1
|
Massenet J, Weiss-Gayet M, Bandukwala H, Bouchereau W, Gobert S, Magnan M, Hubas A, Nusbaum P, Desguerre I, Gitiaux C, Dilworth FJ, Chazaud B. Epigenetic control of myogenic identity of human muscle stem cells in Duchenne muscular dystrophy. iScience 2024; 27:111350. [PMID: 39650736 PMCID: PMC11625291 DOI: 10.1016/j.isci.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
In Duchenne muscular dystrophy (DMD), muscle stem cells' (MuSCs) regenerative capacities are overwhelmed leading to fibrosis. Whether MuSCs have intrinsic defects or are disrupted by their environment is unclear. We investigated cell behavior and gene expression of MuSCs from DMD or healthy human muscles. Proliferation, differentiation, and fusion were unaltered in DMD-MuSCs, but with time, they lost their myogenic identity twice as fast as healthy MuSCs. The rapid drift toward a fibroblast-like cell identity was observed at the clonal level, and resulted from altered expression of epigenetic enzymes. Re-expression of CBX3, SMC3, H2AFV, and H3F3B prevented the MuSC identity drift. Among epigenetic changes, a closing of chromatin at the transcription factor MEF2B locus caused downregulation of its expression and loss of the myogenic fate. Re-expression of MEF2B in DMD-MuSCs restored their myogenic fate. MEF2B is key in the maintenance of myogenic identity in human MuSCs, which is altered in DMD.
Collapse
Affiliation(s)
- Jimmy Massenet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Hina Bandukwala
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Wilhelm Bouchereau
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Stéphanie Gobert
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| | - Mélanie Magnan
- Institut Cochin, Université Paris-Cité, Inserm U1016, CNRS UMR8104, Paris, France
| | - Arnaud Hubas
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Patrick Nusbaum
- Hôpital Cochin – Port-Royal, Centre de Ressources Biologiques, Paris, France
| | - Isabelle Desguerre
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Université Paris Cité, IHU Imagine, 75015 Paris, France
| | - Cyril Gitiaux
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Hôpital Necker Enfants Malades, Université Paris-Cité, Paris, France
- Service d’explorations Fonctionnelles, Unité de Neurophysiologie Clinique, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - F. Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle Université Claude Bernard Lyon 1, CNRS U5261, Inserm U1315, University Lyon, Lyon, France
| |
Collapse
|
2
|
Biss S, Teschler M, Heimer M, Thum T, Bär C, Mooren FC, Schmitz B. A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study. J Appl Physiol (1985) 2023; 134:799-809. [PMID: 36759165 DOI: 10.1152/japplphysiol.00557.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme (P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels.NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.
Collapse
Affiliation(s)
- Sinje Biss
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marc Teschler
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Melina Heimer
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Frank C Mooren
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Boris Schmitz
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| |
Collapse
|
3
|
Salant GM, Tat KL, Goodrich JA, Kugel JF. miR-206 knockout shows it is critical for myogenesis and directly regulates newly identified target mRNAs. RNA Biol 2020; 17:956-965. [PMID: 32129700 DOI: 10.1080/15476286.2020.1737443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The muscle specific miRNA, miR-206, is important for the process of myogenesis; however, studying the function of miR-206 in muscle development and differentiation still proves challenging because the complement of mRNA targets it regulates remains undefined. In addition, miR-206 shares close sequence similarity to miR-1, another muscle specific miRNA, making it hard to study the impact of miR-206 alone in cell culture models. Here we used CRISPR/Cas9 technology to knockout miR-206 in C2C12 muscle cells. We show that knocking out miR-206 significantly impairs and delays differentiation and myotube formation, revealing that miR-206 alone is important for myogenesis. In addition, we use an experimental affinity purification technique to identify new mRNA targets of miR-206 in C2C12 cells. We identified over one hundred mRNAs as putative miR-206 targets. Functional experiments on six of these targets indicate that Adam19, Bgn, Cbx5, Smarce1, and Spg20 are direct miR-206 targets in C2C12 cells. Our data show a unique and important role for miR-206 in myogenesis.
