1
|
Madden SK, Brennan A, Mason JM. A library-derived peptide inhibitor of the BZLF1 transcription factor. J Pept Sci 2024; 30:e3557. [PMID: 38041527 DOI: 10.1002/psc.3557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Transcription factor dysregulation is associated with many diseases, including cancer. Peptide-based molecules are increasingly recognised as important modulators of difficult intracellular protein-protein interaction targets, with peptide library screening consequently proven to be a viable strategy in developing inhibitors against a wide range of transcription factors (TFs). However, current strategies simply select the highest affinity of binding to a target TF rather than the ability to inhibit TF function. Here, we utilise our Transcription Block Survival (TBS) screening platform to enable high-throughput identification of peptides that inhibit TFs from binding to cognate DNA sites, hence inhibiting functionality. In this study, we explore whether the TBS can be expanded to derive a potent and functional peptide inhibitor of the BZLF1 transcription factor. The library-derived peptide, AcidicW, is shown to form a more stable dimer with BZLF1 than the BZLF1 homodimer, with a thermal denaturation temperature exceeding 80°C. AcidicW can also functionally inhibit the BZLF1:TRE DNA interaction with high potency and an IC50 of 612 nM.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Life Sciences, University of Bath, Bath, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Andrew Brennan
- Department of Life Sciences, University of Bath, Bath, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
2
|
Darvishi E, Ghamsari L, Leong SF, Ramirez R, Koester M, Gallagher E, Yu M, Mason JM, Merutka G, Kappel BJ, Rotolo JA. Anticancer Activity of ST101, A Novel Antagonist of CCAAT/Enhancer Binding Protein β. Mol Cancer Ther 2022; 21:1632-1644. [PMID: 36121385 PMCID: PMC9630826 DOI: 10.1158/1535-7163.mct-21-0962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
CCAAT/enhancer binding protein β (C/EBPβ) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPβ dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPβ that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPβ, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPβ degradation. ST101 exposure attenuates transcription of C/EBPβ target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPβ-dependent cancers.
Collapse
Affiliation(s)
- Emad Darvishi
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Lila Ghamsari
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Siok F. Leong
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Ricardo Ramirez
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Mark Koester
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Erin Gallagher
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Miao Yu
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M. Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Gene Merutka
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Barry J. Kappel
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Jim A. Rotolo
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528, Corresponding Author (, telephone: 914-607-6935)
| |
Collapse
|
3
|
Brennan A, Leech JT, Kad NM, Mason JM. The effect of helix-inducing constraints and downsizing upon a transcription block survival-derived functional cJun antagonist. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:101077. [PMID: 36274790 PMCID: PMC9582194 DOI: 10.1016/j.xcrp.2022.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Inhibition of cJun is established as a promising therapeutic approach, particularly in cancer. We recently developed the "transcription block survival" (TBS) screening platform to derive functional peptide antagonists of transcription factor activity by ablating their ability to bind to cognate DNA. Using TBS, we screened a >131,000-member peptide library to select a 63-mer peptide that bound cJun and prevented 12-O-tetradecanoylphorbol-13-acetate response element (TRE) DNA binding. Iterative truncation was next combined with a systematic exploration of side-chain cyclization to derive a minimal active sequence. The resulting dual lactamized sequence was >40% smaller and retained low nM target affinity (equilibrium binding constant [K D ] = 0.2 versus 9.7 nM), with 8 residues at the acidic region required for functional antagonism. However, even modest C-terminal truncation resulted in functional loss. The peptide functionally antagonizes cJun (half-maximal inhibitory concentration [IC50] = 13 versus 45 μM) and is considerably more stable in human serum relative to its non-lactamized counterpart and HingeW.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - James T. Leech
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Neil M. Kad
- School of Biological Sciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M. Mason
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
4
|
Yu M, Ghamsari L, Rotolo JA, Kappel BJ, Mason JM. Combined computational and intracellular peptide library screening: towards a potent and selective Fra1 inhibitor. RSC Chem Biol 2021; 2:656-668. [PMID: 34458807 PMCID: PMC8341738 DOI: 10.1039/d1cb00012h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
To date, most research into the inhibition of oncogenic transcriptional regulator, Activator Protein 1 (AP-1), has focused on heterodimers of cJun and cFos. However, the Fra1 homologue remains an important cancer target. Here we describe library design coupled with computational and intracellular screening as an effective methodology to derive an antagonist that is selective for Fra1 relative to Jun counterparts. To do so the isCAN computational tool was used to rapidly screen >75 million peptide library members, narrowing the library size by >99.8% to one accessible to intracellular PCA selection. The resulting 131 072-member library was predicted to contain high quality binders with both a high likelihood of target engagement, while simultaneously avoiding homodimerization and off-target interaction with Jun homologues. PCA screening was next performed to enrich those members that meet these criteria. In particular, optimization was achieved via inclusion of options designed to generate the potential for compromised intermolecular contacts in both desired and non-desired species. This is an often-overlooked prerequisite in the conflicting design requirement of libraries that must be selective for their target in the context of a range of alternative potential interactions. Here we demonstrate that specificity is achieved via a combination of both hydrophobic and electrostatic contacts as exhibited by the selected peptide (Fra1W). In vitro analysis of the desired Fra1-Fra1W interaction further validates high Fra1 affinity (917 nM) yet selective binding relative to Fra1W homodimers or affinity for cJun. The isCAN → PCA based multidisciplinary approach provides a robust screening pipeline in generating target-specific hits, as well as new insight into rational peptide design in the search for novel bZIP family inhibitors.
