1
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Felcher CM, Bogni ES, Kordon EC. IL-6 Cytokine Family: A Putative Target for Breast Cancer Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23031809. [PMID: 35163731 PMCID: PMC8836921 DOI: 10.3390/ijms23031809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-6 cytokine family is a group of signaling molecules with wide expression and function across vertebrates. Each member of the family signals by binding to its specific receptor and at least one molecule of gp130, which is the common transmembrane receptor subunit for the whole group. Signal transduction upon stimulation of the receptor complex results in the activation of multiple downstream cascades, among which, in mammary cells, the JAK-STAT3 pathway plays a central role. In this review, we summarize the role of the IL-6 cytokine family—specifically IL-6 itself, LIF, OSM, and IL-11—as relevant players during breast cancer progression. We have compiled evidence indicating that this group of soluble factors may be used for early and more precise breast cancer diagnosis and to design targeted therapy to treat or even prevent metastasis development, particularly to the bone. Expression profiles and possible therapeutic use of their specific receptors in the different breast cancer subtypes are also described. In addition, participation of these cytokines in pathologies of the breast linked to lactation and involution of the gland, as post-partum breast cancer and mastitis, is discussed.
Collapse
Affiliation(s)
- Carla M. Felcher
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Emilia S. Bogni
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Edith C. Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina
- Correspondence:
| |
Collapse
|
3
|
Hunter SA, McIntosh BJ, Shi Y, Sperberg RAP, Funatogawa C, Labanieh L, Soon E, Wastyk HC, Mehta N, Carter C, Hunter T, Cochran JR. An engineered ligand trap inhibits leukemia inhibitory factor as pancreatic cancer treatment strategy. Commun Biol 2021; 4:452. [PMID: 33846527 PMCID: PMC8041770 DOI: 10.1038/s42003-021-01928-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Sean A Hunter
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Brianna J McIntosh
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Erin Soon
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah C Wastyk
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine Carter
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jennifer R Cochran
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Shi Y, Hunter S, Hunter T. Stem Cell Factor LIFted as a Promising Clinical Target for Cancer Therapy. Mol Cancer Ther 2019; 18:1337-1340. [PMID: 31371576 DOI: 10.1158/1535-7163.mct-19-0605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| | - Sean Hunter
- Cancer Biology Program, Stanford University, Stanford, California
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|
5
|
Watza D, Lusk CM, Dyson G, Purrington KS, Chen K, Wenzlaff AS, Ratliff V, Neslund-Dudas C, Bepler G, Schwartz AG. Prognostic modeling of the immune-centric transcriptome reveals interleukin signaling candidates contributing to differential patient outcomes. Carcinogenesis 2019; 39:1447-1454. [PMID: 30202894 DOI: 10.1093/carcin/bgy119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy is a promising advancement in the treatment of non-small-cell lung carcinoma (NSCLC), although much of how lung tumors interact with the immune system in the natural course of disease remains unknown. We investigated the impact of the expression of immune-centric genes and pathways in tumors on patient survival to reveal novel candidates for immunotherapeutic research. Tumor transcriptomes and detailed clinical characteristics were obtained from patients with NSCLC who were participants of either the Inflammation, Health and Lung Epidemiology (INHALE) (discovery, N = 280) or The Cancer Genome Atlas (TCGA) Lung (replication, N = 1026) studies. Expressions of 2253 genes derived from 48 major immune pathways were assessed for association with patient prognosis using a multivariable Cox model and pathway effects were assessed with an in-house implementation of the Gene Set Enrichment Analysis (GSEA) algorithm. Prognosis-guided gene and pathway analysis of immune-centric expression in tumors revealed significant survival enrichments across both cohorts. The 'Interleukin Signaling' pathway, containing 430 genes, was found to be statistically and significantly enriched with prognostic signal in both the INHALE (P = 0.008) and TCGA (P = 0.039) datasets. Subsequent leading-edge analysis identified a subset of genes (N = 23) shared between both cohorts, driving the pathway enrichment. Cumulative expression of this leading-edge gene signature was a strong predictor of patient survival [discovery: hazard ratio (HR) = 1.59, P = 3.0 × 10-8; replication: HR = 1.29, P = 7.4 × 10-7]. These data demonstrate the impact of immune-centric expression on patient outcomes in NSCLC. Furthermore, prognostic gene effects were localized to discrete immune pathways, of which Interleukin Signaling had the greatest impact on overall survival and the subset of genes driving these effects have promise for future therapeutic intervention.
