1
|
A 2B Adenosine Receptor and Cancer. Int J Mol Sci 2019; 20:ijms20205139. [PMID: 31627281 PMCID: PMC6829478 DOI: 10.3390/ijms20205139] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
There are four subtypes of adenosine receptors (ARs), named A1, A2A, A2B and A3, all of which are G protein-coupled receptors (GPCRs). Locally produced adenosine is a suppressant in anti-tumor immune surveillance. The A2BAR, coupled to both Gαs and Gαi G proteins, is one of the several GPCRs that are expressed in a significantly higher level in certain cancer tissues, in comparison to adjacent normal tissues. There is growing evidence that the A2BAR plays an important role in tumor cell proliferation, angiogenesis, metastasis, and immune suppression. Thus, A2BAR antagonists are novel, potentially attractive anticancer agents. Several antagonists targeting A2BAR are currently in clinical trials for various types of cancers. In this review, we first describe the signaling, agonists, and antagonists of the A2BAR. We further discuss the role of the A2BAR in the progression of various cancers, and the rationale of using A2BAR antagonists in cancer therapy.
Collapse
|
2
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
3
|
Sepúlveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci 2016; 166:92-99. [DOI: 10.1016/j.lfs.2016.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/01/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023]
|
4
|
Bassal NK, Hughes BP, Costabile M. Prostaglandin D2 is a novel repressor of IFNγ induced indoleamine-2,3-dioxygenase via the DP1 receptor and cAMP pathway. Prostaglandins Leukot Essent Fatty Acids 2016; 110:48-54. [PMID: 26995677 DOI: 10.1016/j.plefa.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/29/2022]
Abstract
Expression of elevated levels of Indoleamine 2,3-dioxygenase (IDO) is well established as a mechanism of cancer induced immunosuppression. Pharmacological inhibition of IDO activity is thus a promising alternative in the treatment of cancer. Previously we demonstrated that cyclooxygenase derived metabolites of arachidonic acid inhibited the interferon-gamma mediated induction of IDO in both THP-1 cells and human monocytes. Here we identified that of the five primary prostanoids produced by COX-1/COX-2, only PGD2 displayed significant repressor activity. PGD2 inhibited IDO activity with an IC50 of 7.2µM in THP-1 cells and 5.2µM in monocytes. PGD2 caused a significant decrease in both IDO mRNA and protein. Using receptor specific agonists, PGD2 was found to act via the DP1 receptor, while the CRTH2 receptor was not involved. A DP1 antagonist significantly reduced the activity of PGD2, while CRTH2 agonists were ineffective. PGD2 increased intracellular cAMP levels and exogenous N(6)-cAMP was also found to be highly inhibitory. The effects of PGD2 via cAMP were blocked by Rp-cAMP indicating involvement of PKA. PGD2 also stimulated CREB phosphorylation, a PKA dependent transcription factor. This is the first report demonstrating that PGD2, a prostanoid typically associated with allergy, can inhibit IDO activity via the DP1/cAMP/PKA/CREB pathway. Our findings suggest that PGD2 and its derivatives may form the basis of novel repressors of IFNγ-mediated IDO expression.
Collapse
Affiliation(s)
- Nesrine Kamal Bassal
- University of South Australia, School of Pharmacy and Medical Sciences, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Bernard P Hughes
- University of South Australia, School of Pharmacy and Medical Sciences, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Maurizio Costabile
- University of South Australia, School of Pharmacy and Medical Sciences, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
5
|
Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:3828-37. [PMID: 26355158 DOI: 10.4049/jimmunol.1501139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated.