Collapse
Affiliation(s)
- Miao Yu
- Department of Biology & Biochemistry, University of Bath Claverton Down Bath BA2 7AY UK +44 (0)1225386867
| | - Lila Ghamsari
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Jim A Rotolo
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Barry J Kappel
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320 Harrison NY 10528 USA
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath Claverton Down Bath BA2 7AY UK +44 (0)1225386867
| |
Collapse
|
5
|
Lathbridge A, Michalowska AS, Mason JM. Coupling Computational and Intracellular Screening and Selection Toward Co-compatible cJun and cFos Antagonists. Biochemistry 2020; 59:530-540. [PMID: 31804811 DOI: 10.1021/acs.biochem.9b00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Basic leucine-zipper (bZIP) proteins represent difficult, yet compelling, oncogenic targets since numerous cell-signaling cascades converge upon them, where they function to modulate the transcription of specific gene targets. bZIPs are widely recognized as important regulators of cellular processes that include cell proliferation, apoptosis, and differentiation. Once such validated transcriptional regulator, activator protein-1, is typically composed of heterodimers of Fos and Jun family members, with cFos-cJun being the best described. It has been shown to be key in the progression and development of a number of different diseases. As a proof-of-principle for our approach, we describe the first use of a novel combined in silico/in cellulo peptide-library screening platform that facilitates the derivation of a sequence that displays high selectivity for cJun relative to cFos, while also avoiding homodimerization. In particular, >60 million peptides were computationally screened and all potential on/off targets ranked according to predicted stability, leading to a reduced size library that was further refined by intracellular selection. The derived sequence is predicted to have limited cross-talk with a second previously derived peptide antagonist that is selective for cFos in the presence of cJun. The study provides new insight into the use of multistate screening with the ability to combine computational and intracellular approaches in evolving multiple cocompatible peptides that are capable of satisfying conflicting design requirements.
Collapse
Affiliation(s)
- Alexander Lathbridge
- Department of Biology & Biochemistry , University of Bath , Claverton Down , Bath BA2 7AY , United Kingdom
| | - Anna S Michalowska
- Department of Biology & Biochemistry , University of Bath , Claverton Down , Bath BA2 7AY , United Kingdom
| | - Jody M Mason
- Department of Biology & Biochemistry , University of Bath , Claverton Down , Bath BA2 7AY , United Kingdom
| |
Collapse
|
6
|
Lathbridge A, Mason JM. Combining Constrained Heptapeptide Cassettes with Computational Design To Create Coiled-Coil Targeting Helical Peptides. ACS Chem Biol 2019; 14:1293-1304. [PMID: 31117396 DOI: 10.1021/acschembio.9b00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A total of 32 heptapeptides have been synthesized and characterized to establish the effect of K → D (i → i + 4) lactamization upon their ability to adopt a helical conformation. Because most parallel and dimeric coiled-coil sequences can be deconvoluted into gabcdef repeats, we have introduced fixed solvent exposed b → f (K → D) constraints into this design scaffold. Interfacial " a" hydrophobic (L/I/V/N) and " e/g" electrostatic (E/K) options (4 × 2 × 2 = 16 cassettes) were introduced as core drivers of coiled-coil stability and specificity. All present as random coils when linear but adopt a helical conformation upon lactamization. Helicity varied in magnitude from 34 to 68%, indicating different levels of constraint tolerance within the context of a sequence required to be helical for function. Using the oncogenic transcription factor cJun as an exemplar, we next utilized our bCIPA coiled-coil screening engine to select four cassettes of highest predicted affinity when paired with four gabcdef cassettes within the full-length cJun target counterpart (164 = 65 536 combinations). This information was coupled with observed helicity for each constrained cassette to select for the best balance of predicted affinity when linear and experimentally validated helicity when constrained. As a control, the same approach was taken using cassettes of high predicted target affinity but with lower experimentally validated helicity. The approach provides a novel platform of modular heptapeptide cassettes experimentally validated and separated by helical content. Appropriate cassettes can be selected and conjugated to produce longer peptides, in which constraints impart appropriate helicity such that a wide range of targets can be engaged with high affinity and selectivity.
Collapse
|
7
|
Lathbridge A, Mason JM. Computational Competitive and Negative Design To Derive a Specific cJun Antagonist. Biochemistry 2018; 57:6108-6118. [PMID: 30256622 DOI: 10.1021/acs.biochem.8b00782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Basic leucine zipper (bZIP) proteins reside at the end of cell-signaling cascades and function to modulate transcription of specific gene targets. bZIPs are recognized as important regulators of cellular processes such as cell growth, apoptosis, and cell differentiation. One such validated transcriptional regulator, activator protein-1, is typically comprised of heterodimers of Jun and Fos family members and is key in the progression and development of a number of different diseases. The best described component, cJun, is upregulated in a variety of diseases such as cancer, osteoporosis, and psoriasis. Toward our goal of inhibiting bZIP proteins implicated in disease pathways, we here describe the first use of a novel in silico peptide library screening platform that facilitates the derivation of sequences exhibiting a high affinity for cJun while disfavoring homodimer formation or formation of heterodimers with other closely related Fos sequences. In particular, using Fos as a template, we have computationally screened a peptide library of more than 60 million members and ranked hypothetical on/off target complexes according to predicted stability. This resulted in the identification of a sequence that bound cJun but displayed little homomeric stability or preference for cFos. The computationally selected sequence maintains an interaction stability similar to that of a previous experimentally derived cJun antagonist while providing much improved specificity. Our study provides new insight into the use of tandem in silico screening/ in vitro validation and the ability to create a peptide that is capable of satisfying conflicting design requirements.