Collapse
Affiliation(s)
- Donovan Watza
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Christine M Lusk
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Kristen S Purrington
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Department of Biochemistry Microbiology and Immunology, Wayne State University, Detroit, MI, USA.,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University.,Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Detroit, MI, USA
| | - Angela S Wenzlaff
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Valerie Ratliff
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Christine Neslund-Dudas
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.,Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Gerold Bepler
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
6
|
Dolgachev V, Panicker S, Balijepalli S, McCandless LK, Yin Y, Swamy S, Suresh MV, Delano MJ, Hemmila MR, Raghavendran K, Machado-Aranda D. Electroporation-mediated delivery of FER gene enhances innate immune response and improves survival in a murine model of pneumonia. Gene Ther 2018; 25:359-375. [PMID: 29907877 PMCID: PMC6195832 DOI: 10.1038/s41434-018-0022-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022]
Abstract
Previously, we reported that electroporation-mediated (EP) delivery of the FER gene improved survival in a combined trauma-pneumonia model. The mechanism of this protective effect is unknown. In this paper, we performed a pneumonia model in C57/BL6 mice with 500 CFU of Klebsiella pneumoniae. After inoculation, a plasmid encoding human FER was delivered by EP into the lung (PNA/pFER-EP). Survival of FER-treated vs. controls (PNA; PNA/EP-pcDNA) was recorded. In parallel cohorts, bronchial alveolar lavage (BAL) and lung were harvested at 24 and 72 h with markers of infection measured. FER-EP-treated animals reduced bacterial counts and had better 5-day survival compared to controls (80 vs. 20 vs. 25%; p < 0.05). Pre-treatment resulted in 100% survival. With FER, inflammatory monocytes were quickly recruited into BAL. These cells had increased surface expression for Toll-receptor 2 and 4, and increased phagocytic and myeloperoxidase activity at 24 h. Samples from FER electroporated animals had increased phosphorylation of STAT transcription factors, varied gene expression of IL1β, TNFα, Nrf2, Nlrp3, Cxcl2, HSP90 and increased cytokine production of TNF-α, CCL-2, KC, IFN-γ, and IL-1RA. In a follow-up experiment, using Methicillin-resistant Staphylococcus aureus (MRSA) similar bacterial reduction effects were obtained with FER gene delivery. We conclude that FER overexpression improves survival through STAT activation enhancing innate immunity and accelerating bacterial clearance in the lung. This constitutes a novel mechanism of inflammatory regulation with therapeutic potential in the setting of hospital-acquired pneumonia.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Sreehari Panicker
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Sanjay Balijepalli
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Lane Kelly McCandless
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Yue Yin
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Samantha Swamy
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - M V Suresh
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Matthew J Delano
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Mark R Hemmila
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - Krishnan Raghavendran
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA
| | - David Machado-Aranda
- Division of Acute Care Surgery, University of Michigan, 1500 E Medical Center Dr, UH-1C421, SPC 5033, Ann Arbor, MI, 48109-5033, USA.
| |
Collapse
|
7
|
Guo H, Cheng Y, Martinka M, McElwee K. High LIFr expression stimulates melanoma cell migration and is associated with unfavorable prognosis in melanoma. Oncotarget 2016; 6:25484-98. [PMID: 26329521 PMCID: PMC4694846 DOI: 10.18632/oncotarget.4688] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022] Open
Abstract
Increased or decreased expression of LIF receptor (LIFr) has been reported in several human cancers, including skin cancer, but its role in melanoma is unknown. In this study, we investigated the expression pattern of LIFr in melanoma and assessed its prognostic value. Using tissue microarrays consisting of 441 melanomas and 96 nevi, we found that no normal nevi showed high LIFr expression. LIFr staining was significantly increased in primary melanoma compared to dysplastic nevi (P = 0.0003) and further increased in metastatic melanoma (P = 0.0000). Kaplan–Meier survival curve and univariate Cox regression analyses showed that increased expression of LIFr was correlated with poorer 5-year patient survival (overall survival, P = 0.0000; disease-specific survival, P = 0.0000). Multivariate Cox regression analyses indicated that increased LIFr expression was an independent prognostic marker for primary melanoma (P = 0.036). LIFr knockdown inhibited melanoma cell migration in wound healing assays and reduced stress fiber formation. LIFr knockdown correlated with STAT3 suppression, but not YAP, suggesting that LIFr activation might stimulate melanoma cell migration through the STAT3 pathway. Our data indicate that strong LIFr expression identifies potentially highly malignant melanocytic lesions at an early stage and LIFr may be a potential target for the development of early intervention therapeutics.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Magdalena Martinka
