1
|
Mahapatra A, Uysalel C, Rangamani P. The Mechanics and Thermodynamics of Tubule Formation in Biological Membranes. J Membr Biol 2021; 254:273-291. [PMID: 33462667 PMCID: PMC8184589 DOI: 10.1007/s00232-020-00164-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Membrane tubulation is a ubiquitous process that occurs both at the plasma membrane and on the membranes of intracellular organelles. These tubulation events are known to be mediated by forces applied on the membrane either due to motor proteins, by polymerization of the cytoskeleton, or due to the interactions between membrane proteins binding onto the membrane. The numerous experimental observations of tube formation have been amply supported by mathematical modeling of the associated membrane mechanics and have provided insights into the force-displacement relationships of membrane tubes. Recent advances in quantitative biophysical measurements of membrane-protein interactions and tubule formation have necessitated the need for advances in modeling that will account for the interplay of multiple aspects of physics that occur simultaneously. Here, we present a comprehensive review of experimental observations of tubule formation and provide context from the framework of continuum modeling. Finally, we explore the scope for future research in this area with an emphasis on iterative modeling and experimental measurements that will enable us to expand our mechanistic understanding of tubulation processes in cells.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Can Uysalel
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Sen K, Sarkar A, Maji RK, Ghosh Z, Gupta S, Ghosh TC. Deciphering the cross-talking of human competitive endogenous RNAs in K562 chronic myelogenous leukemia cell line. MOLECULAR BIOSYSTEMS 2016; 12:3633-3642. [DOI: 10.1039/c6mb00568c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized by increased proliferation or abnormal accumulation of the granulocytic cell line without the depletion of their capacity to differentiate.
Collapse
Affiliation(s)
- Kamalika Sen
- Bioinformatics Centre
- Bose Institute
- Kolkata-700 054
- India
| | | | | | - Zhumur Ghosh
- Bioinformatics Centre
- Bose Institute
- Kolkata-700 054
- India
| | - Sanjib Gupta
- Bioinformatics Centre
- Bose Institute
- Kolkata-700 054
- India
| | | |
Collapse
|
3
|
VanDersarl JJ, Mehraeen S, Schoen AP, Heilshorn SC, Spakowitz AJ, Melosh NA. Rheology and simulation of 2-dimensional clathrin protein network assembly. SOFT MATTER 2014; 10:6219-6227. [PMID: 25012232 DOI: 10.1039/c4sm00025k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Clathrin is a three-legged protein complex that assembles into lattice structures on the cell membrane and transforms into fullerene-like cages during endocytosis. This dynamic structural flexibility makes clathrin an attractive building block for guided assembly. The assembly dynamics and the mechanical properties of clathrin protein lattices are studied using rheological measurements and theoretical modelling in an effort to better understand two dynamic processes: protein adsorption to the interface and assembly into a network. We find that percolation models for protein network formation are insufficient to describe clathrin network formation, but with Monte Carlo simulations we can describe the dynamics of network formation very well. Insights from this work can be used to design new bio-inspired nano-assembly systems.
