1
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
2
|
The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 2015; 11:e1005178. [PMID: 25919710 PMCID: PMC4412499 DOI: 10.1371/journal.pgen.1005178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/26/2015] [Indexed: 01/22/2023] Open
Abstract
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments. The accumulation of misfolded proteins threatens cell fitness and viability and their aggregation is commonly associated with numerous neurodegenerative disorders. Cells therefore rely on a number of protein quality control (PQC) pathways to prevent protein aggregation. In eukaryotes, the ubiquitin proteasome system (UPS), a supramolecular machinery that mediates the proteolysis of damaged or misfolded proteins, plays a vital role in PQC by selectively targeting proteins for degradation. Although the critical role-played by the UPS in PQC, and the severe consequences of impairing this pathway are well established, little was known about the mechanisms that control dysfunctional proteasome subunits. Here, we reveal that the interplay between UPS mediated degradation of its own misassembled subunits, and sorting them into cytoprotective compartments, a process that is mediated by the Hsp42 chaperone, determines how proteasome homeostasis is controlled in yeast cells. We believe that the mechanism of proteasome regulation by the PCQ in yeast may serve as a paradigm for understanding how homeostasis of this essential complex is controlled in major chronic neurodegenerative disorders in higher eukaryotes.
Collapse
|
3
|
Suo J, Medina D, Herrera S, Zheng ZY, Jin L, Chamness GC, Contreras A, Gutierrez C, Hilsenbeck S, Umar A, Foekens JA, Hanash S, Schiff R, Zhang XHF, Chang EC. Int6 reduction activates stromal fibroblasts to enhance transforming activity in breast epithelial cells. Cell Biosci 2015; 5:10. [PMID: 25774287 PMCID: PMC4359526 DOI: 10.1186/s13578-015-0001-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background The INT6 gene was first discovered as a site of integration in mouse mammary tumors by the mouse mammary tumor virus; however, INT6’s role in the development of human breast cancer remains largely unknown. By gene silencing, we have previously shown that repressing INT6 promotes transforming activity in untransformed human mammary epithelial cells. In the present study, guided by microarray data of human tumors, we have discovered a role of Int6 in stromal fibroblasts. Results We searched microarray databases of human tumors to assess Int6’s role in breast cancer. While INT6 expression levels, as expected, were lower in breast tumors than in adjacent normal breast tissue samples, INT6 expression levels were also substantially lower in tumor stroma. By immunohistochemistry, we determined that the low levels of INT6 mRNA observed in the microarray databases most likely occurs in stromal fibroblasts, because far fewer fibroblasts in the tumor tissue showed detectable levels of the Int6 protein. To directly investigate the effects of Int6 repression on fibroblasts, we silenced INT6 expression in immortalized human mammary fibroblasts (HMFs). When these INT6-repressed HMFs were co-cultured with breast cancer cells, the abilities of the latter to form colonies in soft agar and to invade were enhanced. We analyzed INT6-repressed HMFs and found an increase in the levels of a key carcinoma-associated fibroblast (CAF) marker, smooth muscle actin. Furthermore, like CAFs, these INT6-repressed HMFs secreted more stromal cell–derived factor 1 (SDF-1), and the addition of an SDF-1 antagonist attenuated the INT6-repressed HMFs’ ability to enhance soft agar colony formation when co-cultured with cancer cells. These INT6-repressed HMFs also expressed high levels of mesenchymal markers such as vimentin and N-cadherin. Intriguingly, when mesenchymal stem cells (MSCs) were induced to form CAFs, Int6 levels were reduced. Conclusion These data suggest that besides enhancing transforming activity in epithelial cells, INT6 repression can also induce fibroblasts, and possibly MSCs as well, via mesenchymal-mesenchymal transitions to promote the formation of CAFs, leading to a proinvasive microenvironment for tumorigenesis.