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Görtz D, Braun GS, Maruta Y, Djudjaj S, van Roeyen CR, Martin IV, Küster A, Schmitz-Van de Leur H, Scheller J, Ostendorf T, Floege J, Müller-Newen G. Anti-interleukin-6 therapy through application of a monogenic protein inhibitor via gene delivery. Sci Rep 2015; 5:14685. [PMID: 26423228 PMCID: PMC4589789 DOI: 10.1038/srep14685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022] Open
Abstract
Anti-cytokine therapies have substantially improved the treatment of inflammatory and autoimmune diseases. Cytokine-targeting drugs are usually biologics such as antibodies or other engineered proteins. Production of biologics, however, is complex and intricate and therefore expensive which might limit therapeutic application. To overcome this limitation we developed a strategy that involves the design of an optimized, monogenic cytokine inhibitor and the protein producing capacity of the host. Here, we engineered and characterized a receptor fusion protein, mIL-6-RFP-Fc, for the inhibition of interleukin-6 (IL-6), a well-established target in anti-cytokine therapy. Upon application in mice mIL-6-RFP-Fc inhibited IL-6-induced activation of the transcription factor STAT3 and ERK1/2 kinases in liver and kidney. mIL-6-RFP-Fc is encoded by a single gene and therefore most relevant for gene transfer approaches. Gene transfer through hydrodynamic plasmid delivery in mice resulted in hepatic production and secretion of mIL-6-RFP-Fc into the blood in considerable amounts, blocked hepatic acute phase protein synthesis and improved kidney function in an ischemia and reperfusion injury model. Our study establishes receptor fusion proteins as promising agents in anti-cytokine therapies through gene therapeutic approaches for future targeted and cost-effective treatments. The strategy described here is applicable for many cytokines involved in inflammatory and other diseases.
Collapse
Affiliation(s)
- Dieter Görtz
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gerald S Braun
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany.,Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Yuichi Maruta
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Sonja Djudjaj
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany.,Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Ina V Martin
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Andrea Küster
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Abstract
Interleukin (IL-)23 is a central cytokine controlling TH17 development. Overshooting IL-23 signaling contribute to autoimmune diseases. Moreover, GWAS studies have identified several SNPs within the IL-23 receptor, which are associated with autoimmune diseases. IL-23 is a member of the IL-12-type cytokine family and consists of IL-23p19 and p40. Within the IL-12 family, IL-12 and IL-23 share the p40 cytokine subunit and the IL-12Rβ1 as one chain of the receptor complex. For signaling, IL-23 triggers heterodimerization of IL-12Rβ1 and the IL-23R. Subsequently, signal transduction pathways including JAK/STAT, MAPK and PI3K are activated. Most studies have investigated the biological relevance of IL-23 in the development of TH17 cells and autoimmunity, whereas less is known about the molecular context of IL-23 biology. Therefore, we focused on IL-23 receptor complex assembly, signal transduction and functional relevance of IL-23R SNPs in the context of IL-23-inhibitory principles.
Collapse
|
10
|
Leukemia inhibitory factor: roles in embryo implantation and in nonhormonal contraception. ScientificWorldJournal 2014; 2014:201514. [PMID: 25152902 PMCID: PMC4131495 DOI: 10.1155/2014/201514] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/09/2014] [Indexed: 01/24/2023] Open
Abstract
Leukaemia inhibitory factor (LIF) plays an indispensible role in embryo implantation. Aberrant LIF production is linked to implantation failure. LIF regulates multiple processes prior to and during implantation such as uterine transformation into a receptive state, decidualization, blastocyst growth and development, embryo-endometrial interaction, trophoblast invasion, and immune modulation. Due to its critical role, LIF has been a target for a nonhormonal contraception. In this review, we summarize up-to-date information on the role of LIF in implantation and its role in contraception.