Collapse
Affiliation(s)
- Georgiana M Salant
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - Kimngan L Tat
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - James A Goodrich
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| | - Jennifer F Kugel
- Department of Biochemistry, University of Colorado Boulder , Boulder, CO, USA
| |
Collapse
|
4
|
Choi MH, Palanichamy Kala M, Ow JR, Rao VK, Suriyamurthy S, Taneja R. GLP inhibits heterochromatin clustering and myogenic differentiation by repressing MeCP2. J Mol Cell Biol 2019; 10:161-174. [PMID: 28992061 DOI: 10.1093/jmcb/mjx038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Myogenic differentiation is accompanied by alterations in the chromatin states, which permit or restrict the transcriptional machinery and thus impact distinctive gene expression profiles. The mechanisms by which higher-order chromatin remodeling is associated with gene activation and silencing during differentiation is not fully understood. In this study, we provide evidence that the euchromatic lysine methyltransferase GLP regulates heterochromatin organization and myogenic differentiation. Interestingly, GLP represses expression of the methyl-binding protein MeCP2 that induces heterochromatin clustering during differentiation. Consequently, MeCP2 and HP1γ localization at major satellites are altered upon modulation of GLP expression. In GLP knockdown cells, depletion of MeCP2 restored both chromatin organization and myogenic differentiation. These results identify a novel regulatory axis between a histone methylation writer and DNA methylation reader, which is important for heterochromatin organization during differentiation.
Collapse
Affiliation(s)
- Min Hee Choi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| |
Collapse
|
5
|
E3 ubiquitin ligase HECW2 mediates the proteasomal degradation of HP1 isoforms. Biochem Biophys Res Commun 2018; 503:2478-2484. [DOI: 10.1016/j.bbrc.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
|
6
|
HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 2018; 8:3448. [PMID: 29472596 PMCID: PMC5823886 DOI: 10.1038/s41598-018-21835-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7+ cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.
Collapse
|
7
|
Charó NL, Galigniana NM, Piwien-Pilipuk G. Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:432-443. [PMID: 29208528 DOI: 10.1016/j.bbamcr.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.
Collapse
Affiliation(s)
- Nancy L Charó
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
8
|
Jensen JH, Madsen LB, Panitz F, Hornshøj H, Nielsen RO, Bendixen C, Oksbjerg N, Thomsen B. Transcriptome dynamics during proliferation and differentiation of porcine primary satellite cells. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov 2017; 3:17002. [PMID: 28326190 PMCID: PMC5348715 DOI: 10.1038/celldisc.2017.2] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/21/2022] Open
Abstract
Malat1 is one of the most abundant long non-coding RNAs in various cell types; its exact cellular function is still a matter of intense investigation. In this study we characterized the function of Malat1 in skeletal muscle cells and muscle regeneration. Utilizing both in vitro and in vivo assays, we demonstrate that Malat1 has a role in regulating gene expression during myogenic differentiation of myoblast cells. Specifically, we found that knockdown of Malat1 accelerates the myogenic differentiation in cultured cells. Consistently, Malat1 knockout mice display enhanced muscle regeneration after injury and deletion of Malat1 in dystrophic mdx mice also improves the muscle regeneration. Mechanistically, in the proliferating myoblasts, Malat1 recruits Suv39h1 to MyoD-binding loci, causing trimethylation of histone 3 lysine 9 (H3K9me3), which suppresses the target gene expression. Upon differentiation, the pro-myogenic miR-181a is increased and targets the nuclear Malat1 transcripts for degradation through Ago2-dependent nuclear RNA-induced silencing complex machinery; the Malat1 decrease subsequently leads to the destabilization of Suv39h1/HP1β/HDAC1-repressive complex and displacement by a Set7-containing activating complex, which allows MyoD trans-activation to occur. Together, our findings identify a regulatory axis of miR-181a-Malat1-MyoD/Suv39h1 in myogenesis and uncover a previously unknown molecular mechanism of Malat1 action in gene regulation.
