylstibonic acids are potent and isoform-selective inhibitors of Cdc25a and Cdc25b phosphatases. Bioorg Med Chem 2012; 20:4371-6. [PMID: 22705189 DOI: 10.1016/j.bmc.2012.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
Abstract
Arylstibonates structurally resemble phosphotyrosine side chains in proteins and here we addressed the ability of such compounds to act as inhibitors of a panel of mammalian tyrosine and dual-specificity phosphatases. Two arylstibonates both possessing a carboxylate side chain were identified as potent inhibitors of the protein tyrosine phosphatase PTP-ß. In addition, they inhibited the dual-specificity, cell cycle regulatory phosphatases Cdc25a and Cdc25b with sub-micromolar potency. However, the Cdc25c phosphatase was not affected demonstrating that arylstibonates may be viable leads from which to develop isoform specific Cdc25 inhibitors.
Collapse
|
13
|
Popov D. Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 2011; 410:377-81. [DOI: 10.1016/j.bbrc.2011.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 12/28/2022]
|
14
|
Calcium as a mediator between erythropoietin and protein tyrosine phosphatase 1B. Arch Biochem Biophys 2011; 505:242-9. [DOI: 10.1016/j.abb.2010.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 01/09/2023]
|
15
|
Lessard L, Stuible M, Tremblay ML. The two faces of PTP1B in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:613-9. [PMID: 19782770 DOI: 10.1016/j.bbapap.2009.09.018] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 09/18/2009] [Indexed: 10/25/2022]
Abstract
PTP1B is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and is a promising drug target for type 2 diabetes and obesity. Accumulating evidence also indicates that PTP1B is involved in cancer, but contrasting findings suggest that it can exert both tumor suppressing and tumor promoting effects depending on the substrate involved and the cellular context. In this review, we will discuss the diverse mechanisms by which PTP1B may influence tumorigenesis as well as recent in vivo data on the impact of PTP1B deficiency in murine cancer models. Together, these results highlight not only the great potential of PTP1B inhibitors in cancer therapy but also the need for a better understanding of PTP1B function prior to use of these compounds in human patients.
Collapse
Affiliation(s)
- Laurent Lessard
- Goodman Cancer Centre and Department of Biochemistry, McGill University, 1160 Pine Avenue, Montréal, Québec, Canada H3G 0B1
| | | | | |
Collapse
|
16
|
Regazzetti C, Peraldi P, Grémeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, Bost F, Le Marchand-Brustel Y, Tanti JF, Giorgetti-Peraldi S. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 2009; 58:95-103. [PMID: 18984735 PMCID: PMC2606898 DOI: 10.2337/db08-0457] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Obesity is characterized by an overgrowth of adipose tissue that leads to the formation of hypoxic areas within this tissue. We investigated whether this phenomenon could be responsible for insulin resistance by studying the effect of hypoxia on the insulin signaling pathway in adipocytes. RESEARCH DESIGN AND METHODS The hypoxic signaling pathway was modulated in adipocytes from human and murine origins through incubation under hypoxic conditions (1% O(2)) or modulation of hypoxia-inducible factor (HIF) expression. Insulin signaling was monitored through the phosphorylation state of several key partners of the pathway and glucose transport. RESULTS In both human and murine adipocytes, hypoxia inhibits insulin signaling as revealed by a decrease in the phosphorylation of insulin receptor. In 3T3-L1 adipocytes, this inhibition of insulin receptor phosphorylation is followed by a decrease in the phosphorylation state of protein kinase B and AS160, as well as an inhibition of glucose transport in response to insulin. These processes were reversible under normoxic conditions. The mechanism of inhibition seems independent of protein tyrosine phosphatase activities. Overexpression of HIF-1alpha or -2alpha or activation of HIF transcription factor with CoCl(2) mimicked the effect of hypoxia on insulin signaling, whereas downregulation of HIF-1alpha and -2alpha by small interfering RNA inhibited it. CONCLUSIONS We have demonstrated that hypoxia creates a state of insulin resistance in adipocytes that is dependent upon HIF transcription factor expression. Hypoxia could be envisioned as a new mechanism that participates in insulin resistance in adipose tissue of obese patients.
Collapse
Affiliation(s)
- Claire Regazzetti
- Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Institut National de la Santé et de la Recherche Médicale U 895, Mediterranean Research Centre for Molecular Medicine, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stuible M, Doody KM, Tremblay ML. PTP1B and TC-PTP: regulators of transformation and tumorigenesis. Cancer Metastasis Rev 2008; 27:215-30. [DOI: 10.1007/s10555-008-9115-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH. Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol Cell Biol 2007; 27:6038-52. [PMID: 17576811 PMCID: PMC1952154 DOI: 10.1128/mcb.00522-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calpains are ubiquitous calcium-regulated cysteine proteases that have been implicated in cytoskeletal organization, cell proliferation, apoptosis, cell motility, and hemostasis. Gene targeting was used to evaluate the physiological function of mouse calpain-1 and establish that its inactivation results in reduced platelet aggregation and clot retraction potentially by causing dephosphorylation of platelet proteins. Here, we report that calpain-1 null (Capn1-/-) platelets accumulate protein tyrosine phosphatase 1B (PTP1B), which correlates with enhanced tyrosine phosphatase activity and dephosphorylation of multiple substrates. Treatment of Capn1-/- platelets with bis(N,N-dimethylhydroxamido)hydroxooxovanadate, an inhibitor of tyrosine phosphatases, corrected the aggregation defect and recovered impaired clot retraction. More importantly, platelet aggregation, clot retraction, and tyrosine dephosphorylation defects were rescued in the double knockout mice lacking both calpain-1 and PTP1B. Further evaluation of mutant mice by the ferric chloride-induced arterial injury model suggests that the Capn1-/- mice are relatively resistant to thrombosis in vivo. Together, our results demonstrate that PTP1B is a physiological target of calpain-1 and suggest that a similar mechanism may regulate calpain-1-mediated tyrosine dephosphorylation in other cells.
Collapse
Affiliation(s)
- Shafi M Kuchay
- Department of Pharmacology, UIC Cancer Center, University of Illinois at Chicago, 909 South Wolcott Avenue, Room 5097, Chicago, IL 60612-3725, USA
| | | | | | | | | |
Collapse
|