1
|
He Y, Haque MM, Stuehr DJ, Lu HP. Conformational States and Fluctuations in Endothelial Nitric Oxide Synthase under Calmodulin Regulation. Biophys J 2021; 120:5196-5206. [PMID: 34748763 DOI: 10.1016/j.bpj.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Mechanisms that regulate nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions and is activated by calmodulin (CaM) binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two NOS electron transfer domains in a FRET dye-labeled endothelial NOS reductase domain (eNOSr) and to understand how CaM affects the dynamics to regulate catalysis by shaping the spatial and temporal conformational behaviors of eNOSr. In addition, we developed and applied a new imaging approach capable of recording 3D FRET efficiency vs time images to characterize the impact on dynamic conformal states of the eNOSr enzyme by the binding of CaM, which identifies clearly that CaM binding generates an extra new open state of eNOSr, resolving more detailed NOS conformational states and their fluctuation dynamics. We identified a new output state that has an extra-open FAD-FMN conformation that is only populated in the CaM-bound eNOSr. This may reveal the critical role of CaM in triggering NOS activity as it gives conformational flexibility for eNOSr to assume the electron transfer output FMN-Heme state. Our results provide a dynamic link to recently reported EM static structure analyses and demonstrate a capable approach in probing and simultaneously analyzing all of the conformational states, their fluctuations, and the fluctuation dynamics for understanding the mechanism of NOS electron transfer, involving electron transfer amongst FAD, FMN, and Heme domains, during NO synthesis.
Collapse
Affiliation(s)
- Yufan He
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, Ohio, 44195
| | - Dennis J Stuehr
- Department of Inflammation and Immunology, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, Ohio, 44195.
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403.
| |
Collapse
|
2
|
Li J, Zheng H, Feng C. Effect of Macromolecular Crowding on the FMN-Heme Intraprotein Electron Transfer in Inducible NO Synthase. Biochemistry 2019; 58:3087-3096. [PMID: 31251033 DOI: 10.1021/acs.biochem.9b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous biochemical studies of nitric oxide synthase enzymes (NOSs) were conducted in diluted solutions. However, the intracellular milieu where the proteins perform their biological functions is crowded with macromolecules. The effect of crowding on the electron transfer kinetics of multidomain proteins is much less understood. Herein, we investigated the effect of macromolecular crowding on the FMN-heme intraprotein interdomain electron transfer (IET), an obligatory step in NOS catalysis. A noticeable increase in the IET rate in the bidomain oxygenase/FMN (oxyFMN) and the holoprotein of human inducible NOS (iNOS) was observed upon addition of Ficoll 70 in a nonsaturable manner. Additionally, the magnitude of IET enhancement for the holoenzyme is much higher than that that of the oxyFMN construct. The crowding effect is also evident at different ionic strengths. Importantly, the enhancing extent is similar for the iNOS oxyFMN protein with added Ficoll 70 and Dextran 70 that give the same solution viscosity, showing that specific interactions do not exist between the NOS protein and the crowder. Moreover, the population of the docked FMN-heme state is significantly increased upon addition of Ficoll 70 and the fluorescence lifetime values do not correspond to those in the absence of Ficoll 70. The steady-state cytochrome c reduction by the holoenzyme is noticeably enhanced by the crowder, while the ferricyanide reduction is unchanged. The NO production activity of the iNOS holoenzyme is stimulated by Ficoll 70. The effect of macromolecular crowding on the kinetics can be rationalized on the basis of the excluded volume effect, with an entropic origin. The intraprotein electron transfer kinetics, fluorescence lifetime, and steady-state enzymatic activity results indicate that macromolecular crowding modulates the NOS electron transfer through multiple pathways. Such a mechanism should be applicable to electron transfer in other multidomain redox proteins.