Collapse
|
10
|
Boyarchuk E, Robin P, Fritsch L, Joliot V, Ait-Si-Ali S. Identification of MyoD Interactome Using Tandem Affinity Purification Coupled to Mass Spectrometry. J Vis Exp 2016. [PMID: 27286495 DOI: 10.3791/53924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Skeletal muscle terminal differentiation starts with the commitment of pluripotent mesodermal precursor cells to myoblasts. These cells have still the ability to proliferate or they can differentiate and fuse into multinucleated myotubes, which maturate further to form myofibers. Skeletal muscle terminal differentiation is orchestrated by the coordinated action of various transcription factors, in particular the members of the Muscle Regulatory Factors or MRFs (MyoD, Myogenin, Myf5, and MRF4), also called the myogenic bHLH transcription factors family. These factors cooperate with chromatin-remodeling complexes within elaborate transcriptional regulatory network to achieve skeletal myogenesis. In this, MyoD is considered the master myogenic transcription factor in triggering muscle terminal differentiation. This notion is strengthened by the ability of MyoD to convert non-muscle cells into skeletal muscle cells. Here we describe an approach used to identify MyoD protein partners in an exhaustive manner in order to elucidate the different factors involved in skeletal muscle terminal differentiation. The long-term aim is to understand the epigenetic mechanisms involved in the regulation of skeletal muscle genes, i.e., MyoD targets. MyoD partners are identified by using Tandem Affinity Purification (TAP-Tag) from a heterologous system coupled to mass spectrometry (MS) characterization, followed by validation of the role of relevant partners during skeletal muscle terminal differentiation. Aberrant forms of myogenic factors, or their aberrant regulation, are associated with a number of muscle disorders: congenital myasthenia, myotonic dystrophy, rhabdomyosarcoma and defects in muscle regeneration. As such, myogenic factors provide a pool of potential therapeutic targets in muscle disorders, both with regard to mechanisms that cause disease itself and regenerative mechanisms that can improve disease treatment. Thus, the detailed understanding of the intermolecular interactions and the genetic programs controlled by the myogenic factors is essential for the rational design of efficient therapies.
Collapse
Affiliation(s)
- Ekaterina Boyarchuk
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Philippe Robin
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Lauriane Fritsch
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité
| | - Véronique Joliot
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| | - Slimane Ait-Si-Ali
- Epigenetics and Cell Fate, UMR 7216 CNRS, Centre National de la Recherche Scientifique CNRS - Université Paris Diderot, Sorbonne Paris Cité;
| |
Collapse
|
11
|
Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells. Genome Biol 2015; 16:213. [PMID: 26415775 PMCID: PMC4587738 DOI: 10.1186/s13059-015-0760-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/25/2015] [Indexed: 11/22/2022] Open
Abstract
Background Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0760-8) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Yang M, Yuan ZM. A novel role of PRR14 in the regulation of skeletal myogenesis. Cell Death Dis 2015; 6:e1734. [PMID: 25906157 PMCID: PMC4650536 DOI: 10.1038/cddis.2015.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Dysregulation of genes involved in organizing and maintaining nuclear structures, such as SYNE1, SYNE2, TREM43, EMD and LMNA is frequently associated with diverse diseases termed laminopathies, which often affect the muscle tissue. The PRR14 protein was recently reported to tether heterochromatin to nuclear lamina but its function remains largely unknown. Here, we present several lines of evidence demonstrating a critical role of PRR14 in regulation of myoblast differentiation. We found that Prr14 expression was upregulated during skeletal myogenesis. Knockdown of Prr14 impeded, whereas overexpression of PRR14 enhanced C2C12 differentiation. The pro-myogenesis activity of PRR14 seemed to correlate with its ability to support cell survival and to maintain the stability and structure of lamin A/C. In addition, PRR14 stimulated the activity of MyoD via binding to heterochromatin protein 1 alpha (HP1α). The results altogether support a model in which PRR14 promotes skeletal myogenesis via supporting nuclear lamina structure and enhancing the activity of MyoD.
Collapse
Affiliation(s)
- M Yang
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Z-M Yuan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Joliot V, Ait-Mohamed O, Battisti V, Pontis J, Philipot O, Robin P, Ito H, Ait-Si-Ali S. The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation. PLoS One 2014; 9:e108858. [PMID: 25271443 PMCID: PMC4182762 DOI: 10.1371/journal.pone.0108858] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Myogenic terminal differentiation is a well-orchestrated process starting with permanent cell cycle exit followed by muscle-specific genetic program activation. Individual SWI/SNF components have been involved in muscle differentiation. Here, we show that the master myogenic differentiation factor MyoD interacts with more than one SWI/SNF subunit, including the catalytic subunit BRG1, BAF53a and the tumor suppressor BAF47/INI1. Downregulation of each of these SWI/SNF subunits inhibits skeletal muscle terminal differentiation but, interestingly, at different differentiation steps and extents. BAF53a downregulation inhibits myotube formation but not the expression of early muscle-specific genes. BRG1 or BAF47 downregulation disrupt both proliferation and differentiation genetic programs expression. Interestingly, BRG1 and BAF47 are part of the SWI/SNF remodeling complex as well as the N-CoR-1 repressor complex in proliferating myoblasts. However, our data show that, upon myogenic differentiation, BAF47 shifts in favor of N-CoR-1 complex. Finally, BRG1 and BAF47 are well-known tumor suppressors but, strikingly, only BAF47 seems essential in the myoblasts irreversible cell cycle exit. Together, our data unravel differential roles for SWI/SNF subunits in muscle differentiation, with BAF47 playing a dual role both in the permanent cell cycle exit and in the regulation of muscle-specific genes.