Collapse
|
11
|
Correlation between serum interleukin-31 level and the severity of disease in children with atopic dermatitis. Postepy Dermatol Alergol 2013; 30:282-5. [PMID: 24353487 PMCID: PMC3858655 DOI: 10.5114/pdia.2013.38356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/11/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by intense itch, typical localization and a specific image of skin lesions. Pathogenesis of pruritus in AD is not fully understood, but recent studies emphasize the role of interleukin-31 (IL-31). This relatively recently described cytokine is considered to be a potential mediator inducing pruritus in AD. Aim To assess the correlation of serum IL-31 level and the disease severity in children with AD. Material and methods Twenty-five children (16 girls and 9 boys) with AD aged from 4 months to 17 years (mean age: 4.2 years) were enrolled in the study. Disease severity in children with AD was assessed using the SCORAD (Severity SCORing of Atopic Dermatitis) index. Serum IL-31 levels were measured using ELISA with standard kits from EIAab R&D Systems. Results Serum IL-31 level was significantly higher in AD children than in healthy children. There was no statistic correlation between serum IL-31 level and the disease severity or itch intensity. Conclusions The disease severity and itch intensity do not correlate with serum IL-31 level in children with atopic dermatitis.
Collapse
|
12
|
Schwache D, Müller-Newen G. Receptor fusion proteins for the inhibition of cytokines. Eur J Cell Biol 2012; 91:428-34. [DOI: 10.1016/j.ejcb.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
|
13
|
Brolund L, Küster A, Korr S, Vogt M, Müller-Newen G. A receptor fusion protein for the inhibition of murine oncostatin M. BMC Biotechnol 2011; 11:3. [PMID: 21223559 PMCID: PMC3040522 DOI: 10.1186/1472-6750-11-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 01/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Most cytokines signal through heteromeric receptor complexes consisting of two or more different receptor subunits. Fusion proteins of the extracellular parts of receptor subunits turned out to be promising cytokine inhibitors useful in anti-cytokine therapy and cytokine research. Results We constructed receptor fusion proteins (RFP) consisting of the ligand binding domains of the murine oncostatin M (mOSM) receptor subunits mOSMR and mgp130 connected by a flexible linker as potential mOSM inhibitors. mgp130 is a shared cytokine receptor that is also used by other cytokines such as IL-6 and leukemia inhibitory factor (LIF). In this study we compare four types of mOSM-RFPs that contain either domains D1-D3 or domains D2-D3 of mgp130 and are arranged in two ways. Domain D1 of mgp130 turned out to be dispensable for mOSM-binding. However, the arrangement of the two receptor subunits is essential for the inhibitory activity. We found mOSM induced STAT3 phosphorylation to be suppressed only when the mOSMR fragment was fused in front of the mgp130 fragment. Conclusions mOSM-RFP consisting of D1-D4 of mOSMR and D2-D3 of mgp130 is a highly potent and specific inhibitor of mOSM. Since mOSM-RFP is encoded by a single gene it offers numerous possibilities for specific cytokine inhibition in gene delivery approaches based on viral vectors, transgenic animals and finally gene therapy.
Collapse
Affiliation(s)
- Liv Brolund
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | | | | | | | |
Collapse
|
14
|
Selvendiran K, Tong L, Bratasz A, Lakshmi Kuppusamy M, Ahmed S, Ravi Y, Trigg NJ, Rivera BK, Kálai T, Hideg K, Kuppusamy P. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol Cancer Ther 2010; 9:1169-79. [PMID: 20442315 PMCID: PMC2868073 DOI: 10.1158/1535-7163.mct-09-1207] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to evaluate the anticancer potency and mechanism of a novel difluorodiarylidenyl piperidone (H-4073) and its N-hydroxypyrroline modification (HO-3867) in human ovarian cancer. Studies were done using established human ovarian cancer cell lines (A2870, A2780cDDP, OV-4, SKOV3, PA-1, and OVCAR3) as well as in a murine xenograft tumor (A2780) model. Both compounds were comparably and significantly cytotoxic to A2780 cells. However, HO-3867 showed a preferential toxicity toward ovarian cancer cells while sparing healthy cells. HO-3867 induced G(2)-M cell cycle arrest in A2780 cells by modulating cell cycle regulatory molecules p53, p21, p27, cyclin-dependent kinase 2, and cyclin, and promoted apoptosis by caspase-8 and caspase-3 activation. It also caused an increase in the expression of functional Fas/CD95 and decreases in signal transducers and activators of transcription 3 (STAT3; Tyr705) and JAK1 phosphorylation. There was a significant reduction in STAT3 downstream target protein levels including Bcl-xL, Bcl-2, survivin, and vascular endothelial growth factor, suggesting that HO-3867 exposure disrupted the JAK/STAT3 signaling pathway. In addition, HO-3867 significantly inhibited the growth of the ovarian xenografted tumors in a dosage-dependent manner without any apparent toxicity. Western blot analysis of the xenograft tumor tissues showed that HO-3867 inhibited pSTAT3 (Tyr705 and Ser727) and JAK1 and increased apoptotic markers cleaved caspase-3 and poly ADP ribose polymerase. HO-3867 exhibited significant cytotoxicity toward ovarian cancer cells by inhibition of the JAK/STAT3 signaling pathway. The study suggested that HO-3867 may be useful as a safe and effective anticancer agent for ovarian cancer therapy.