Collapse
Affiliation(s)
- Jinfeng Suo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, 77030 TX USA ; Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Daniel Medina
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Sabrina Herrera
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Ze-Yi Zheng
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Lei Jin
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Gary C Chamness
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Alejandro Contreras
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Carolina Gutierrez
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Susan Hilsenbeck
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, 77030 TX USA
| | - Rachel Schiff
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| | - Eric C Chang
- Department of Molecular and Cellular Biology and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, 77030 TX USA
| |
Collapse
|
4
|
The ubiquitin proteasome system in Caenorhabditis elegans and its regulation. Redox Biol 2014; 2:333-47. [PMID: 24563851 PMCID: PMC3926112 DOI: 10.1016/j.redox.2014.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/20/2022] Open
Abstract
Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. UPS is one of the main proteolytic systems that orchestrate protein degradation. Proteasome function can be dissected in Caenorhabditis elegans. Nematodes can be used in the identification of major players in the UPS pathway.
Collapse
|
5
|
Serino G, Pick E. Duplication and familial promiscuity within the proteasome lid and COP9 signalosome kin complexes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:89-97. [PMID: 23415332 DOI: 10.1016/j.plantsci.2012.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 05/13/2023]
Abstract
Two paralogous complexes, the proteasome lid and the COP9 signalosome (CSN), have diverged from a common ancestor; yet fulfill distinctive roles within the ubiquitin-proteasome sphere. The CSN regulates the largest family of E3 ubiquitin ligases, called CRLs (Cullin-RING ubiquitin Ligases), while the lid is a subcomplex of the 26S proteasome, a proteolytic machinery responsible for the degradation of ubiquitinated proteins. Remarkably, in many organisms, several subunits of both complexes are duplicated, a circumstance that can hypothetically increase the number of different complexes that can be formed. Duplication, however, is not the only complexity trait within the lid and the CSN, because many of their subunits are not fully committed only to one of the two complexes, but they are able to associate with both. Indeed, their corresponding mutants have features that can be due to the absence of more than one complex. This could be simply explained by the subunits being able to carry an identical function within more than one paralogous complex or by the subunits having a certain level of promiscuity, i.e. being able to carry more than one function, depending on the complex they are associating with. Recent data show that both options are possible and, although their functional relevance still needs to be fully uncovered, evidence is accumulating, which indicates a promiscuous trading of paralogous subunits, and suggests that this may occur transiently, and/or in response to particular environmental conditions.
Collapse
Affiliation(s)
- Giovanna Serino
- Istituto Pasteur- Fondazione Cenci-Bolognetti, Department of Biology and Biotechnology, Sapienza Università di Roma, piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | |
Collapse
|
6
|
Abstract
The ubiquitin-proteasomal system is an essential element of the protein quality control machinery in cells. The central part of this system is the 20S proteasome. The proteasome is a barrel-shaped multienzyme complex, containing several active centers hidden at the inner surface of the hollow cylinder. So, the regulation of the substrate entry toward the inner proteasomal surface is a key control mechanism of the activity of this protease. This chapter outlines the knowledge on the structure of the subunits of the 20S proteasome, the binding and structure of some proteasomal regulators and inducible proteasomal subunits. Therefore, this chapter imparts the knowledge on proteasomal structure which is required for the understanding of the following chapters.
Collapse
|
7
|
Zhu B, Bailey SR, Agrawal CM. Calcification of primary human osteoblast cultures under flow conditions using polycaprolactone scaffolds for intravascular applications. J Tissue Eng Regen Med 2011; 6:687-95. [PMID: 21932279 DOI: 10.1002/term.472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 05/30/2011] [Accepted: 07/05/2011] [Indexed: 11/10/2022]
Abstract
Total atherosclerotic occlusion is a leading cause of death. Recent animal models of this disease are devoid of cell-mediated calcification and arteries are often not occluded gradually. This study is part of a project with the objective of developing a new model featuring the above two characteristics, using a tissue-engineering scaffold. The amount and distribution of calcium deposits in primary human osteoblast (HOB) cultures on polycaprolactone (PCL) scaffolds under flow conditions were investigated. HOBs were cultured on PCL scaffolds with TGF-β1 loadings of 0 (control), 5 and 50 ng. HOB-PCL constructs were cultured in spinner flasks. Under flow conditions, cell numbers present in HOB cultures on PCL scaffolds increased from day 7 to day 14, and most calcification was induced at day 21. TGF-β1 loadings of 5 and 50 ng did not show a significant difference in ALP activity, cell numbers and amount of calcium deposited in HOB cultures, but calcium staining showed that 50 ng TGF-β1 had higher calcium deposited on both days 21 and 28 under flow conditions compared with 5 ng of loading. Amount of calcium deposited by HOBs on day 28 showed a decrease from their levels on day 21. PCL degradation may be a factor contributing to this loss. The results indicate that cell-induced calcification can be achieved on PCL scaffolds under flow conditions. In conclusion, TGFβ1-HOB loaded PCL can be applied to create a model for total atherosclerotic occlusion with cell-deposited calcium in animal arteries.