Collapse
Affiliation(s)
- Véronique Joliot
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Ouardia Ait-Mohamed
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Valentine Battisti
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Julien Pontis
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Ophélie Philipot
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Philippe Robin
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Slimane Ait-Si-Ali
- Université Paris Diderot, Sorbonne Paris Cité, Centre Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
14
|
Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, Friedli M, Duc J, Jang SM, Turelli P, Trono D. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 2014; 28:1397-409. [PMID: 24939876 PMCID: PMC4083085 DOI: 10.1101/gad.241661.114] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mobile elements are important evolutionary forces that challenge genomic integrity. Long interspersed element-1 (L1, also known as LINE-1) is the only autonomous transposon still active in the human genome. It displays an unusual pattern of evolution, with, at any given time, a single active L1 lineage amplifying to thousands of copies before getting replaced by a new lineage, likely under pressure of host restriction factors, which act notably by silencing L1 expression during early embryogenesis. Here, we demonstrate that in human embryonic stem (hES) cells, KAP1 (KRAB [Krüppel-associated box domain]-associated protein 1), the master cofactor of KRAB-containing zinc finger proteins (KRAB-ZFPs) previously implicated in the restriction of endogenous retroviruses, represses a discrete subset of L1 lineages predicted to have entered the ancestral genome between 26.8 million and 7.6 million years ago. In mice, we documented a similar chronologically conditioned pattern, albeit with a much contracted time scale. We could further identify an L1-binding KRAB-ZFP, suggesting that this rapidly evolving protein family is more globally responsible for L1 recognition. KAP1 knockdown in hES cells induced the expression of KAP1-bound L1 elements, but their younger, human-specific counterparts (L1Hs) were unaffected. Instead, they were stimulated by depleting DNA methyltransferases, consistent with recent evidence demonstrating that the PIWI-piRNA (PIWI-interacting RNA) pathway regulates L1Hs in hES cells. Altogether, these data indicate that the early embryonic control of L1 is an evolutionarily dynamic process and support a model in which newly emerged lineages are first suppressed by DNA methylation-inducing small RNA-based mechanisms before KAP1-recruiting protein repressors are selected.
Collapse
Affiliation(s)
- Nathaly Castro-Diaz
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gabriela Ecco
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Andrea Coluccio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Benyamin Yazdanpanah
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marc Friedli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Suk Min Jang
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Sdek P, Oyama K, Angelis E, Chan SS, Schenke-Layland K, MacLellan WR. Epigenetic regulation of myogenic gene expression by heterochromatin protein 1 alpha. PLoS One 2013; 8:e58319. [PMID: 23505487 PMCID: PMC3594309 DOI: 10.1371/journal.pone.0058319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/02/2013] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is an essential heterochromatin-associated protein typically involved in the epigenetic regulation of gene silencing. However, recent reports have demonstrated that HP1 can also activate gene expression in certain contexts including differentiation. To explore the role of each of the three mammalian HP1 family members (α, β and γ) in skeletal muscle, their expression was individually disrupted in differentiating skeletal myocytes. Among the three isoforms of HP1, HP1α was specifically required for myogenic gene expression in myoblasts only. Knockdown of HP1α led to a defect in transcription of skeletal muscle-specific genes including Lbx1, MyoD and myogenin. HP1α binds to the genomic region of myogenic genes and depletion of HP1α results in a paradoxical increase in histone H3 lysine 9 trimethylation (H3K9me3) at these sites. JHDM3A, a H3K9 demethylase also binds to myogenic gene's genomic regions in myoblasts in a HP1α-dependent manner. JHDM3A interacts with HP1α and knockdown of JHDM3A in myoblasts recapitulates the decreased myogenic gene transcription seen with HP1α depletion. These results propose a novel mechanism for HP1α-dependent gene activation by interacting with the demethylase JHDM3A and that HP1α is required for maintenance of myogenic gene expression in myoblasts.