Collapse
Affiliation(s)
- Jules J VanDersarl
- Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Luft C, Freeman J, Elliott D, Al-Tamimi N, Kriston-Vizi J, Heintze J, Lindenschmidt I, Seed B, Ketteler R. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC BIOCHEMISTRY 2014; 15:14. [PMID: 25007711 PMCID: PMC4099409 DOI: 10.1186/1471-2091-15-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
Abstract
Background Secreted luciferases are highly useful bioluminescent reporters for cell-based assays and drug discovery. A variety of secreted luciferases from marine organisms have been described that harbor an N-terminal signal peptide for release along the classical secretory pathway. Here, we have characterized the secretion of Gaussia luciferase in more detail. Results We describe three basic mechanisms by which GLUC can be released from cells: first, classical secretion by virtue of the N-terminal signal peptide; second, internal signal peptide-mediated secretion and third, non-conventional secretion in the absence of an N-terminal signal peptide. Non-conventional release of dNGLUC is not stress-induced, does not require autophagy and can be enhanced by growth factor stimulation. Furthermore, we have identified the golgi-associated, gamma adaptin ear containing, ARF binding protein 1 (GGA1) as a suppressor of release of dNGLUC. Conclusions Due to its secretion via multiple secretion pathways GLUC can find multiple applications as a research tool to study classical and non-conventional secretion. As GLUC can also be released from a reporter construct by internal signal peptide-mediated secretion it can be incorporated in a novel bicistronic secretion system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robin Ketteler
- Medical Research Council, Laboratory for Moleclar and Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Borgonovo J, Capella P, Seltzer A, Sosa MA. Expression of coat proteins changes during postnatal development in selected areas of the rat brain. Int J Dev Neurosci 2012; 30:333-41. [PMID: 22306374 DOI: 10.1016/j.ijdevneu.2012.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022] Open
Abstract
It is well known that clathrin-mediated endocytosis is crucial for the normal functioning and integrity of neurons in the central nervous system. In this study we attempted to correlate the expression of coat proteins with development in different areas of rat brain. By Western blot, we studied the expression of AP-2, GGA1 and GGA2 in striatum, cerebellum, brain stem, cerebral cortex and hippocampus of newborn rats and during post-natal development; 5, 15, 30, 60, 90 or 150 days after birth. We observed that the expression of the α2 subunit of AP-2 increased substantially between the 15th and 30th day after birth in all areas studied, excepting the cerebellum and cortex. On the other hand, the expression of the α1 subunit does not change significantly during the development in any of the areas under study. We also noted that the expression of the μ2 subunit did not follow the pattern of α2 during development. In general terms, the expression of GGA1 and GGA2 followed a similar pattern to that of AP-2, although these proteins increased significantly in the cerebral cortex from the 15th day after birth. Moreover, presenilin-1, a protein associated with aging and neurodegeneration, shows an expression pattern similar to coat proteins in the striatum and cortex. These results suggest that proteins that conform the intracellular transport machinery in the brain cells seems to accompany development, according to the maturation of the different brain areas.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratorio de Biología y Fisiología Celular "Dr. Francisco Bertini", Instituto de Histología y Embriología, FCM, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
6
|
Touz MC, Rivero MR, Miras SL, Bonifacino JS. Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 2012; 4:1898-909. [PMID: 22202006 DOI: 10.2741/511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia is a flagellated protozoan parasite that has to face different microenvironments during its life cycle in order to survive. All cells exchange materials with the extracellular medium through the reciprocal processes of endocytosis and secretion. Unlike more evolved cells, Giardia lacks a defined endosomal/lysosomal system, but instead possesses peripheral vacuoles that play roles in endocytosis, degradation, recycling, and secretion of proteins during growth and differentiation of the parasite. This review focuses on recent reports defining the role of different molecules involved in protein trafficking to the peripheral vacuoles, and discusses possible mechanisms of receptor recycling. Since Giardia is an early-branching protist, the study of this parasite may lead to a clearer understanding of the minimal machinery required for protein transport in eukaryotic cells.
Collapse
Affiliation(s)
- Maria C Touz
- Instituto de Investigacion Medica Mercedes y Martin Ferreyra, INIMEC - CONICET, Friuli 2434, Cordoba, Argentina.
| | | | | | | |
Collapse
|
7
|
Schoen AP, Schoen DT, Huggins KNL, Arunagirinathan MA, Heilshorn SC. Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J Am Chem Soc 2011; 133:18202-7. [PMID: 21967307 DOI: 10.1021/ja204732n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural systems often utilize a single protein to perform multiple functions. Control over functional specificity is achieved through interactions with other proteins at well-defined epitope binding sites to form a variety of functional coassemblies. Inspired by the biological use of epitope recognition to perform diverse yet specific functions, we present a Template Engineering Through Epitope Recognition (TEThER) strategy that takes advantage of noncovalent, molecular recognition to achieve functional versatility from a single protein template. Engineered TEThER peptides span the biologic-inorganic interface and serve as molecular bridges between epitope binding sites on protein templates and selected inorganic materials in a localized, specific, and versatile manner. TEThER peptides are bifunctional sequences designed to noncovalently bind to the protein scaffold and to serve as nucleation sites for inorganic materials. Specifically, we functionalized identical clathrin protein cages through coassembly with designer TEThER peptides to achieve three diverse functions: the bioenabled synthesis of anatase titanium dioxide, cobalt oxide, and gold nanoparticles in aqueous solvents at room temperature and ambient pressure. Compared with previous demonstrations of site-specific inorganic biotemplating, the TEThER strategy relies solely on defined, noncovalent interactions without requiring any genetic or chemical modifications to the biomacromolecular template. Therefore, this general strategy represents a mix-and-match, biomimetic approach that can be broadly applied to other protein templates to achieve versatile and site-specific heteroassemblies of nanoscale biologic-inorganic complexes.