Collapse
Affiliation(s)
- Jinghui Li
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Huayu Zheng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Changjian Feng
- College of Pharmacy , University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
3
|
Tejero J, Hunt AP, Santolini J, Lehnert N, Stuehr DJ. Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases. J Biol Chem 2019; 294:7904-7916. [PMID: 30926606 DOI: 10.1074/jbc.ra119.007810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) synthases (NOSs) catalyze the formation of NO from l-arginine. We have shown previously that the NOS enzyme catalytic cycle involves a large number of reactions but can be characterized by a global model with three main rate-limiting steps. These are the rate of heme reduction by the flavin domain (kr ), of dissociation of NO from the ferric heme-NO complex (kd ), and of oxidation of the ferrous heme-NO complex (k ox). The reaction of oxygen with the ferrous heme-NO species is part of a futile cycle that does not directly contribute to NO synthesis but allows a population of inactive enzyme molecules to return to the catalytic cycle, and thus, enables a steady-state NO synthesis rate. Previously, we have reported that this reaction does involve the reaction of oxygen with the NO-bound ferrous heme complex, but the mechanistic details of the reaction, that could proceed via either an inner-sphere or an outer-sphere mechanism, remained unclear. Here, we present additional experiments with neuronal NOS (nNOS) and inducible NOS (iNOS) variants (nNOS W409F and iNOS K82A and V346I) and computational methods to study how changes in heme access and electronics affect the reaction. Our results support an inner-sphere mechanism and indicate that the particular heme-thiolate environment of the NOS enzymes can stabilize an N-bound FeIII-N(O)OO- intermediate species and thereby catalyze this reaction, which otherwise is not observed or favorable in proteins like globins that contain a histidine-coordinated heme.
Collapse
Affiliation(s)
- Jesús Tejero
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Andrew P Hunt
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Jérôme Santolini
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Nicolai Lehnert
- the Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| |
Collapse
|
4
|
Hanson QM, Carley JR, Gilbreath TJ, Smith BC, Underbakke ES. Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation. J Mol Biol 2018; 430:935-947. [PMID: 29458127 DOI: 10.1016/j.jmb.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Nitric oxide synthase (NOS) is the primary generator of nitric oxide signals controlling diverse physiological processes such as neurotransmission and vasodilation. NOS activation is contingent on Ca2+/calmodulin binding at a linker between its oxygenase and reductase domains to induce large conformational changes that orchestrate inter-domain electron transfer. However, the structural dynamics underlying activation of full-length NOS remain ambiguous. Employing hydrogen-deuterium exchange mass spectrometry, we reveal mechanisms underlying neuronal NOS activation by calmodulin and regulation by phosphorylation. We demonstrate that calmodulin binding orders the junction between reductase and oxygenase domains, exposes the FMN subdomain, and elicits a more dynamic oxygenase active site. Furthermore, we demonstrate that phosphorylation partially mimics calmodulin activation to modulate neuronal NOS activity via long-range allostery. Calmodulin binding and phosphorylation ultimately promote a more dynamic holoenzyme while coordinating inter-domain communication and electron transfer.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey R Carley
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Tyler J Gilbreath
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
5
|
Haque MM, Tejero J, Bayachou M, Kenney CT, Stuehr DJ. A cross-domain charge interaction governs the activity of NO synthase. J Biol Chem 2018; 293:4545-4554. [PMID: 29414777 DOI: 10.1074/jbc.ra117.000635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
NO synthase (NOS) enzymes perform interdomain electron transfer reactions during catalysis that may rely on complementary charge interactions at domain-domain interfaces. Guided by our previous results and a computer-generated domain-docking model, we assessed the importance of cross-domain charge interactions in the FMN-to-heme electron transfer in neuronal NOS (nNOS). We reversed the charge of three residues (Glu-762, Glu-816, and Glu-819) that form an electronegative triad on the FMN domain and then individually reversed the charges of three electropositive residues (Lys-423, Lys-620, and Lys-660) on the oxygenase domain (NOSoxy), to potentially restore a cross-domain charge interaction with the triad, but in reversed polarity. Charge reversal of the triad completely eliminated heme reduction and NO synthesis in nNOS. These functions were partly restored by the charge reversal at oxygenase residue Lys-423, but not at Lys-620 or Lys-660. Full recovery of heme reduction was probably muted by an accompanying change in FMN midpoint potential that made electron transfer to the heme thermodynamically unfavorable. Our results provide direct evidence that cross-domain charge pairing is required for the FMN-to-heme electron transfer in nNOS. The unique ability of charge reversal at position 423 to rescue function indicates that it participates in an essential cross-domain charge interaction with the FMN domain triad. This supports our domain-docking model and suggests that it may depict a productive electron transfer complex formed during nNOS catalysis.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Jesús Tejero
- the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Mekki Bayachou
- the Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Claire T Kenney
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Departments of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
6
|
Haque MM, Ray SS, Stuehr DJ. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics. J Biol Chem 2016; 291:23047-23057. [PMID: 27613870 DOI: 10.1074/jbc.m116.737361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
7
|
He Y, Haque MM, Stuehr DJ, Lu HP. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics. Proc Natl Acad Sci U S A 2015; 112:11835-40. [PMID: 26311846 PMCID: PMC4586839 DOI: 10.1073/pnas.1508829112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS.
