1
|
Takeyama M, Furukawa S, Sasai K, Horiuchi K, Nogami K. Factor VIII A3 domain residues 1793-1795 represent a factor IXa-interactive site in the tenase complex. Biochim Biophys Acta Gen Subj 2023; 1867:130381. [PMID: 37207906 DOI: 10.1016/j.bbagen.2023.130381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Factor (F)VIII functions as a cofactor in the tenase complex responsible for conversion of FX to FXa by FIXa. Earlier studies indicated that one of the FIXa-binding sites is located in residues 1811-1818 (crucially F1816) of the FVIII A3 domain. A putative, three-dimensional structure model of the FVIIIa molecule suggested that residues 1790-1798 form a V-shaped loop, and juxtapose residues 1811-1818 on the extended surface of FVIIIa. AIM To examine FIXa molecular interactions in the clustered acidic sites of FVIII including residues 1790-1798. METHODS AND RESULTS Specific ELISA's demonstrated that the synthetic peptides, encompassing residues 1790-1798 and 1811-1818, competitively inhibited the binding of FVIII light chain to active-site-blocked Glu-Gly-Arg-FIXa (EGR-FIXa) (IC50; 19.2 and 42.9 μM, respectively), in keeping with a possible role for the 1790-1798 in FIXa interactions. Surface plasmon resonance-based analyses demonstrated that variants of FVIII, in which the clustered acidic residues (E1793/E1794/D1793) or F1816 contained substituted alanine, bound to immobilized biotin labeled-Phe-Pro-Arg-FIXa (bFPR-FIXa) with a 1.5-2.2-fold greater KD compared to wild-type FVIII (WT). Similarly, FXa generation assays indicated that E1793A/E1794A/D1795A and F1816A mutants increased the Km by 1.6-2.8-fold relative to WT. Furthermore, E1793A/E1794A/D1795A/F1816A mutant showed that the Km was increased by 3.4-fold and the Vmax was decreased by 0.75-fold, compared to WT. Molecular dynamics simulation analyses revealed the subtle changes between WT and E1793A/E1794A/D1795A mutant, supportive of the contribution of these residues for FIXa interaction. CONCLUSION The 1790-1798 region in the A3 domain, especially clustered acidic residues E1793/E1794/D1795, contains a FIXa-interactive site.
Collapse
Affiliation(s)
- Masahiro Takeyama
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan.
| | - Shoko Furukawa
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kana Sasai
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kaoru Horiuchi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
2
|
Stojanovski BM, Di Cera E. Role of sequence and position of the cleavage sites in prothrombin activation. J Biol Chem 2021; 297:100955. [PMID: 34265300 PMCID: PMC8348271 DOI: 10.1016/j.jbc.2021.100955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
In the penultimate step of the coagulation cascade, the multidomain vitamin-K-dependent zymogen prothrombin is converted to thrombin by the prothrombinase complex composed of factor Xa, cofactor Va, and phospholipids. Activation of prothrombin requires cleavage at two residues, R271 and R320, along two possible pathways generating either the intermediate prethrombin-2 (following initial cleavage at R271) or meizothrombin (following initial cleavage at R320). The former pathway is preferred in the absence of and the latter in the presence of cofactor Va. Several mechanisms have been proposed to explain this preference, but the role of the sequence and position of the sites of cleavage has not been thoroughly investigated. In this study, we engineered constructs where the sequences 261DEDSDRAIEGRTATSEYQT279 and 310RELLESYIDGRIVEGSDAE328 were swapped between the R271 and R320 sites. We found that in the absence of cofactor Va, the wild-type sequence at the R271 site is cleaved preferentially regardless of its position at the R271 or R320 site, whereas in the presence of cofactor Va, the R320 site is cleaved preferentially regardless of its sequence. Additional single-molecule FRET measurements revealed that the environment of R271 changes significantly upon cleavage at R320 due to the conformational transition from the closed form of prothrombin to the open form of meizothrombin. Detailed kinetics of cleavage at the R271 site were monitored by a newly developed assay based on loss of FRET. These findings show how sequence and position of the cleavage sites at R271 and R320 dictate the preferred pathway of prothrombin activation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