Collapse
Affiliation(s)
- Beili Zhu
- Department of Biomedical Engineering, College of Engineering, University of Texas at San Antonio, TX, USA
| | - Steven R Bailey
- Department of Biomedical Engineering, College of Engineering, University of Texas at San Antonio, TX, USA.,Janey Briscoe Center for Cardiovascular Research, Janey and Dolph Briscoe Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | - C Mauli Agrawal
- Department of Biomedical Engineering, College of Engineering, University of Texas at San Antonio, TX, USA
| |
Collapse
|
8
|
Yu Z, Kleifeld O, Lande-Atir A, Bsoul M, Kleiman M, Krutauz D, Book A, Vierstra RD, Hofmann K, Reis N, Glickman MH, Pick E. Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Mol Biol Cell 2011; 22:911-20. [PMID: 21289098 PMCID: PMC3069016 DOI: 10.1091/mbc.e10-08-0655] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/08/2023] Open
Abstract
Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.
Collapse
Affiliation(s)
- Zanlin Yu
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Oded Kleifeld
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Avigail Lande-Atir
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Maisa Bsoul
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Maya Kleiman
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Daria Krutauz
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Adam Book
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | | | - Kay Hofmann
- Miltenyi Biotec, 51429 Bergisch-Gladbach, Germany
| | - Noa Reis
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Michael H. Glickman
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
- Department of Biology, University of Haifa at Oranim, Tivon 36006, Israel
| |
Collapse
|
9
|
Imai F, Yoshizawa A, Fujimori-Tonou N, Kawakami K, Masai I. The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish. Development 2010; 137:3257-68. [PMID: 20724448 DOI: 10.1242/dev.053124] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing vertebrate lens, epithelial cells differentiate into fiber cells, which are elongated and flat in shape and form a multilayered lens fiber core. In this study, we identified the zebrafish volvox (vov) mutant, which shows defects in lens fiber differentiation. In the vov mutant, lens epithelial cells fail to proliferate properly. Furthermore, differentiating lens fiber cells do not fully elongate, and the shape and position of lens fiber nuclei are affected. We found that the vov mutant gene encodes Psmd6, the subunit of the 26S proteasome. The proteasome regulates diverse cellular functions by degrading polyubiquitylated proteins. Polyubiquitylated proteins accumulate in the vov mutant. Furthermore, polyubiquitylation is active in nuclei of differentiating lens fiber cells, suggesting roles of the proteasome in lens fiber differentiation. We found that an E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is involved in lens defects in the vov mutant. These data suggest that the ubiquitin proteasome system is required for cell proliferation of lens epithelium and for the differentiation of lens fiber cells in zebrafish.
Collapse
Affiliation(s)
- Fumiyasu Imai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology (OIST), Onna, Okinawa, Japan
| | | | | | | | | |
Collapse
|
10
|
Cabrera R, Sha Z, Vadakkan TJ, Otero J, Kriegenburg F, Hartmann-Petersen R, Dickinson ME, Chang EC. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe. Mol Biol Cell 2010; 21:3125-36. [PMID: 20668161 PMCID: PMC2938379 DOI: 10.1091/mbc.e10-06-0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteasomes must efficiently remove their substrates throughout the cells in a timely manner as many of these proteins can be toxic. This study shows that proteasomes can do so efficiently because they are highly mobile. Furthermore this study uncovers that proteasome mobility requires functional Arc3, a subunit of the Arp2/3 complex. Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasome deficiencies; when its expression is repressed, proteasome deficiencies intensify. Arp2/3 is best known for regulating membrane dynamics and vesicular transport; thus, we performed photobleaching experiments and showed that proteasomes are readily imported into the nucleus but exit the nucleus slowly. Proteasome nuclear import is reduced when Arc3 is inactivated, leading to hypersensitivity to DNA damage and inefficient cyclin-B degradation, two events occurring in the nucleus. These data suggest that proteasomes display Arc3-dependent mobility in the cell, and mobile proteasomes can efficiently access substrates throughout the cell, allowing them to effectively regulate cell-compartment–specific activities.