Collapse
Affiliation(s)
- Yufan He
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - H Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403;
| |
Collapse
|
8
|
Sheng Y, Zhong L, Guo D, Lau G, Feng C. Insight into structural rearrangements and interdomain interactions related to electron transfer between flavin mononucleotide and heme in nitric oxide synthase: A molecular dynamics study. J Inorg Biochem 2015; 153:186-196. [PMID: 26277414 DOI: 10.1016/j.jinorgbio.2015.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/29/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Calmodulin (CaM) binding to nitric oxide synthase (NOS) enables a conformational change, in which the FMN domain shuttles between the FAD and heme domains to deliver electrons to the active site heme center. A clear understanding of this large conformational change is critical, since this step is the rate-limiting in NOS catalysis. Herein molecular dynamics simulations were conducted on a model of an oxygenase/FMN (oxyFMN) construct of human inducible NOS (iNOS). This is to investigate the structural rearrangements and the domain interactions related to the FMN-heme interdomain electron transfer (IET). We carried out simulations on the iNOS oxyFMN·CaM complex models in [Fe(III)][FMNH(-)] and [Fe(II)][FMNH] oxidation states, the pre- and post-IET states. The comparison of the dynamics and conformations of the iNOS construct at the two oxidation states has allowed us to identify key factors related to facilitating the FMN-heme IET process. The computational results demonstrated, for the first time, that the conformational change is redox-dependent. Predictions of the key interacting sites in optimal interdomain FMN/heme docking are well supported by experimental data in the literature. An intra-subunit pivot region is predicted to modulate the FMN domain motion and correlate with existence of a bottleneck in the conformational sampling that leads to the electron transfer-competent state. Interactions of the residues identified in this work are proposed to ensure that the FMN domain moves with appropriate degrees of freedom and docks to proper positions at the heme domain, resulting in efficient IET and nitric oxide production.
Collapse
Affiliation(s)
- Yinghong Sheng
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA.
| | - Linghao Zhong
- Pennsylvania State University at Mont Alto, 1 Campus Drive, Mont Alto, PA 17237, USA
| | - Dahai Guo
- Department of Bioengineering and Software Engineering, U.A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Gavin Lau
- Department of Chemistry & Physics, College of Arts & Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, USA
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
9
|
Duarte Alaniz V, Rocha-Rinza T, Cuevas G. Assessment of hydrophobic interactions and their contributions through the analysis of the methane dimer. J Comput Chem 2014; 36:361-75. [DOI: 10.1002/jcc.23798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/21/2014] [Accepted: 11/02/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Víctor Duarte Alaniz
- Departamento de Fisicoquímica; Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México 04510 D. F. México
| | - Tomás Rocha-Rinza
- Departamento de Fisicoquímica; Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México 04510 D. F. México
| | - Gabriel Cuevas
- Departamento de Fisicoquímica; Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria; México 04510 D. F. México
| |
Collapse
|
10
|
Haque MM, Bayachou M, Tejero J, Kenney CT, Pearl NM, Im SC, Waskell L, Stuehr DJ. Distinct conformational behaviors of four mammalian dual-flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles. FEBS J 2014; 281:5325-40. [PMID: 25265015 DOI: 10.1111/febs.13073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/27/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022]
Abstract
Multidomain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions and relationships between these parameters and catalytic activity are not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian diflavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase, methionine synthase reductase and endothelial and neuronal nitric oxide synthase. We used stopped-flow spectroscopy, single turnover methods and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. The results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12% to 72% open state) and also vary 100-fold with respect to their rates of conformational switching between unreactive closed and reactive open states (cytochrome P450 reductase > neuronal nitric oxide synthase > methionine synthase reductase > endothelial nitric oxide synthase). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. The present study is the first to quantify these conformational parameters among the diflavin enzymes and suggests how the parameters might be manipulated to speed or slow biological electron flux.