Collapse
Affiliation(s)
- Alexander Lathbridge
- Department of Biology & Biochemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Jody M Mason
- Department of Biology & Biochemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
8
|
Zhao Q, Zuo W, Zhang S, Zhang Y, Li C, Li SJ. Proton pump inhibitors have pH-dependent effects on the thermostability of the carboxyl-terminal domain of voltage-gated proton channel Hv1. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:237-247. [PMID: 28889176 DOI: 10.1007/s00249-017-1253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The voltage-gated proton channel Hv1 is highly selective for H+ and is activated by membrane depolarization and pH gradient. An increased external and decreased internal pH opens the Hv1 channel. The intracellular C-terminal domain of Hv1 is responsible for channel dimerization, cooperative, and thermosensitive gating. Here, we found that proton pump inhibitors (PPIs) interact with the C-terminal domain of human Hv1. The interaction between PPIs and the C-terminal domain, which is pH-dependent, lowered the thermal and structural stability of the protein at pH 4, but enhanced the thermal and structural stability at pH 8. Furthermore, we investigated in vitro the interaction of PPIs with the C-terminal domain of Hv1 by fluorescence and micro-Raman spectra. Fluorescence quenching measurements revealed that the interaction between the C-terminal domain and PPIs is a mainly hydrophobic interaction. The micro-Raman spectra showed that PPIs did not form stable disulfide bonds with the unique thiol group within this domain (Cys249 residue). The preferential interaction of PPIs with the inactive form of Hv1 stabilizes the high pH inactive state of the C-terminal domain, indicating a mechanism by which PPIs might act explicitly on the stabilization of a closed state of the proton channel.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Weiyan Zuo
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shangrong Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Yongqiang Zhang
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Chuanyong Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shu Jie Li
- Department of Biophysics, The Key Laboratory of Bioactive Materials, Ministry of Education, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
9
|
Boonamnaj P, Sompornpisut P. Insight into the Role of the Hv1 C-Terminal Domain in Dimer Stabilization. J Phys Chem B 2018; 122:1037-1048. [PMID: 29290112 DOI: 10.1021/acs.jpcb.7b08669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The voltage-gated proton-selective channel (Hv1) conducts protons in response to changes in membrane potential. The Hv1 protein forms dimers in the membrane. Crystal structures of Hv1 channels have revealed that the primary contacts between the two monomers are in the C-terminal domain (CTD), which forms a coiled-coil structure. The role of Hv1-CTD in channel assembly and activity is not fully understood. Here, molecular dynamics (MD) simulations of full-length and truncated CTD models of human and mouse Hv1 channels reveal a strong contribution of the CTD to the packing of the transmembrane domains. Simulations of the CTD models highlight four fundamental interactions of the key residues contributing to dimer stability. These include salt bridges, hydrophobic interactions, hydrogen bonds, and a disulfide bond across the dimer interface. At neutral pH, salt-bridge interactions increase dimer stability and the dimer becomes less stable at acidic pH. Hydrophobic core packing of the heptad pattern is important for stability, as shown by favorable nonpolar binding free energies rather than by electrostatic components. Moreover, free-energy calculations indicate that a more uniform hydrophobic core in the coiled-coil structure of the Hv1-NIN, a channel carrying the triple mutation M234N-N235I-V236N, leads to an increase in dimer stability with respect to the wild-type. A Cys disulfide bond has a strong impact on dimer stability by holding the dimer together and facilitating the interactions described above. These results are consistent with dissociative temperatures and energy barriers of dimer dissociation obtained from the temperature-accelerated MD.
Collapse
Affiliation(s)
- Panisak Boonamnaj
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department of Chemistry, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
| |
Collapse
|
10
|
Baxter D, Ullman CG, Frigotto L, Mason JM. Exploiting Overlapping Advantages of In Vitro and In Cellulo Selection Systems to Isolate a Novel High-Affinity cJun Antagonist. ACS Chem Biol 2017; 12:2579-2588. [PMID: 28880076 DOI: 10.1021/acschembio.7b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have combined two peptide library-screening systems, exploiting the benefits offered by both to select novel antagonistic agents of cJun. CIS display is an in vitro cell-free system that allows very large libraries (≤1014) to be interrogated. However, affinity-based screening conditions can poorly reflect those relevant to therapeutic application, particularly for difficult intracellular targets, and can lead to false positives. In contrast, an in cellulo screening system such as the Protein-fragment Complementation Assay (PCA) selects peptides with high target affinity while additionally profiling for target specificity, protease resistance, solubility, and lack of toxicity in a more relevant context. A disadvantage is the necessity to transform cells, limiting library sizes that can be screened to ≤106. However, by combining both cell-free and cell-based systems, we isolated a peptide (CPW) from a ∼1010 member library, which forms a highly stable interaction with cJun (Tm = 63 °C, Kd = 750 nM, ΔG = -8.2 kcal/mol) using the oncogenic transcriptional regulator Activator Protein-1 (AP-1) as our exemplar target. In contrast, CIS display alone selected a peptide with low affinity for cJun (Tm = 34 °C, Kd = 25 μM, ΔG = -6.2 kcal/mol), highlighting the benefit of CIS → PCA. Furthermore, increased library size with CIS → PCA vs PCA alone allows the freedom to introduce noncanonical options, such as interfacial aromatics, and solvent exposed options that may allow the molecule to explore alternative structures and interact with greater affinity and efficacy with the target. CIS → PCA therefore offers significant potential as a peptide-library screening platform by synergistically combining the relative attributes of both assays to generate therapeutically interesting compounds that may otherwise not be identified.