Collapse
Affiliation(s)
- Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Amanda Ward
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Katya Ravid
- School of Medicine, Boston University, Boston, MA 02118
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| |
Collapse
|
6
|
Bernareggi A, Luin E, Pavan B, Parato G, Sciancalepore M, Urbani R, Lorenzon P. Adenosine enhances acetylcholine receptor channel openings and intracellular calcium 'spiking' in mouse skeletal myotubes. Acta Physiol (Oxf) 2015; 214:467-80. [PMID: 25683861 DOI: 10.1111/apha.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/23/2014] [Accepted: 02/11/2015] [Indexed: 12/26/2022]
Abstract
AIMS The autocrine activity of the embryonic isoform of the nicotinic acetylcholine receptor is crucial for the correct differentiation and trophism of skeletal muscle cells before innervation. The functional activity of extracellular adenosine and adenosine receptor subtypes expressed in differentiating myotubes is still unknown. In this study, we performed a detailed analysis of the role of adenosine receptor-mediated effects on the autocrine-mediated nicotinic acetylcholine receptor channel openings and the associated spontaneous intracellular calcium 'spikes' generated in differentiating mouse myotubes in vitro. METHODS Cell-attached patch-clamp recordings and intracellular calcium imaging experiments were performed in contracting myotubes derived from mouse satellite cells. RESULTS The endogenous extracellular adenosine and the adenosine receptor-mediated activity modulated the properties of the embryonic isoform of the nicotinic acetylcholine receptor in myotubes in vitro, by increasing the mean open time and the open probability of the ion channel, and sustaining nicotinic acetylcholine receptor-driven intracellular [Ca(2+) ]i 'spikes'. The pharmacological characterization of the adenosine receptor-mediated effects suggested a prevalent involvement of the A2B adenosine receptor subtype. CONCLUSION We propose that the interplay between endogenous adenosine and nicotinic acetylcholine receptors represents a potential novel strategy to improve differentiation/regeneration of skeletal muscle.
Collapse
Affiliation(s)
- A. Bernareggi
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - E. Luin
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - B. Pavan
- Department of Life Sciences and Biotechnology; University of Ferrara; Via L. Borsari 46 Ferrara I-44121 Italy
| | - G. Parato
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - M. Sciancalepore
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| | - R. Urbani
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
| | - P. Lorenzon
- Department of Life Sciences; University of Trieste; via A. Fleming 22 Trieste I-34127 Italy
- B.R.A.I.N. Centre for Neuroscience; via Fleming 22 Trieste I-34127 Italy
| |
Collapse
|
7
|
Fang M, Li P, Wu X, Xu Y. Class II transactivator (CIITA) mediates transcriptional repression of pdk4 gene by interacting with hypermethylated in cancer 1 (HIC1). J Biomed Res 2015; 29:308-15. [PMID: 26243517 PMCID: PMC4547379 DOI: 10.7555/jbr.29.20150055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/09/2015] [Indexed: 12/30/2022] Open
Abstract
Increased accumulation and/or impaired utilization of fatty acid in extra-adipose tissues are implicated in the pathogenesis of insulin resistance and type 2 diabetes. Pyruvate dehydrogenase kinase 4 (Pdk4) is a key enzyme involved in fatty oxidation and energy expenditure, and its expression can be repressed by pro-inflammatory stimuli. Previously, we have shown that class II transactivator (CIITA) mediates the adverse effect of interferon gamma (IFN-γ) in skeletal muscle cells by cooperating with hypermethylated in cancer 1 (HIC1) to repress silent information regulator 1 (SIRT1) transcription. Building upon this finding, we report here that CIITA interacted with HIC1 via the GTP-binding domain (GBD) while HIC1 interacted with CIITA via the BTB/POZ domain. The GBD domain was required for CIITA to repress SIRT1 transcription probably acting as a bridge for CIITA to bind to HIC1 and consequently to bind to the SIRT1 promoter. IFN-γ stimulation, CIITA over-expression, or HIC1 over-expression repressed Pdk4 promoter activity while silencing either CIITA or HIC1 normalized Pdk4 expression in the presence of IFN-γ. An increase in SIRT1 expression or activity partially rescued Pdk4 expression in the presence of CIITA, but SIRT1 inhibition abrogated Pdk4 normalization even in the absence of CIITA. Taken together, our data have identified a HIC1-CIITA-SIRT1 axis that regulates Pdk4 transcription in response to IFN-γ stimulation.
Collapse
Affiliation(s)
- Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, Jiangsu 210029, China
| | - Ping Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Department of Gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology.,Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
8
|
Xia J, Fang M, Wu X, Yang Y, Yu L, Xu H, Kong H, Tan Q, Wang H, Xie W, Xu Y. A2b adenosine signaling represses CIITA transcription via an epigenetic mechanism in vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:665-76. [PMID: 25765819 DOI: 10.1016/j.bbagrm.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023]
Abstract
Chronic inflammation plays a major role in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMC), by expressing and presenting major histocompatibility complex II (MHC II) molecules, help recruit T lymphocyte and initiate the inflammatory response within the vasculature. We have previously shown that VSMCs isolated from mice with deficient adenosine A2b receptor (A2b-null) exhibit higher expression of class II transactivator (CIITA), the master regulator of MHC II transcription, compared to wild type littermates. Here we report that activation of A2b adenosine signaling suppresses CIITA expression in human aortic smooth muscle cells. Down-regulation of CIITA expression was largely attributable to transcriptional repression of type III and IV promoters. Chromatin immunoprecipitation (ChIP) analyses revealed that A2b signaling repressed CIITA transcription by attenuating specific histone modifications on the CIITA promoters in a STAT1-dependent manner. STAT1 interacted with PCAF/GCN5, histone H3K9 acetyltransferases, and WDR5, a key component of the mammalian H3K4 methyltransferase complex, to activate CIITA transcription. A2b signaling prevented recruitment of PCAF/GCN5 and WDR5 to the CIITA promoters in a STAT1-dependent manner. In conclusion, our data suggest that adenosine A2b signaling represses CIITA transcription in VSMCs by manipulating the interaction between STAT1 and the epigenetic machinery.