3
|
Lebreton A, Simon N, Moreau V, Demolombe V, Cayzac C, Nguyen C, Schved JF, Granier C, Lavigne-Lissalde G. Computer-predicted peptides that mimic discontinuous epitopes on the A2 domain of factor VIII. Haemophilia 2014; 21:e193-e201. [PMID: 25422151 DOI: 10.1111/hae.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Development of antibodies (Abs) against factor VIII (FVIII) is a severe complication of haemophilia A treatment. Recent publications suggest that domain specificity of anti-FVIII antibodies, particularly during immune tolerance induction (ITI), might be related to the outcome of the treatment. Obtaining suitable tools for a fine mapping of discontinuous epitopes could thus be helpful. The aim of this study was to map discontinuous epitopes on FVIII A2 domain using a new epitope prediction functionality of the PEPOP bioinformatics tool and a peptide inhibition assay based on the Luminex technology. We predicted, selected and synthesized 40 peptides mimicking discontinuous epitopes on the A2 domain of FVIII. A new inhibition assays using Luminex technology was performed to identify peptides able to inhibit the binding of anti-A2 Abs to A2 domain. We identified two peptides (IFKKLYHVWTKEVG and LYSRRLPKGVKHFD) able to block the binding of anti-A2 allo-antibodies to this domain. The three-dimensional representation of these two peptides on the A2 domain revealed that they are localized on a limited region of A2. We also confirmed that residues 484-508 of the A2 domain define an antigenic site. We suggest that dissection of the antibody response during ITI using synthetic peptide epitopes could provide important information for the management of patients with inhibitors.
Collapse
Affiliation(s)
- A Lebreton
- UMR 3145 SysDiag CNRS/Bio-Rad, Parc Euromédecine, Montpellier, France; CHU Clermont-Ferrand, Service d'Hématologie Biologique, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wakabayashi H, Wintermute JM, Fay PJ. Combining mutations that modulate inter-subunit interactions and proteolytic inactivation enhance the stability of factor VIIIa. Thromb Haemost 2014; 112:43-52. [PMID: 24599523 DOI: 10.1160/th13-10-0918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 11/05/2022]
Abstract
FVIIIa is labile due to the dissociation of A2 subunit. Previously, we introduced hydrophobic mutations at select A1/A2/A3 subunit interfaces yielding more stable FVIII(a) variants. Separately we showed that altering the sequence flanking the primary FXa cleavage site in FVIIIa (Arg336) yielded reduced rates of proteolytic inactivation of FVIIIa. In this study we prepared the FXa-cleavage resistant mutant (336(P4-P3')562) combined with mutations of Ala108Ile, Asp519Val/Glu665Val or Ala108Ile/Asp519Val/Glu665Val and examined the effects of these combinations relative to FVIII thermal stability, rates of FVIIIa decay and proteolytic inactivation of FVIIIa by FXa. Thermal decay rates for 336(P4-P3')562/Ala108Ile, 336(P4-P3')562/Asp519Val/Glu665Val, and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ~2- to 5-fold as compared with wild-type (WT) primarily reflecting the effects of the A domain interface mutations. FVIIIa decay rates for 336(P4-P3')562/Asp519Val/Glu665Val and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ~25 fold, indicating greater stability than the control Asp519Val/Glu665Val variant (~14-fold). Interestingly, 336(P4-P3')562/Asp519Val/Glu665Val and 336(P4-P3')562/Ala108Ile/Asp519Val/Glu665Val variants showed reduced FXa-inactivation rates compared with the 336(P4-P3')562 control (~4-fold), suggesting A2 subunit destabilisation is a component of proteolytic inactivation. Thrombin generation assays using the combination variants were similar to the Asp519Val/Glu665Val control. These results indicate that combining multiple gain-of-function FVIII mutations yields FVIII variants with increased stability relative to a single type of mutation.