Collapse
Affiliation(s)
- Daniel Baxter
- Dept
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Christopher G. Ullman
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Laura Frigotto
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Jody M. Mason
- Dept
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
11
|
Baxter D, Perry SR, Hill TA, Kok WM, Zaccai NR, Brady RL, Fairlie DP, Mason JM. Downsizing Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind Jun. ACS Chem Biol 2017. [PMID: 28636317 DOI: 10.1021/acschembio.7b00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oncogenic transcription factor activator protein-1 (AP-1) is a DNA-binding protein that assembles through dimerization of Fos and Jun protein subunits, their leucine-rich helical sequences entwining into a coiled-coil structure. This study reports on downsizing the proto-oncogene cFos protein (380 residues) to shorter peptides (37-25 residues) modified with helix-inducing constraints to enhance binding to Jun. A crystal structure is reported for a 37-residue Fos-derived peptide (FosW) bound to Jun. This guided iterative downsizing of FosW to shorter peptide sequences that were constrained into stable water-soluble α-helices by connecting amino acid side chains to form cyclic pentapeptide components. Structural integrity in the presence and absence of Jun was assessed by circular dichroism spectroscopy, while the thermodynamics of binding to cFos was measured by isothermal titration calorimetry. A 25-residue constrained peptide, one-third shorter yet 25% more helical than the structurally characterized 37-residue Fos-derived peptide, retained 80% of the binding free energy as a result of preorganization in a Jun-binding helix conformation, with the entropy gain (TΔS = +3.2 kcal/mol) compensating for the enthalpy loss. Attaching a cell-penetrating peptide (TAT48-57) and a nuclear localization signal (SV40) promoted cell uptake, localization to the nucleus, and inhibition of the proliferation of two breast cancer cell lines.
Collapse
Affiliation(s)
- Daniel Baxter
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Samuel R. Perry
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - W. Mei Kok
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nathan R. Zaccai
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - R. Leo Brady
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - David P. Fairlie
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jody M. Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
12
|
Crooks RO, Lathbridge A, Panek AS, Mason JM. Computational Prediction and Design for Creating Iteratively Larger Heterospecific Coiled Coil Sets. Biochemistry 2017; 56:1573-1584. [PMID: 28267310 DOI: 10.1021/acs.biochem.7b00047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major biochemical goal is the ability to mimic nature in engineering highly specific protein-protein interactions (PPIs). We previously devised a computational interactome screen to identify eight peptides that form four heterospecific dimers despite 32 potential off-targets. To expand the speed and utility of our approach and the PPI toolkit, we have developed new software to derive much larger heterospecific sets (≥24 peptides) while directing against antiparallel off-targets. It works by predicting Tm values for every dimer on the basis of core, electrostatic, and helical propensity components. These guide interaction specificity, allowing heterospecific coiled coil (CC) sets to be incrementally assembled. Prediction accuracy is experimentally validated using circular dichroism and size exclusion chromatography. Thermal denaturation data from a 22-CC training set were used to improve software prediction accuracy and verified using a 136-CC test set consisting of eight predicted heterospecific dimers and 128 off-targets. The resulting software, qCIPA, individually now weighs core a-a' (II/NN/NI) and electrostatic g-e'+1 (EE/EK/KK) components. The expanded data set has resulted in emerging sequence context rules for otherwise energetically equivalent CCs; for example, introducing intrahelical electrostatic charge blocks generated increased stability for designed CCs while concomitantly decreasing the stability of off-target CCs. Coupled with increased prediction accuracy and speed, the approach can be applied to a wide range of downstream chemical and synthetic biology applications, in addition more generally to impose specificity on structurally unrelated PPIs.
Collapse
Affiliation(s)
- Richard O Crooks
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - Alexander Lathbridge
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - Anna S Panek
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
13
|
Abstract
Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca(2+)sensor, while Orai forms a highly Ca(2+)-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca(2+)permeation into the cell.