Collapse
Affiliation(s)
- Alia P Schoen
- Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | | | | | | |
Collapse
|
8
|
Abstract
Cellular membrane systems delimit and organize the intracellular space. Most of the morphological rearrangements in cells involve the coordinated remodeling of the lipid bilayer, the core of the membranes. This process is generally thought to be initiated and coordinated by specialized protein machineries. Nevertheless, it has become increasingly evident that the most essential part of the geometric information and energy required for membrane remodeling is supplied via the cooperative and synergistic action of proteins and lipids, as cellular shapes are constructed using the intrinsic dynamics, plasticity and self-organizing capabilities provided by the lipid bilayer. Here, we analyze the essential role of proteo-lipid membrane domains in conducting and coordinating morphological remodeling in cells.
Collapse
Affiliation(s)
- Anna V Shnyrova
- Laboratory of Cellular and Molecular Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | | | | |
Collapse
|
9
|
Shaping tubular carriers for intracellular membrane transport. FEBS Lett 2009; 583:3847-56. [DOI: 10.1016/j.febslet.2009.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/22/2022]
|
10
|
Sorting of lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:605-14. [PMID: 19046998 DOI: 10.1016/j.bbamcr.2008.10.016] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Lysosomes are composed of soluble and transmembrane proteins that are targeted to lysosomes in a signal-dependent manner. The majority of soluble acid hydrolases are modified with mannose 6-phosphate (M6P) residues, allowing their recognition by M6P receptors in the Golgi complex and ensuing transport to the endosomal/lysosomal system. Other soluble enzymes and non-enzymatic proteins are transported to lysosomes in an M6P-independent manner mediated by alternative receptors such as the lysosomal integral membrane protein LIMP-2 or sortilin. Sorting of cargo receptors and lysosomal transmembrane proteins requires sorting signals present in their cytosolic domains. These signals include dileucine-based motifs, DXXLL or [DE]XXXL[LI], and tyrosine-based motifs, YXXØ, which interact with components of clathrin coats such as GGAs or adaptor protein complexes. In addition, phosphorylation and lipid modifications regulate signal recognition and trafficking of lysosomal membrane proteins. The complex interaction of both luminal and cytosolic signals with recognition proteins guarantees the specific and directed transport of proteins to lysosomes.
Collapse
|
11
|
A geometric principle may guide self-assembly of fullerene cages from clathrin triskelia and from carbon atoms. Biophys J 2007; 94:958-76. [PMID: 17921209 DOI: 10.1529/biophysj.107.110817] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clathrin triskelia and carbon atoms alike self-assemble into a limited selection of fullerene cages (with n three connected vertices, 3n/2 edges, 12 pentagonal faces, and (n-20)/2 hexagonal faces). We show that a geometric constraint-exclusion of head-to-tail dihedral angle discrepancies (DADs)-explains this limited selection as well as successful assembly into such closed cages in the first place. An edge running from a pentagon to a hexagon has a DAD, since the dihedral angles about the edge broaden from its pentagon (tail) end to its hexagon (head) end. Of the 21 configurations of a central face and surrounding faces, six have such DAD vectors arranged head-to-tail. Of the 5770 mathematically possible fullerene cages for n <or= 60, excluding those with any of the six configurations leaves just 15 cages plus buckminsterfullerene (n = 60), among them the known clathrin cages. Of the 216,739 mathematically possible cages for 60 < n <or= 84, just the 50 that obey the isolated-pentagon rule, among them known carbon cages, pass. The absence of likely fullerenes for some n (30,34,46,48,52-58,62-68) explains the abundance of certain cages, including buckminsterfullerene. These principles also suggest a "probable roads" path to self-assembly in place of pentagon-road and fullerene-road hypotheses.
Collapse
|