Collapse
Affiliation(s)
- Patima Sdek
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kyohei Oyama
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ekaterini Angelis
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shing S. Chan
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Katja Schenke-Layland
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - W. Robb MacLellan
- Departments of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell Research, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM, Ren B. CBX3 regulates efficient RNA processing genome-wide. Genome Res 2012; 22:1426-36. [PMID: 22684280 PMCID: PMC3409256 DOI: 10.1101/gr.124818.111] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CBX5, CBX1, and CBX3 (HP1α, β, and γ, respectively) play an evolutionarily conserved role in the formation and maintenance of heterochromatin. In addition, CBX5, CBX1, and CBX3 may also participate in transcriptional regulation of genes. Recently, CBX3 binding to the bodies of a subset of genes has been observed in human and murine cells. However, the generality of this phenomenon and the role CBX3 may play in this context are unknown. Genome-wide localization analysis reveals CBX3 binding at genic regions, which strongly correlates with gene activity across multiple cell types. Depletion of CBX3 resulted in down-regulation of a subset of target genes. Loss of CBX3 binding leads to a more dramatic accumulation of unspliced nascent transcripts. In addition, we observed defective recruitment of splicing factors, including SNRNP70, to CBX3 target genes. Collectively, our data suggest a role for CBX3 in aiding in efficient cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Andrea Smallwood
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kim JW, Jang SM, Kim CH, An JH, Kang EJ, Choi KH. Tip60 regulates myoblast differentiation by enhancing the transcriptional activity of MyoD via their physical interactions. FEBS J 2011; 278:4394-404. [PMID: 21936881 DOI: 10.1111/j.1742-4658.2011.08362.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The progression of muscle differentiation is tightly controlled by multiple groups of transcription factors and transcriptional coregulators. MyoD is a transcription factor of the myogenic basic helix-loop-helix family required for the process of muscle cell differentiation. We now show that Tip60 is required for myoblast differentiation via enhancement of the transcriptional activity of MyoD. Knockdown of Tip60 in C2C12 cells leads to a lack of ability to switch from proliferating myoblasts to differentiated myotubes. Ectopic expression of Tip60 increased MyoD-mediated luciferase activity on the myogenic regulatory gene, myogenin. We also found that Tip60 physically interacts with MyoD using its chromo- and Zn-finger-containing region, and that these protein interactions were required for the effective transcriptional activation of MyoD. Furthermore, a chromatin immunoprecipitation assay revealed that Tip60 recruits MyoD on the myogenin promoter, and Tip60 also increases the levels of acetylated histones H3 and H4 during myogenic differentiation. Taken together, these findings suggest that Tip60 is an important co-activator for MyoD-mediated myogenesis in mouse myoblast C2C12 cells.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Department of Life Science (BK21 program), College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, Weiss JN, Maclellan WR. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. ACTA ACUST UNITED AC 2011; 194:407-23. [PMID: 21825075 PMCID: PMC3153646 DOI: 10.1083/jcb.201012049] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian heart loses its regenerative potential soon after birth. Adult cardiac myocytes (ACMs) permanently exit the cell cycle, and E2F-dependent genes are stably silenced, although the underlying mechanism is unclear. Heterochromatin, which silences genes in many biological contexts, accumulates with cardiac differentiation. H3K9me3, a histone methylation characteristic of heterochromatin, also increases in ACMs and at E2F-dependent promoters. We hypothesize that genes relevant for cardiac proliferation are targeted to heterochromatin by retinoblastoma (Rb) family members interacting with E2F transcription factors and recruiting heterochromatin protein 1 (HP1) proteins. To test this hypothesis, we created cardiac-specific Rb and p130 inducible double knockout (IDKO) mice. IDKO ACMs showed a decrease in total heterochromatin, and cell cycle genes were derepressed, leading to proliferation of ACMs. Although Rb/p130 deficiency had no effect on total H3K9me3 levels, recruitment of HP1-γ to promoters was lost. Depleting HP1-γ up-regulated proliferation-promoting genes in ACMs. Thus, Rb and p130 have overlapping roles in maintaining the postmitotic state of ACMs through their interaction with HP1-γ to direct heterochromatin formation and silencing of proliferation-promoting genes.