Collapse
Affiliation(s)
| | | | - P J Fay
- Philip J. Fay, P.O. Box 712, Department of Biochemistry and Biophysics, 601 Elmwood Ave., Rochester, NY 14642, USA, Tel.: +1 585 275 6576, Fax: +1 585 275 6007, E-mail:
| |
Collapse
|
5
|
Wakabayashi H, Monaghan M, Fay PJ. Cofactor activity in factor VIIIa of the blood clotting pathway is stabilized by an interdomain bond between His281 and Ser524 formed in factor VIII. J Biol Chem 2014; 289:14020-9. [PMID: 24692542 DOI: 10.1074/jbc.m114.550566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His(281) (A1 domain) with Ser(524) (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His(281) and Ser(524) residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains. The swap variant showed WT-like FVIII and FVIIIa stability, which were markedly reduced for H281A and S524A variants in an earlier study. The disulfide-bridged variant showed ∼20% increased FVIII stability, and FVIIIa did not decay during the time course measured. This variant also yielded 35% increased thrombin peak values compared with WT in a plasma-based thrombin generation assay. Binding analyses of H281S-A1/A3C1C2 dimer with S524H-A2 subunit yielded a near WT-like affinity value, whereas combining the variant dimer or A2 subunit with the WT complement yielded ∼5- and ∼10-fold reductions, respectively, in affinity. Other functional properties including thrombin generation potential, FIXa binding affinity, Km for FX of FXase complexes, thrombin activation efficiency, and down-regulation by activated protein C showed similar results for the two variants compared with WT FVIII. These results indicate that the side chains of His(281) and Ser(524) are in close proximity and contribute to a bonding interaction in FVIII that is retained in FVIIIa.
Collapse
Affiliation(s)
- Hironao Wakabayashi
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642
| | - Morgan Monaghan
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642
| | - Philip J Fay
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642
| |
Collapse
|
6
|
Wakabayashi H, Wintermute JM, Fay PJ. Combining mutations that modulate inter-subunit interactions and proteolytic inactivation enhance the stability of factor VIIIa. Thromb Haemost 2014. [DOI: 10.1160/th13-10-0887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Aneja R, Datt M, Yadav S, Sahni G. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Biochemistry 2013; 52:8957-68. [PMID: 23919427 DOI: 10.1021/bi400142s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To examine the global function of the key surface-exposed loops of streptokinase, bearing substrate-specific exosites, namely, the 88-97 loop in the α domain, the 170 loop in the β domain, and the coiled-coil region (Leu321-Asn338) in the γ domain, mutagenic as well as peptide inhibition studies were carried out. Peptides corresponded to the primary structure of an exosite, either individual or stoichiometric mixtures of various disulfide-constrained synthetic peptide(s) inhibited plasminogen activation by streptokinase. Remarkably, pronounced inhibition of substrate plasminogen activation by the preformed streptokinase-plasmin activator complex was observed when complementary mixtures of different peptides were used compared to the same overall concentrations of individual peptides, suggesting co-operative interactions between the exosites. This observation was confirmed with streptokinase variants mutated at one, two, or three sites simultaneously. The single/double/triple exosite mutants of streptokinase showed a nonadditive, synergistic decline in kcat for substrate plasminogen activation in the order single > double > triple exosite mutant. Under the same conditions, zymogen activation by the various mutants remained essentially native- like in terms of nonproteolytic activation of partner plasminogen. Multisite mutants also retain affinity to form 1:1 stoichiometric activator complexes with plasmin when probed through sensitive equilibrium fluorescence studies. Thus, the present results strongly support a model of streptokinase action, wherein catalysis by the streptokinase-plasmin complex operates through a distributed network of substrate-interacting exosites resident across all three domains of the cofactor protein.
Collapse
Affiliation(s)
- Rachna Aneja
- The Institute of Microbial Technology (CSIR) , Sector 39-A, Chandigarh-160036, India
| | | | | | | |
Collapse
|
8
|
Griffiths AE, Wintermute J, Newell-Caito JL, Fay PJ. Residues flanking scissile bonds in Factor VIII modulate rates of cleavage and proteolytic activation catalyzed by Factor Xa. Biochemistry 2013; 52:8060-8. [PMID: 24128092 DOI: 10.1021/bi4010123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Factor Xa (FXa) proteolytically activates Factor VIII (FVIII) by cleaving P1 residues Arg(372), Arg(740), and Arg(1689). The Arg(372) site represents the rate-limiting step for procofactor activation, whereas cleavage at Arg(740) is a fast step. FXa also catalyzes inactivating cleavages that occur on a slower time scale than the activating ones. To assess the role of sequences flanking the Arg(372) and Arg(740) sites, recombinant FVIII variants in which P3-P3' sequences were swapped individually or in combination were prepared. Replacing the Arg(372) flanking sequence with that from the Arg(740) site increased the rate of cleavage at Arg(372), as judged by the ~5-fold increased rate in A1 subunit generation, and reduced the FVIIIa-dependent lag time for in situ FXa generation. The reciprocal swap yielded a nearly 2-fold increase in the rate of Arg(372) cleavage, while the combined double-swap variant showed a 10-fold rate increase at that site, consistent with the individual effects being additive. Although this cleavage represents the slow step for activation, the rate of this reaction appeared to be ~9-fold greater than the rate of the primary inactivating cleavage at Arg(336) in generating the A1(336) product. Interestingly, replacement of the Arg(372) flanking sequence with the Arg(740) sequence combined with an Arg(740)Gln mutation yielded both more rapid cleavage of the Arg(372) site and accelerated inactivating cleavages within the A1 subunit. These results indicate that flanking sequences in part modulate the reaction rates required for procofactor activation and influence the capacity of FXa as an initial activator of FVIII rather than an inactivator.