Collapse
Affiliation(s)
- Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| | - Isaac Jardin
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria; and
| |
Collapse
|
14
|
Deriving Heterospecific Self-Assembling Protein-Protein Interactions Using a Computational Interactome Screen. J Mol Biol 2015; 428:385-398. [PMID: 26655848 PMCID: PMC4751974 DOI: 10.1016/j.jmb.2015.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 11/21/2022]
Abstract
Interactions between naturally occurring proteins are highly specific, with protein-network imbalances associated with numerous diseases. For designed protein–protein interactions (PPIs), required specificity can be notoriously difficult to engineer. To accelerate this process, we have derived peptides that form heterospecific PPIs when combined. This is achieved using software that generates large virtual libraries of peptide sequences and searches within the resulting interactome for preferentially interacting peptides. To demonstrate feasibility, we have (i) generated 1536 peptide sequences based on the parallel dimeric coiled-coil motif and varied residues known to be important for stability and specificity, (ii) screened the 1,180,416 member interactome for predicted Tm values and (iii) used predicted Tm cutoff points to isolate eight peptides that form four heterospecific PPIs when combined. This required that all 32 hypothetical off-target interactions within the eight-peptide interactome be disfavoured and that the four desired interactions pair correctly. Lastly, we have verified the approach by characterising all 36 pairs within the interactome. In analysing the output, we hypothesised that several sequences are capable of adopting antiparallel orientations. We subsequently improved the software by removing sequences where doing so led to fully complementary electrostatic pairings. Our approach can be used to derive increasingly large and therefore complex sets of heterospecific PPIs with a wide range of potential downstream applications from disease modulation to the design of biomaterials and peptides in synthetic biology. Naturally occurring protein–protein interactions (PPIs) are highly specific. For designed PPIs, however, specificity can be notoriously difficult to engineer. We have computationally screened a vast interactome to derive four heterospecific PPIs. Eight peptides form four heterospecific coiled coils; all 32 off targets are disfavoured. The method can derive larger and increasingly complex sets of heterospecific PPIs
Collapse
|
15
|
Zheng X, Bi C, Li Z, Podariu M, Hage DS. Analytical methods for kinetic studies of biological interactions: A review. J Pharm Biomed Anal 2015; 113:163-80. [PMID: 25700721 PMCID: PMC4516701 DOI: 10.1016/j.jpba.2015.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The rates at which biological interactions occur can provide important information concerning the mechanism and behavior of these processes in living systems. This review discusses several analytical methods that can be used to examine the kinetics of biological interactions. These techniques include common or traditional methods such as stopped-flow analysis and surface plasmon resonance spectroscopy, as well as alternative methods based on affinity chromatography and capillary electrophoresis. The general principles and theory behind these approaches are examined, and it is shown how each technique can be utilized to provide information on the kinetics of biological interactions. Examples of applications are also given for each method. In addition, a discussion is provided on the relative advantages or potential limitations of each technique regarding its use in kinetic studies.
Collapse
Affiliation(s)
- Xiwei Zheng
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Maria Podariu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
16
|
Zhao Q, Li C, Li SJ. The pH-sensitive structure of the C-terminal domain of voltage-gated proton channel and the thermodynamic characteristics of Zn2+ binding to this domain. Biochem Biophys Res Commun 2015; 456:207-12. [DOI: 10.1016/j.bbrc.2014.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
|
17
|
Sui D, Xu X, Ye X, Liu M, Mianecki M, Rattanasinchai C, Buehl C, Deng X, Kuo MH. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex. Mol Cell Proteomics 2014; 14:251-62. [PMID: 25385071 DOI: 10.1074/mcp.o114.044412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research.
Collapse
Affiliation(s)
- Dexin Sui
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinjing Xu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xuemei Ye
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Mengyu Liu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Maxwell Mianecki
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chotirat Rattanasinchai
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Christopher Buehl
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Xiexiong Deng
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Min-Hao Kuo
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
18
|
Zhao Q, Zhang Y, Li SJ. Interaction of divalent metal ions with the carboxyl-terminal domain of human voltage-gated proton channel Hv1. Biometals 2014; 27:793-802. [PMID: 24867409 DOI: 10.1007/s10534-014-9751-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
The voltage-gated proton channel Hv1 functions as a dimer, in which the intracellular C-terminal domain of the protein is responsible for the dimeric architecture and regulates proton permeability. Although it is well known that divalent metal ions have effect on the proton channel activity, the interaction of divalent metal ions with the channel in detail is not well elucidated. Herein, we investigated the interaction of divalent metal ions with the C-terminal domain of human Hv1 by CD spectra and fluorescence spectroscopy. The divalent metal ions binding induced an obvious conformational change at pH 7 and a pH-sensitive reduction of thermostability in the C-terminal domain. The interactions were further estimated by fluorescence spectroscopy experiments. There are at least two binding sites for divalent metal ions binding to the C-terminal domain of Hv1, either of which is close to His(244) or His(266) residue. The binding of Zn(2+) to the two sites both enhanced the fluorescence of the protein at pH 7, whereas the binding of other divalent metal ions to the two sites all resulted fluorescence quenching. The orders of the strength of divalent metal ions binding to the two sites from strong to weak are both Co(2+), Ca(2+), Ni(2+), Mg(2+), and Mn(2+). The strength of Ca(2+), Co(2+), Mg(2+), Mn(2+) and Ni(2+) binding to the site close to His(244) is stronger than that of these divalent metal ions binding to the site close to His(266).