Collapse
Affiliation(s)
- Patima Sdek
- Cardiovascular Research Laboratory, Department of Medicine and Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sousa-Victor P, Muñoz-Cánoves P, Perdiguero E. Regulation of skeletal muscle stem cells through epigenetic mechanisms. Toxicol Mech Methods 2011; 21:334-42. [DOI: 10.3109/15376516.2011.557873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Tsang LWK, Hu N, Underhill DA. Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation. PLoS One 2010; 5:e14447. [PMID: 21206904 PMCID: PMC3012056 DOI: 10.1371/journal.pone.0014447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/06/2010] [Indexed: 01/23/2023] Open
Abstract
Background Methylation of histone H4 on lysine 20 plays critical roles in chromatin structure and function via mono- (H4K20me1), di- (H4K20me2), and trimethyl (H4K20me3) derivatives. In previous analyses of histone methylation dynamics in mid-gestation mouse embryos, we documented marked changes in H4K20 methylation during cell differentiation. These changes were particularly robust during myogenesis, both in vivo and in cell culture, where we observed a transition from H4K20me1 to H4K20me3. To assess the significance of this change, we used a gain-of-function strategy involving the lysine methyltransferases SUV420H1 and SUV420H2, which catalyze H4K20me2 and H4K20me3. At the same time, we characterized a second isoform of SUV420H1 (designated SUV420H1_i2) and compared the activity of all three SUV420H proteins with regard to localization and H4K20 methylation. Principal Findings Immunofluorescence revealed that exogenous SUV420H1_i2 was distributed throughout the cell, while a substantial portion of SUV420H1_i1 and SUV420H2 displayed the expected association with constitutive heterochromatin. Moreover, SUV420H1_i2 distribution was unaffected by co-expression of heterochromatin protein-1α, which increased the targeting of SUV420H1_i1 and SUV420H2 to regions of pericentromeric heterochromatin. Consistent with their distributions, SUV420H1_i2 caused an increase in H4K20me3 levels throughout the nucleus, whereas SUV420H1_i1 and SUV420H2 facilitated an increase in pericentric H4K20me3. Striking differences continued when the SUV420H proteins were tested in the C2C12 myogenic model system. Specifically, although SUV420H1_i2 induced precocious appearance of the differentiation marker Myogenin in the presence of mitogens, only SUV420H2 maintained a Myogenin-enriched population over the course of differentiation. Paradoxically, SUV420H1_i1 could not be expressed in C2C12 cells, which suggests it is under post-transcriptional or post-translational control. Conclusions These data indicate that SUV420H proteins differ substantially in their localization and activity. Importantly, SUV420H2 can induce a transition from H4K20me1 to H4K20me3 in regions of constitutive heterochromatin that is sufficient to enhance myogenic differentiation, suggesting it can act an as epigenetic ‘switch’ in this process.
Collapse
Affiliation(s)
- Leanna W. K. Tsang
- Department of Medical Genetics, School of Human Development, University of Alberta, Edmonton, Alberta, Canada
| | - Ninghe Hu
- Department of Medical Genetics, School of Human Development, University of Alberta, Edmonton, Alberta, Canada
| | - D. Alan Underhill
- Department of Medical Genetics, School of Human Development, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, School of Cancer, Engineering, and Imaging Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
21
|
Philipot O, Joliot V, Ait-Mohamed O, Pellentz C, Robin P, Fritsch L, Ait-Si-Ali S. The core binding factor CBF negatively regulates skeletal muscle terminal differentiation. PLoS One 2010; 5:e9425. [PMID: 20195544 PMCID: PMC2828485 DOI: 10.1371/journal.pone.0009425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/03/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Core Binding Factor or CBF is a transcription factor composed of two subunits, Runx1/AML-1 and CBF beta or CBFbeta. CBF was originally described as a regulator of hematopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Here we show that CBF is involved in the control of skeletal muscle terminal differentiation. Indeed, downregulation of either Runx1 or CBFbeta protein level accelerates cell cycle exit and muscle terminal differentiation. Conversely, overexpression of CBFbeta in myoblasts slows terminal differentiation. CBF interacts directly with the master myogenic transcription factor MyoD, preferentially in proliferating myoblasts, via Runx1 subunit. In addition, we show a preferential recruitment of Runx1 protein to MyoD target genes in proliferating myoblasts. The MyoD/CBF complex contains several chromatin modifying enzymes that inhibits MyoD activity, such as HDACs, Suv39h1 and HP1beta. When overexpressed, CBFbeta induced an inhibition of activating histone modification marks concomitant with an increase in repressive modifications at MyoD target promoters. CONCLUSIONS/SIGNIFICANCE Taken together, our data show a new role for Runx1/CBFbeta in the control of the proliferation/differentiation in skeletal myoblasts.