Collapse
Affiliation(s)
- Amy E Griffiths
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | | | | | | |
Collapse
|
9
|
Takeyama M, Wintermute JM, Manithody C, Rezaie AR, Fay PJ. Variable contributions of basic residues forming an APC exosite in the binding and inactivation of factor VIIIa. Biochemistry 2013; 52:2228-35. [PMID: 23480827 DOI: 10.1021/bi301632g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Basic residues contained in the 39-, 60-, and 70-80-loops of activated protein C (APC) comprise an exosite that contributes to the binding and subsequent proteolytic inactivation of factor (F) VIIIa. Surface plasmon resonance (SPR) showed that WT APC bound to FVIII light chain (LC) and the FVIIIa A1/A3C1C2 dimer with equivalent affinity (Kd = 525 and 546 nM, respectively). These affinity values may reflect binding interactions to the acidic residue-rich a1 and a3 segments adjacent to A1 domain in the A1/A3C1C2 and A3 domain in LC, respectively. Results from SPR, using a panel of APC exosite variants where basic residues were mutated, in binding to immobilized FVIIIa A1/A3C1C2 or LC indicated ~4-10-fold increases in the Kd values relative to WT for several of the variants including Lys39Ala, Lys37-Lys38-Lys39/Pro-Gln-Glu, and Arg67Ala. On the other hand, a number of APC variants including Lys38Ala, Lys62Ala, and Lys78Ala showed little if any change in binding affinity to the FVIII substrates. FXa generation assays and Western blotting, used to monitor rates of FVIIIa inactivation and proteolysis at the primary cleavage site in the cofactor (Arg(336)), respectively, showed marked rate reductions relative to WT for the Lys39Ala, Lys37-Lys38-Lys39/Pro-Gln-Glu, Arg67Ala, and Arg74Ala variants. Furthermore, kinetic analysis monitoring FVIIIa inactivation by APC variants at varying FVIIIa substrate concentration showed ~2.6-4.4-fold increases in Km values relative to WT. These results show a variable contribution of basic residues comprising the APC exosite, with significant contributions from Lys39, Arg67, and Arg74 to forming a FVIIIa-interactive site.
Collapse
Affiliation(s)
- Masahiro Takeyama
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Takeyama M, Wakabayashi H, Fay PJ. Contribution of factor VIII light-chain residues 2007-2016 to an activated protein C-interactive site. Thromb Haemost 2012; 109:187-98. [PMID: 23224054 DOI: 10.1160/th12-08-0561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/22/2012] [Indexed: 11/05/2022]
Abstract
Although factor (F) VIIIa is inactivated by activated protein C (APC) through cleavages in the FVIII heavy chain-derived A1 (Arg(336)) and A2 subunits (Arg(562), the FVIII light chain (LC) contributes to catalysis by binding the enzyme. ELISA-based binding assays showed that FVIII and FVIII LC bound to immobilised active site-modified APC (DEGR-APC) (apparent K(d) ~270 nM and 1.0 μM, respectively). Fluid-phase binding studies using fluorescence indicated an estimated K(d) of ~590 nM for acrylodan-labelled LC binding to DEGR-APC. Furthermore, FVIII LC effectively competed with FVIIIa in blocking APC-catalysed cleavage at Arg(336) (K(i) = 709 nM). A binding site previously identified near the C-terminal end of the A3 domain (residues 2007-2016) of FVIII LC was subjected to Ala-scanning mutagenesis. FXa generation assays and western and dot blotting were employed to assess the contribution of these residues to FVIIIa interactions with APC. Virtually all variants tested showed reductions in the rates of APC-catalysed inactivation of the cofactor and cleavage at the primary inactivation site (Arg(336)), with maximal reductions in inactivation rates (~3-fold relative to WT) and cleavage rates (~3 to ~9-fold relative to WT) observed for the Met2010Ala, Ser2011Ala, and Leu2013Ala variants. Titration of FVIIIa substrate concentration monitoring cleavage by a dot blot assay indicated that these variants also showed ~3-fold increases relative to WT while a double mutant (Met2010Ala/Ser2011Ala) showed a >4-fold increase in K(m). These results show a contribution of a number of residues within the 2007-2016 sequence, and in particular residues Met2010, Ser2011, and Leu2013 to an APC-interactive site.