Collapse
Affiliation(s)
- Qing Zhao
- Department of Biophysics, School of Physics Science, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | | | | |
Collapse
|
19
|
Hagen S, Mattay D, Räuber C, Müller KM, Arndt KM. Characterization and inhibition of AF10-mediated interaction. J Pept Sci 2014; 20:385-97. [PMID: 24692230 DOI: 10.1002/psc.2626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/24/2022]
Abstract
The non-random chromosomal translocations t(10;11)(p13;q23) and t(10;11)(p13;q14-21) result in leukemogenic fusion proteins comprising the coiled coil domain of the transcription factor AF10 and the proteins MLL or CALM, respectively, and subsequently cause certain types of acute leukemia. The AF10 coiled-coil domain, which is crucial for the leukemogenic effect, has been shown to interact with GAS41, a protein previously identified as the product of an amplified gene in glioblastoma. Using sequential synthetic peptides, we mapped the potential AF10/GAS41 interaction site, which was subsequently be used as scaffold for a library targeting the AF10 coiled-coil domain. Using phage display, we selected a peptide that binds the AF10 coiled-coil domain with higher affinity than the respective coiled-coil region of wild-type GAS41, as demonstrated by phage ELISA, CD, and PCAs. Furthermore, we were able to successfully deploy the inhibitory peptide in a mammalian cell line to lower the expression of Hoxa genes that have been described to be overexpressed in these leukemias. This work dissects molecular determinants mediating AF10-directed interactions in leukemic fusions comprising the N-terminal parts of the proteins MLL or CALM and the C-terminal coiled-coil domain of AF10. Furthermore, it outlines the first steps in recognizing and blocking the leukemia-associated AF10 interaction in histiocytic lymphoma cells and therefore, may have significant implications in future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sven Hagen
- Molecular Biotechnology, University of Potsdam, Potsdam/Golm, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; Institute for Biology III, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Kükenshöner T, Wohlwend D, Niemöller C, Dondapati P, Speck J, Adeniran AV, Nieth A, Gerhardt S, Einsle O, Müller KM, Arndt KM. Improving coiled coil stability while maintaining specificity by a bacterial hitchhiker selection system. J Struct Biol 2014; 186:335-48. [PMID: 24631970 DOI: 10.1016/j.jsb.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 12/12/2022]
Abstract
The design and selection of peptides targeting cellular proteins is challenging and often yields candidates with undesired properties. Therefore we deployed a new selection system based on the twin-arginine translocase (TAT) pathway of Escherichia coli, named hitchhiker translocation (HiT) selection. A pool of α-helix encoding sequences was designed and selected for interference with the coiled coil domain (CC) of a melanoma-associated basic-helix-loop-helix-leucine-zipper (bHLHLZ) protein, the microphthalmia associated transcription factor (MITF). One predominant sequence (iM10) was enriched during selection and showed remarkable protease resistance, high solubility and thermal stability while maintaining its specificity. Furthermore, it exhibited nanomolar range affinity towards the target peptide. A mutation screen indicated that target-binding helices of increased homodimer stability and improved expression rates were preferred in the selection process. The crystal structure of the iM10/MITF-CC heterodimer (2.1Å) provided important structural insights and validated our design predictions. Importantly, iM10 did not only bind to the MITF coiled coil, but also to the markedly more stable HLHLZ domain of MITF. Characterizing the selected variants of the semi-rational library demonstrated the potential of the innovative bacterial selection approach.
Collapse
Affiliation(s)
- Tim Kükenshöner
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Wohlwend
- Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Niemöller
- Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany
| | - Padmarupa Dondapati
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany
| | - Janina Speck
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany
| | - Adebola V Adeniran
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anita Nieth
- Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg im Breisgau, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stefan Gerhardt
- Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Einsle
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg im Breisgau, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany; Institute for Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Kristian M Müller
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany; Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Germany
| | - Katja M Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Institute for Biology III, University of Freiburg, Freiburg im Breisgau, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg im Breisgau, Germany; Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
21
|
Kiefhaber T, Bachmann A, Jensen KS. Dynamics and mechanisms of coupled protein folding and binding reactions. Curr Opin Struct Biol 2011; 22:21-9. [PMID: 22129832 DOI: 10.1016/j.sbi.2011.09.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/27/2011] [Indexed: 11/28/2022]
Abstract
Protein folding coupled to binding of a specific ligand is frequently observed in biological processes. In recent years numerous studies have addressed the structural properties of the unfolded proteins in the absence of their ligands. Surprisingly few time-resolved investigations on coupled folding and binding reactions have been published up to date and the dynamics and kinetic mechanisms of these processes are still only poorly understood. Especially, it is still unsolved for most systems which conformation of the protein is recognized by the ligand (conformational selection vs. folding-after-binding) and whether the ligand influences the folding kinetics. Here we review experimental methods, kinetic models and time-resolved experimental studies of coupled folding and binding reactions.
Collapse
Affiliation(s)
- Thomas Kiefhaber
- Munich Center for Integrated Protein Science at the Chemistry Department, TU München, Lichtenbergstrasse 4, D-85747 Garching, Germany.
| | | | | |
Collapse
|
22
|
|
23
|
Crooks RO, Rao T, Mason JM. Truncation, randomization, and selection: generation of a reduced length c-Jun antagonist that retains high interaction stability. J Biol Chem 2011; 286:29470-9. [PMID: 21697091 PMCID: PMC3190987 DOI: 10.1074/jbc.m111.221267] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/17/2011] [Indexed: 12/22/2022] Open
Abstract
The DNA binding activity of the transcriptional regulator activator protein-1 shows considerable promise as a target in cancer therapy. A number of different strategies have been employed to inhibit the function of this protein with promise having been demonstrated both in vitro and in vivo. Peptide-based therapeutics have received renewed interest in the last few years, and a number of 37-amino acid peptides capable of binding to the coiled coil dimerization domain of Jun and Fos have been derived. Here, we demonstrate how truncation and semi-rational library design, followed by protein-fragment complementation, can be used to produce a leucine zipper binding peptide by iterative means. To this end, we have implemented this strategy on the FosW peptide to produce 4hFosW. This peptide is truncated by four residues with comparably favorable binding properties and demonstrates the possibility to design progressively shorter peptides to serve as leucine zipper antagonists while retaining many of the key features of the parent peptide. Whether or not the necessity for low molecular weight antagonists is required from the perspective of druggability and efficacy is subject to debate. However, antagonists of reduced length are worthy of perusal from the point of view of synthetic cost as well as identifying the smallest functional unit that is required for binding.