Collapse
Affiliation(s)
- Karuppaiyah Selvendiran
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Liyue Tong
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Anna Bratasz
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - M. Lakshmi Kuppusamy
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | | | | | - Nancy J. Trigg
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Brian K. Rivera
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Periannan Kuppusamy
- Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Venereau E, Diveu C, Grimaud L, Ravon E, Froger J, Preisser L, Danger Y, Maillasson M, Garrigue-Antar L, Jacques Y, Chevalier S, Gascan H. Definition and characterization of an inhibitor for interleukin-31. J Biol Chem 2010; 285:14955-14963. [PMID: 20335179 DOI: 10.1074/jbc.m109.049163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-31 (IL-31) is a recently described T cell-derived cytokine, mainly produced by T helper type 2 cells and related to the IL-6 cytokine family according to its structure and receptor. IL-31 is the ligand for a heterodimeric receptor composed of a gp130-like receptor (GPL) associated with the oncostatin M receptor (OSMR). A link between IL-31 and atopic dermatitis was shown by studying the phenotype of IL-31 transgenic mice and IL-31 gene haplotypes in patients suffering from dermatitis. In this study, we generated a potent IL-31 antagonist formed by external portions of OSMR and GPL fused with a linker. This fusion protein, OSMR-L-GPL, consisting of 720 amino acids, counteracted the binding of IL-31 to its membrane receptor complex and the subsequent signaling events involving the STATs and MAPK pathways. Neutralizing effects were found in IL-31-sensitive cell lines, including brain-derived cells and primary cultures of keratinocytes.
Collapse
Affiliation(s)
- Emilie Venereau
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France
| | - Caroline Diveu
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France
| | - Linda Grimaud
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France
| | - Elisa Ravon
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France
| | - Josy Froger
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France; PADAM-IBiSA, Biogenouest, 49033 Angers, France
| | - Laurence Preisser
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France; Service Commun de Cytométrie et d'Analyse Nucléotidique, Université d'Angers, 49033 Angers, France
| | - Yannic Danger
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France; PADAM-IBiSA, Biogenouest, 49033 Angers, France
| | | | | | | | - Sylvie Chevalier
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France; Service Commun de Cytométrie et d'Analyse Nucléotidique, Université d'Angers, 49033 Angers, France
| | - Hugues Gascan
- Unité Mixte Inserm 564, Bâtiment Monteclair, 4 rue Larrey, 49033 Angers Cedex 09, France.
| |
Collapse
|
16
|
Abstract
Recent advances in understanding the mechanism(s) of how IL-6 trans-signaling regulates immune cell function and promotes inflammation in autoimmune arthritis are critically reviewed. Serum and/or synovial fluid (SF) IL-6 is markedly elevated in adult and juvenile rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS) and osteoarthritis (OA). IL-6, in concert with IL-17, determines the fate of CD4+ lymphocytes and therefore TH17 cell differentiation. IL-6 also plays a critical role in modulating B-lymphocyte activity. The recognition that IL-6 trans-signaling regulates inflammation resulted in the development of tocilizumab, a fully humanized monoclonal antibody that neutralizes the biological activity of the IL-6-receptor (IL-6R). Significant clinical benefit was demonstrated as well as reduced serum IL-6 levels with suppression of X-ray progression of disease in several clinical trials in which juvenile or adult RA patients were treated with tocilizumab monotherapy or tocilizumab plus methotrexate. However, levels of serum and/or SF IL-6 cytokine protein superfamily members, adiponectin, oncostatin M, pre-B-cell colony enhancing factor/visfatin and leukemia inhibitory factor are also elevated in RA. Additional studies will be required to determine if anti-IL-6 trans-signaling inhibition strategies with tocilizumab or recombinant soluble IL-6R reduce the level of these cytokines.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Wiesinger MY, Haan S, Wüller S, Kauffmann ME, Recker T, Küster A, Heinrich PC, Müller-Newen G. Development of an IL-6 Inhibitor Based on the Functional Analysis of Murine IL-6Rα1. ACTA ACUST UNITED AC 2009; 16:783-94. [DOI: 10.1016/j.chembiol.2009.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 05/28/2009] [Accepted: 06/24/2009] [Indexed: 12/17/2022]
|