Collapse
Affiliation(s)
- Masahiro Takeyama
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
11
|
DeAngelis JP, Wakabayashi H, Fay PJ. Sequences flanking Arg336 in factor VIIIa modulate factor Xa-catalyzed cleavage rates at this site and cofactor function. J Biol Chem 2012; 287:15409-17. [PMID: 22411993 DOI: 10.1074/jbc.m111.333948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ∼4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ∼40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.
Collapse
Affiliation(s)
- Jennifer P DeAngelis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
12
|
Newell-Caito JL, Griffiths AE, Fay PJ. P3-P3' residues flanking scissile bonds in factor VIII modulate rates of substrate cleavage and procofactor activation by thrombin. Biochemistry 2012; 51:3451-9. [PMID: 22455313 DOI: 10.1021/bi300070z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thrombin-catalyzed activation of factor VIII (FVIII) occurs through proteolysis at three P1 Arg residues: Arg(372) and Arg(740) in the FVIII heavy chain and Arg(1689) in the FVIII light chain. Cleavage at the latter two sites is relatively fast compared with cleavage at Arg(372), which appears to be rate-limiting. Examination of the P3-P3' residues flanking each P1 site revealed that those sequences at Arg(740) and Arg(1689) are more optimal for thrombin cleavage than at Arg(372), suggesting these sequences may impact reaction rates. Recombinant FVIII variants were prepared with mutations swapping scissile bond flanking sequences in the heavy chain individually and in combination with a second swap or with a P1 point mutation. Rates of generation of A1 and A3-C1-C2 subunits were determined by Western blotting and correlated with rates of cleavage at Arg(372) and Arg(1689), respectively. Rates of thrombin cleavage at Arg(372) were increased ~10- and ~3-fold compared with that of wild-type FVIII when it was replaced with P3-P3' residues flanking Arg(740) and Arg(1689), respectively, and these values paralleled increased rates of A2 subunit generation and procofactor activation. Positioning of more optimal residues flanking Arg(372) abrogated the need for initial cleavage at Arg(740) to facilitate this step. These results show marked changes in cleavage rates correlate with the extent of cleavage-optimal residues flanking the scissile bond and modulate the mechanism for procofactor activation.
Collapse
Affiliation(s)
- Jennifer L Newell-Caito
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
13
|
DeAngelis JP, Varfaj F, Wakabayashi H, Fay PJ. The role of P4-P3' residues flanking Arg336 in facilitating activated protein C-catalyzed cleavage and inactivation of factor VIIIa. Thromb Res 2011; 128:470-6. [PMID: 21470668 PMCID: PMC3202615 DOI: 10.1016/j.thromres.2011.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Activated protein C (APC) inactivates factor VIIIa (FVIIIa) through cleavages at Arg336 in the A1 subunit and Arg562 in the A2 subunit. Proteolysis at Arg336 occurs 25-fold faster than at Arg562. Replacing residues flanking Arg336 en bloc with the corresponding residues surrounding Arg562 markedly reduced the rate of cleavage at Arg336, indicating a role for these residues in the catalysis mechanism. MATERIALS AND METHODS To assess the contributions of individual P4-P3' residues flanking the Arg336 site to cleavage efficiency, point mutations were made based upon those flanking Arg562 of FVIIIa (Pro333Val, Gln334Asp, Leu335Gln, Met337Gly, Lys338Asn, Asn339Gln) and selected residues flanking Arg506 of FVa (Leu335Arg, and Lys338Ile). APC-catalyzed inactivation of the FVIII variants and cleavage of FVIIIa subunits were monitored by FXa generation assays and Western blotting. RESULTS Specific activity values of the variants were 60-135% of the wild type (WT) value. APC-catalyzed rates of cleavage at Arg336 remained similar to WT for the Pro333Val and Lys338Ile variants and was modestly increased for the Asn339Gln variant; while rates were reduced ~2-3-fold for the Gln334Asp, Leu335Gln, Leu335Arg, and Lys338Asn variants, and 5-fold for the Met337Gly variant. Rates for cofactor inactivation paralleled cleavage at the A1 site. APC slowly cleaves Arg372 in FVIII, a site responsible for procofactor activation. Using FVIII as substrate for APC, the Met337Gly variant yielded significantly greater activation compared with WT FVIII. CONCLUSIONS These results show that individual P4-P3' residues surrounding Arg336 are in general more favorable to cleavage than those surrounding the Arg562 site.