Collapse
Affiliation(s)
- Richard O. Crooks
- From the Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Tara Rao
- From the Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Jody M. Mason
- From the Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
24
|
Abstract
Acid unfolding of non-inhibited papain at pH 2 was studied by means of spectroscopic and electrophoresis techniques as well as activity assays. We found a molten globule like species (A state) similar to that previously reported for bromelain and S-carboxy-methyl-papain. We demonstrated that this A state is not thermodynamically stable but a metastable conformer which decays into an unfolded conformation in a few hours. The mechanism of acid unfolding to the A state proved to be completely irreversible, with a biphasic time evolution of spectroscopic signals characteristic of the existence of a kinetic intermediate. This latter species showed properties in-between native and A state such as secondary structure, exposition of hydrophobic area and tryptophan environment, but a native like hydrodynamic radius. Native papain seems to unfold at acid pH through at least two kinetic barriers, being its pro-region mandatory to conduct and stabilize its active structure. Computer simulations of acid unfolding, followed by ANS docking, identified three regions of cavity formation induced by acid media which might be used as regions to be fortified by protein engineering in the quest for extreme-resistant proteases or as hot-spots for protease inactivation.
Collapse
|
25
|
Abstract
Dimerization of the Jun-Fos activator protein-1 (AP-1) transcriptional regulator is mediated by coiled coil regions that facilitate binding of the basic regions to a specific promoter. AP-1 is responsible for the regulation of a number of genes involved in cell proliferation. We have previously derived peptide antagonists and demonstrated them to be capable of binding to the Jun or Fos coiled coil region with high affinity (K(D) values in the low nM range relative to μM for the wild-type interaction). Use of isothermal titration calorimetry combined with CD spectroscopy is reported to elucidate the thermodynamic parameters that drive the interaction stability of peptide antagonists with their cJun and cFos targets. We observe that the free energy of binding for antagonist-target complexes is dominated by the enthalpic term, is opposed by unfavourable entropic contributions consistent with reduced conformational freedom and that these values in turn correlate well (r = -0.97) with the measured helicity of each dimeric pair. The more helical the antagonist-target complex, the more favourable the change in enthalpy, which is in turn opposed more strongly by entropy. Antagonistic peptides are predicted to represent excellent scaffolds for further refinement. By contrast, the wild-type cJun-cFos complex is dominated by a favourable entropic contribution, owing partially to a decrease in buried hydrophobic groups from cFos core residues and an increase in the conformational freedom.
Collapse
|
26
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
27
|
Abstract
Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain.
| | | |
Collapse
|
28
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Mason JM. Electrostatic contacts in the activator protein-1 coiled coil enhance stability predominantly by decreasing the unfolding rate. FEBS J 2010; 276:7305-18. [PMID: 20050182 DOI: 10.1111/j.1742-4658.2009.07440.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hypothesis is tested that Jun-Fos activator protein-1 coiled coil interactions are dominated during late folding events by the formation of intricate intermolecular electrostatic contacts. A previously derived cJun-FosW was used as a template as it is a highly stable relative of the wild-type cJun-cFos coiled coil protein (thermal melting temperature = 63 degrees C versus 16 degrees C), allowing kinetic folding data to be readily extracted. An electrostatic mutant, cJun(R)-FosW(E), was created to generate six Arg-Glu interactions at e-g'+1 positions between cJun(R) and FosW(E), and investigations into how their contribution to stability is manifested in the folding pathway were undertaken. The evidence now strongly indicates that the formation of interhelical electrostatic contacts exert their effect predominantly on the coiled coil unfolding/dissociation rate. This has major implications for future antagonist design whereby kinetic rules could be applied to increase the residency time of the antagonist-peptide complex, and therefore significantly increase the efficacy of the antagonist.
Collapse
Affiliation(s)
- Jody M Mason
- Department of Biological Sciences, University of Essex, Colchester, Essex, UK.
| |
Collapse
|
30
|
Mason JM, Hagemann UB, Arndt KM. Role of Hydrophobic and Electrostatic Interactions in Coiled Coil Stability and Specificity. Biochemistry 2009; 48:10380-8. [DOI: 10.1021/bi901401e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jody M. Mason
- Institute of Biology III, Albert-Ludwigs University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Urs B. Hagemann
- Institute of Biology III, Albert-Ludwigs University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Katja M. Arndt
- Institute of Biology III, Albert-Ludwigs University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
- Center for Biological Signaling Studies (bioss), Albert-Ludwigs University of Freiburg, D-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, School of Life Sciences (FRIAS-LIFENET), Albert-Ludwigs University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
31
|
Jouaux EM, Timm BB, Arndt KM, Exner TE. Improving the interaction of Myc-interfering peptides with Myc using molecular dynamics simulations. J Pept Sci 2009; 15:5-15. [PMID: 19035580 DOI: 10.1002/psc.1078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previously, a Myc-interfering peptide (Mip) was identified for the targeted inactivation of the Myc:Max complex by the combination of rational design and an in vivo protein-fragment complementation assay. In the subsequent work presented here, molecular dynamics simulations and free energy calculations based on the molecular mechanics GBSA method were performed to define the contribution of the different amino acids in the Myc:Mip coiled coil domain, and compared to wild-type Myc:Max. For further optimization of the Myc interference, point mutations were introduced into Mip and analyzed, from which two showed much higher binding affinities in the computational studies in good agreement with the experiment. These mutants with very high potential for inactivation of Myc can now be used as starting point for further optimizations based on the computational as well as experimental protocols presented here.