Collapse
Affiliation(s)
- Jun Xia
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China; Department of Respiratory Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Yuyu Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China
| | - Hui Kong
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China
| | - Qi Tan
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China
| | - Hong Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China.
| | - Weiping Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Nanjing Medical University, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, China.
| |
Collapse
|
9
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
10
|
Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res 2013; 28:25-39. [PMID: 24474961 PMCID: PMC3904172 DOI: 10.7555/jbr.27.20130064] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/28/2013] [Accepted: 06/18/2013] [Indexed: 12/18/2022] Open
Abstract
Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.
Collapse
Affiliation(s)
- Markella Ponticos
- Centre for Rheumatology & Connective Tissue Diseases, Division of Medicine-Inflammation, Royal Free & University College Medical School, University College London, London NW3 2PF, UK
| | - Barbara D Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
11
|
Park HL, Kim YJ, Na HN, Park MY, Kim JY, Yun CW, Nam JH. IK induced by coxsackievirus B3 infection transiently downregulates expression of MHC class II through increasing cAMP. Viral Immunol 2013; 26:13-24. [PMID: 23409929 DOI: 10.1089/vim.2012.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Major histocompatibility complex (MHC) class II expression is critical for the presentation of antigens in the immune response to viral infection. Consequently, some viruses regulate the MHC class II-mediated presentation of viral antigens as a mechanism of immune escape. In this study, we found that Coxsackievirus B3 (CVB3) infection transiently increased IK expression, which reduced the expression of MHC class II (I-A/I-E) on splenic B cells. Interestingly, CVB3-induced IK elevated cAMP, a downstream molecule of the G protein-coupled receptors, which inhibited MHC class II presentation on B cells. Transgenic mice expressing truncated IK showed lower expression of MHC class II on B cells than did wild-type mice after CVB3 infection. Taken together, these results imply that IK plays a role in downregulating MHC class II expression on B cells during CVB3 infection through the induction of cAMP.
Collapse
Affiliation(s)
- Hye-Lim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Fang M, Xia J, Wu X, Kong H, Wang H, Xie W, Xu Y. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells. Eur J Immunol 2013; 43:2162-73. [PMID: 23681904 DOI: 10.1002/eji.201343461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/09/2013] [Accepted: 05/13/2013] [Indexed: 01/28/2023]
Abstract
Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.
Collapse
Affiliation(s)
- Mingming Fang
- Department of Surgery, Jiangsu Jiankang Vocational College, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K. A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 2012; 287:15718-27. [PMID: 22403399 DOI: 10.1074/jbc.m112.344994] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The differentiation of osteoblasts from their precursors, mesenchymal stem cells, is an important component of bone homeostasis as well as fracture healing. The A2B adenosine receptor (A2BAR) is a Gα(s)/α(q)-protein-coupled receptor that signals via cAMP. cAMP-mediated signaling has been demonstrated to regulate the differentiation of mesenchymal stem cells (MSCs) into various skeletal tissue lineages. Here, we studied the role of this receptor in the differentiation of MSCs to osteoblasts. In vitro differentiation of bone marrow-derived MSCs from A2BAR KO mice resulted in lower expression of osteoblast differentiation transcription factors and the development of fewer mineralized nodules, as compared with WT mice. The mechanism of effect involves, at least partially, cAMP as indicated by experiments involving activation of the A2BAR or addition of a cAMP analog during differentiation. Intriguingly, in vivo, microcomputed tomography analysis of adult femurs showed lower bone density in A2BAR KO mice as compared with WT. Furthermore, A2BAR KO mice display a delay in normal fracture physiology with lower expression of osteoblast differentiation genes. Thus, our study identified the A2BAR as a new regulator of osteoblast differentiation, bone formation, and fracture repair.