Collapse
Affiliation(s)
- Jennifer P DeAngelis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
14
|
Plantier JL, Rolli V, Ducasse C, Dargaud Y, Enjolras N, Boukerche H, Négrier C. Activated factor X cleaves factor VIII at arginine 562, limiting its cofactor efficiency. J Thromb Haemost 2010; 8:286-93. [PMID: 19874476 DOI: 10.1111/j.1538-7836.2009.03675.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Factor VIII (FVIII) and its activated form (FVIIIa) are subject to proteolysis that dampens their cofactor function. Among the proteases that attack FVIII (activated factor X (FXa), activated protein C (APC) and plasmin), only APC cleaves within the FVIII A2 domain at R562 to fully abolish FVIII activity. OBJECTIVES We investigated the possible involvement of the FXa cleavage at R562 within the A2 domain in the process of FVIII inactivation. METHODS An antibody (GMA012/R8B12) that recognizes the carboxy-terminus extremity of the A2 domain (A2C) was used to evaluate FXa action. A molecule mutated at R562 was also generated to assess the functional role of this particular residue. RESULTS AND CONCLUSIONS The appearance of the A2C domain as a function of time evidenced the identical cleavage within the A2 domain of FVIII and FVIIIa by FXa. This cleavage required phospholipids and occurred within minutes. In contrast, the isolated A2 domain was not cleaved by FXa. Von Willebrand factor and activated FIX inhibited the cleavage in a dose-dependent manner. Mutation R562K increased both the FVIII specific activity and the generation of FXa due to an increase in FVIII catalytic efficiency. Moreover, A2C fragment could not be identified from FVIII-R562K cleavage. In summary, this study defines a new mechanism for A2 domain-mediated FVIII degradation by FXa and implicates the bisecting of the A2 domain at R562.
Collapse
Affiliation(s)
- J L Plantier
- Laboratoire d'hémobiologie EA4174, Faculté RTH Laennec, Université de Lyon, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Protamine sulfate is a positively charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, prospective randomized trials have shown that protamine administration for heparin neutralization is associated with increased bleeding, particularly after cardiothoracic surgery with cardiopulmonary bypass. The molecular mechanism(s) through which protamine mediates this anticoagulant effect has not been defined. In vivo administration of pharmacologic doses of protamine to BALB/c mice significantly reduced plasma thrombin generation and prolonged tail-bleeding time (from 120 to 199 seconds). Similarly, in pooled normal human plasma, protamine caused significant dose-dependent prolongations of both prothrombin time and activated partial thromboplastin time. Protamine also markedly attenuated tissue factor-initiated thrombin generation in human plasma, causing a significant decrease in endogenous thrombin potential (41% +/- 7%). As expected, low-dose protamine effectively reversed the anticoagulant activity of unfractionated heparin in plasma. However, elevated protamine concentrations were associated with progressive dose-dependent reduction in thrombin generation. To assess the mechanism by which protamine mediates down-regulation of thrombin generation, the effect of protamine on factor V activation was assessed. Protamine was found to significantly reduce the rate of factor V activation by both thrombin and factor Xa. Protamine mediates its anticoagulant activity in plasma by down-regulation of thrombin generation via a novel mechanism, specifically inhibition of factor V activation.
Collapse
|
16
|
|