Collapse
Affiliation(s)
- Eva M Jouaux
- Department of Biology, Albert-Ludwigs University Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
32
|
Pendley SS, Yu YB, Cheatham TE. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 2009; 74:612-29. [PMID: 18704948 PMCID: PMC2692595 DOI: 10.1002/prot.22177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.
Collapse
Affiliation(s)
- Scott S. Pendley
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Yihua B. Yu
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Departments of Pharmaceutical Sciences and Bioengineering, University of Maryland, University of Maryland, 20 Penn Street, Rm. 635, Baltimore, MD 21201
| | - Thomas E. Cheatham
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Medicinal Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Bioengineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| |
Collapse
|
33
|
Jouaux EM, Schmidtkunz K, Müller KM, Arndt KM. Targeting the c-Myc coiled coil with interfering peptides. J Pept Sci 2008; 14:1022-31. [PMID: 18465834 DOI: 10.1002/psc.1038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
c-Myc is one of the most frequently deregulated oncogenes in human cancers, and recent studies showed that even brief inactivation of Myc can be sufficient to induce tumor regression or loss. Consequently, inactivation of Myc provides a novel therapeutic opportunity and challenge, as the dimerization of Myc with Max is crucial for its function. We applied two strategies to specifically target this coiled coil mediated interaction with interfering peptides: a dominant-negative human Max sequence (Max) and a peptide selected from a genetic library (Mip). Both peptides form coiled coils and were fused to an acidic extension interacting with the basic DNA-binding region of human Myc. The genetic library was obtained by semi-rational design randomizing residues important for interaction, and selection was carried out using a protein-fragment complementation assay. The peptides Max and Mip easily outcompeted the human Myc:Max interaction and successfully interfered with the DNA binding of the complex. Both interfering peptides exhibited higher T(m) (DeltaT(m) = 13 and 15 degrees C) upon interaction with Myc compared to wt Max. The inhibitory effect of the two interfering peptides on human Myc:Max activity makes them promising molecules for analytical and therapeutic Myc-directed research.
Collapse
Affiliation(s)
- Eva M Jouaux
- Institute for Biology III, Albert-Ludwigs University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | | | | | | |
Collapse
|
34
|
iPEP: peptides designed and selected for interfering with protein interaction and function. Biochem Soc Trans 2008; 36:1442-7. [DOI: 10.1042/bst0361442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Semi-rational design is combined with PCAs (protein-fragment complementation assays) and phage-display screening techniques to generate a range of iPEPs (interfering peptides) that target therapeutically relevant proteins with much higher interaction stability than their native complexes. PCA selection has been improved to impose a competitive and negative design initiative on the library screen, thus simultaneously improving the specificity of assay ‘winners’. The folding pathways of designed pairs imply that early events are dominated by hydrophobic collapse and helix formation, whereas later events account for the consolidation of more intricate intermolecular electrostatic interactions.
Collapse
|
35
|
Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM. Conformational stability and folding mechanisms of dimeric proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:61-84. [PMID: 18602415 DOI: 10.1016/j.pbiomolbio.2008.05.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.
Collapse
Affiliation(s)
- Jessica A O Rumfeldt
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
36
|
Selectional and mutational scope of peptides sequestering the Jun-Fos coiled-coil domain. J Mol Biol 2008; 381:73-88. [PMID: 18586270 DOI: 10.1016/j.jmb.2008.04.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 04/07/2008] [Accepted: 04/11/2008] [Indexed: 01/14/2023]
Abstract
The activator protein-1 (AP-1) complex plays a crucial role in numerous pathways, and its ability to induce tumorigenesis is well documented. Thus, AP-1 represents an interesting therapeutic target. We selected peptides from phage display and compared their ability to disrupt the cFos/cJun interaction to a previously described in vivo protein-fragment complementation assay (PCA). A cJun-based library was screened to enrich for peptides that disrupt the AP-1 complex by binding to the cFos coiled-coil domain. Interestingly, phage display identified one helix, JunW(Ph1) [phage-selected winning peptide (clone 1) targeting cFos], which differs in only 2 out of 10 randomized positions to JunW (PCA-selected winning peptide targeting cFos). Phage-selected peptides revealed higher affinity to cFos than wild-type cJun, harboring a T(m) of 53 degrees C compared to 16 degrees C for cFos/cJun or 44 degrees C for cFos/JunW. In PCA growth assays in the presence of cJun as competitor, phage-selected JunW(Ph1) conferred shorter generation times than JunW. Bacterial growth was barely detectable, using JunW(Ph1) as a competitor for the wild-type cJun/cFos interaction, indicating efficient cFos removal from the dimeric wild-type complex. Importantly, all inhibitory peptides were able to interfere with DNA binding as demonstrated in gel shift assays. The selected sequences have consequently improved our 'bZIP coiled-coil interaction prediction algorithm' in distinguishing interacting from noninteracting coiled-coil sequences. Predicting and manipulating protein interaction will accelerate the systems biology field, and generated peptides will be valuable tools for analytical and biomedical applications.
Collapse
|