Collapse
Affiliation(s)
- Ophélie Philipot
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Véronique Joliot
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Ouardia Ait-Mohamed
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Céline Pellentz
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Philippe Robin
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Lauriane Fritsch
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
| | - Slimane Ait-Si-Ali
- Institut André Lwoff, FRE2944, CNRS and Université Paris-Sud, Villejuif, France
- * E-mail:
| |
Collapse
|
22
|
Fritsch L, Robin P, Mathieu JR, Souidi M, Hinaux H, Rougeulle C, Harel-Bellan A, Ameyar-Zazoua M, Ait-Si-Ali S. A Subset of the Histone H3 Lysine 9 Methyltransferases Suv39h1, G9a, GLP, and SETDB1 Participate in a Multimeric Complex. Mol Cell 2010; 37:46-56. [DOI: 10.1016/j.molcel.2009.12.017] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/17/2009] [Accepted: 10/23/2009] [Indexed: 12/01/2022]
|
23
|
Vermaak D, Malik HS. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 2009; 43:467-92. [PMID: 19919324 DOI: 10.1146/annurev-genet-102108-134802] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterochromatin is the gene-poor, transposon-rich, late-replicating chromatin compartment that was first cytologically defined more than 70 years ago. The identification of heterochromatin protein 1 (HP1) paved the way for a molecular dissection of this important component of complex eukaryotic genomes. Although initial studies revealed HP1's key role in heterochromatin maintenance and function, more recent studies have discovered a role for HP1 in numerous processes including, surprisingly, euchromatic gene expression. Drosophila genomes possess at least five HP1 paralogs that have significantly different roles, ranging from canonical heterochromatic function at pericentric and telomeric regions to exclusive localization and regulation of euchromatic genes. They also possess paralogs exclusively involved in defending the germline against mobile elements. Pursuing a survey of recent genetic and evolutionary findings, we highlight how Drosophila genomes represent the best opportunity to dissect the diversity and incredible versatility of HP1 proteins in organizing and protecting eukaryotic genomes.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
24
|
Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A. Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res 2009; 38:e20. [PMID: 19955234 PMCID: PMC2831319 DOI: 10.1093/nar/gkp1100] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) bind to Argonaute proteins, and together they form the RISC complex and regulate target mRNA translation and/or stability. Identification of mRNA targets is key to deciphering the physiological functions and mode of action of miRNAs. In mammals, miRNAs are generally poorly homologous to their target sequence, and target identification cannot be based solely on bioinformatics. Here, we describe a biochemical approach, based on tandem affinity purification, in which mRNA/miRNA complexes are sequentially pulled down, first via the Argonaute moiety and then via the miRNA. Our ‘TAP-Tar’ procedure allows the specific pull down of mRNA targets of miRNA. It is useful for validation of targets predicted in silico, and, potentially, for discovery of previously uncharacterized targets.
Collapse
Affiliation(s)
- Nora Nonne
- CNRS FRE 2944, Institut André Lwoff, Villejuif F-94801 and Université Paris-Sud, Villejuif F-94801, France
| | | | | | | |
Collapse
|
25
|
Drosophila HP1c is regulated by an auto-regulatory feedback loop through its binding partner Woc. PLoS One 2009; 4:e5089. [PMID: 19352434 PMCID: PMC2662408 DOI: 10.1371/journal.pone.0005089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023] Open
Abstract
HP1 is a major component of chromatin and regulates gene expression through its binding to methylated histone H3. Most eukaryotes express at least three isoforms of HP1 with similar domain architecture. However, despite the common specificity for methylated histone H3, the three HP1 isoforms bind to different regions of the genome. Most of the studies so far focused on the HP1a isoform and its role in transcriptional regulation. As HP1a requires additional factors to bind methylated chromatin in vitro, we wondered whether another isoform might also require additional targeting factors. Indeed, we found that HP1c interacts with the DNA binding factors Woc and Row and requires Woc to become targeted to chromatin in vivo. Moreover, we show that the interaction between HP1c and Woc constitutes a transcriptional feedback loop that operates to balance the concentration of HP1c within the cell. This regulation may prevent HP1c from binding to methylated heterochromatin.
Collapse
|