Collapse
Affiliation(s)
- Rodrigo Cabrera
- Department of Molecular and Cellular Biology, Interdepartmental Program of Cell and Molecular Biology, and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Otero JH, Suo J, Gordon C, Chang EC. Int6 and Moe1 interact with Cdc48 to regulate ERAD and proper chromosome segregation. Cell Cycle 2010; 9:147-61. [PMID: 20016281 DOI: 10.4161/cc.9.1.10312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Int6/eIF3e is implicated in tumorigenesis, but its molecular functions remain unclear. We have studied its fission yeast homolog Yin6, reporting that it regulates proteolysis by controlling the assembly/localization of proteasomes, and binds directly to another conserved protein, Moe1. In the present study, we isolated Cdc48 as a Moe1-binding protein from a yeast two-hybrid screen, and confirmed biochemically that they form a stable complex in fission yeast. Overexpressing Moe1 or Yin6 partially rescued phenotypes of cdc48 mutants; conversely, overexpressing Cdc48 partially rescued phenotypes of moe1 or yin6 mutants. Mutants defective in both Cdc48 and the Yin6-Moe1 complex showed growth defects that were far more severe than either alone. These double mutants were severely deficient in endoplasmic reticulum associated degradation (ERAD), as they were hypersensitive to accumulation of misfolded proteins. In addition, their chromosomes showed frequent defects in spindle attachment and segregation--these mitotic defects correlated with Ase1 and Bir1/survivin mislocalization. These results suggest that Cdc48, Yin6 and Moe1 act in the same protein complex to concertedly control ERAD and chromosome segregation. Many of these properties are evolutionarily conserved in humans, since human Cdc48 rescued the lethality of the yeast cdc48Delta mutant, and Int6 and Moe1/eIF3d bind Cdc48 in human cells.
Collapse
Affiliation(s)
- Joel H Otero
- Interdepartmental Program in Cell and Molecular Biology, and Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
12
|
Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, Glickman MH, Chang EC, Wolf DA. The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 2009; 36:141-52. [PMID: 19818717 PMCID: PMC2789680 DOI: 10.1016/j.molcel.2009.09.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/23/2009] [Accepted: 09/11/2009] [Indexed: 01/18/2023]
Abstract
eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 60S ribosomal proteins, chaperones, and the proteasome. eIF3 also associates with ribosome biogenesis factors and the importins-beta Kap123p and Sal3p. Our genetic data indicated that the binding to both importins-beta is essential for cell growth, and photobleaching experiments revealed a critical role for Sal3p in the nuclear import of one of the translasome constituents, the proteasome. Our data reveal the breadth of the eIF3 interactome and suggest that factors involved in translation initiation, ribosome biogenesis, translation elongation, quality control, and transport are physically linked to facilitate efficient protein synthesis.
Collapse
Affiliation(s)
- Zhe Sha
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Laurence M. Brill
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Rodrigo Cabrera
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Oded Kleifeld
- Department of Biology, Technion - Israel Institute of Technology, 32000 Haifa Israel
| | - Judith S. Scheliga
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Michael H. Glickman
- Department of Biology, Technion - Israel Institute of Technology, 32000 Haifa Israel
| | - Eric C. Chang
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Dieter A. Wolf
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
13
|
Hendil KB, Kriegenburg F, Tanaka K, Murata S, Lauridsen AMB, Johnsen AH, Hartmann-Petersen R. The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 2009; 394:320-8. [PMID: 19781552 DOI: 10.1016/j.jmb.2009.09.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.
Collapse
Affiliation(s)
- Klavs B Hendil
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Murata S, Yashiroda H, Tanaka K. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 2009; 10:104-15. [DOI: 10.1038/nrm2630] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|