Collapse
Affiliation(s)
- Shannon H Carroll
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
14
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
15
|
Safhi MMA, Rutherford C, Ledent C, Sands WA, Palmer TM. Priming of signal transducer and activator of transcription proteins for cytokine-triggered polyubiquitylation and degradation by the A 2A adenosine receptor. Mol Pharmacol 2010; 77:968-78. [PMID: 20185553 DOI: 10.1124/mol.109.062455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Here we demonstrate that overexpression of the human A(2A) adenosine receptor (A(2A)AR) in vascular endothelial cells confers an ability of interferon-alpha and a soluble IL-6 receptor/IL-6 (sIL-6R alpha/IL-6) trans-signaling complex to trigger the down-regulation of signal transducer and activator of transcription (STAT) proteins. It is noteworthy that STAT down-regulation could be reversed by coincubation with A(2A)AR-selective inverse agonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) but not adenosine deaminase, suggesting that constitutive activation of the receptor was responsible for the effect. Moreover, STAT down-regulation was selectively abolished by proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132), whereas lysosome inhibitor chloroquine was without effect. Down-regulation required Janus kinase (JAK) activity and a Tyr705-->Phe-mutated STAT3 was resistant to the phenomenon, suggesting that JAK-mediated phosphorylation of this residue is required. Consistent with this hypothesis, treatment of A(2A)AR-overexpressing cells with sIL-6R alpha/IL-6 triggered the accumulation of polyubiquitylated wild-type but not Tyr705-->Phe-mutated STAT3. Support for a functional role of this process was provided by the observation that A(2A)AR overexpression attenuated the JAK/STAT-dependent up-regulation of vascular endothelial growth factor receptor-2 by sIL-6R alpha/IL-6. Consistent with a role for endogenous A(2A)ARs in regulating STAT protein levels, prolonged exposure of endogenous A(2A)ARs in endothelial cells with ZM241385 in vitro triggered the up-regulation of STAT3, whereas deletion of the A(2A)AR in vivo potentiated STAT1 expression and phosphorylation. Together, these experiments support a model whereby the A(2A)AR can prime JAK-phosphorylated STATs for polyubiquitylation and proteasomal degradation and represents a new mechanism by which an anti-inflammatory seven-transmembrane receptor can negatively regulate JAK/STAT signaling.
Collapse
Affiliation(s)
- Mohammed M A Safhi
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
16
|
Chandrasekharan BP, Kolachala VL, Dalmasso G, Merlin D, Ravid K, Sitaraman SV, Srinivasan S. Adenosine 2B receptors (A(2B)AR) on enteric neurons regulate murine distal colonic motility. FASEB J 2009; 23:2727-34. [PMID: 19357134 DOI: 10.1096/fj.09-129544] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Delayed colonic emptying leading to constipation is a significant health concern. We investigated the role of adenosine 2B receptor (A(2B)AR) in modulating distal colonic motility using wild-type and A(2B)AR-knockout (A(2B)AR(-/-)) mice. Colon motility was assessed using stool characteristics and colonic transit. Distal colonic ganglia, isolated by laser capture microdissection, were tested for A(2B)AR expression by RT-PCR. The distal colon contraction and relaxation responses were assessed by electrical field stimulation (EFS) in presence of A(2B)AR agonists, antagonists or inhibitors of nitric oxide (NO) and guanylate cyclase. Nitrite levels were measured in enteric neuronal cultures exposed to A(2B)AR agonists/antagonists. A(2B)AR(-/-) mice display increased stool retention, decreased stool frequency, delayed colonic emptying, and decreased circular muscle relaxation. RT-PCR identified A(2B)AR expression in distal colonic ganglia. EFS studies revealed that enteric neuronal A(2B)AR is essential for distal colonic relaxation, and A(2B)AR antagonists can inhibit relaxation. Enteric neurons stimulated with A(2B)AR agonists produced more nitrite than cultures treated with antagonists. We demonstrate an essential role of A(2B)AR in regulating distal colon relaxation, as A(2B)AR activation is linked to NO signaling. Hence targeting the colonic A(2B)AR could represent a novel therapeutic strategy to treat constipation.
Collapse
|
17
|
HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells. J Mol Cell Cardiol 2009; 46:292-9. [DOI: 10.1016/j.yjmcc.2008.10.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
|