Collapse
Affiliation(s)
- Mohammad M Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
NOSs are homodimeric multidomain enzymes responsible for producing NO. In mammals, NO acts as an intercellular messenger in a variety of signaling reactions, as well as a cytotoxin in the innate immune response. Mammals possess three NOS isoforms--inducible, endothelial, and neuronal NOS--that are composed of an N-terminal oxidase domain and a C-terminal reductase domain. Calmodulin (CaM) activates NO synthesis by binding to the helical region connecting these two domains. Although crystal structures of isolated domains have been reported, no structure is available for full-length NOS. We used high-throughput single-particle EM to obtain the structures and higher-order domain organization of all three NOS holoenzymes. The structures of inducible, endothelial, and neuronal NOS with and without CaM bound are similar, consisting of a dimerized oxidase domain flanked by two separated reductase domains. NOS isoforms adopt many conformations enabled by three flexible linkers. These conformations represent snapshots of the continuous electron transfer pathway from the reductase domain to the oxidase domain, which reveal that only a single reductase domain participates in electron transfer at a time, and that CaM activates NOS by constraining rotational motions and by directly binding to the oxidase domain. Direct visualization of these large conformational changes induced during electron transfer provides significant insight into the molecular underpinnings governing NO formation.
Collapse
|
13
|
Yokom AL, Morishima Y, Lau M, Su M, Glukhova A, Osawa Y, Southworth DR. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain. J Biol Chem 2014; 289:16855-65. [PMID: 24737326 DOI: 10.1074/jbc.m114.564005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis.
Collapse
Affiliation(s)
- Adam L Yokom
- From the Department of Biological Chemistry, the Program in Chemical Biology, and
| | | | | | - Min Su
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | | | | - Daniel R Southworth
- From the Department of Biological Chemistry, the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
14
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Haque MM, Tejero J, Bayachou M, Wang ZQ, Fadlalla M, Stuehr DJ. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis. FEBS J 2013; 280:4439-53. [PMID: 23789902 DOI: 10.1111/febs.12404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (k(cat1) and k(cat2)) are both limited by the rate of ferric heme reduction (k(r)). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as k(d)) to release NO in a productive manner, or reduction (k(r)) to form a ferrous heme-NO complex that must react with O2 (at a rate that we denote as k(ox)) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (k(cat1), k(cat2), k(r), k(d) and k(ox)) determines NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. In the present study, we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS. We then incorporated the measured kinetic values into computer simulations of the neuronal NOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviours. The results obtained provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter neuronal NOS catalytic behaviours and NO release efficiency as a function of temperature.
Collapse
|
16
|
Charge-pairing interactions control the conformational setpoint and motions of the FMN domain in neuronal nitric oxide synthase. Biochem J 2013; 450:607-17. [PMID: 23289611 DOI: 10.1042/bj20121488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations.
Collapse
|
17
|
Li W, Chen L, Lu C, Elmore BO, Astashkin AV, Rousseau DL, Yeh SR, Feng C. Regulatory role of Glu546 in flavin mononucleotide-heme electron transfer in human inducible nitric oxide synthase. Inorg Chem 2013; 52:4795-801. [PMID: 23570607 DOI: 10.1021/ic3020892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) production by mammalian NO synthase (NOS) is believed to be regulated by the docking of the flavin mononucleotide (FMN) domain in one subunit of the dimer onto the heme domain of the adjacent subunit. Glu546, a conserved charged surface residue of the FMN domain in human inducible NOS (iNOS), is proposed to participate in the interdomain FMN/heme interactions [Sempombe et al. Inorg. Chem.2011, 50, 6869-6861]. In the present work, we further investigated the role of the E546 residue in the FMN-heme interdomain electron transfer (IET), a catalytically essential step in the NOS enzymes. Laser flash photolysis was employed to directly measure the FMN-heme IET kinetics for the E546N mutant of human iNOS oxygenase/FMN (oxyFMN) construct. The temperature dependence of the IET kinetics was also measured over the temperature range of 283-304 K to determine changes in the IET activation parameters. The E546N mutation was found to retard the IET by significantly raising the activation entropic barrier. Moreover, pulsed electron paramagnetic resonance data showed that the geometry of the docked FMN/heme complex in the mutant is basically the same as in the wild type construct, whereas the probability of formation of such a complex is about twice lower. These results indicate that the retarded IET in the E546N mutant is not caused by an altered conformation of the docked FMN/heme complex, but by a lower population of the IET-active conformation. In addition, the negative activation entropy of the mutant is still substantially lower than that of the holoenzyme. This supports a mechanism by which the FMN domain can modify the IET through altering probability of the docked state formation.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
19
|
Haque MM, Fadlalla MA, Aulak KS, Ghosh A, Durra D, Stuehr DJ. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains. J Biol Chem 2012; 287:30105-16. [PMID: 22722929 PMCID: PMC3436266 DOI: 10.1074/jbc.m112.339697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Indexed: 01/19/2023] Open
Abstract
In nitric-oxide synthases (NOSs), two flexible hinges connect the FMN domain to the rest of the enzyme and may guide its interactions with partner domains for electron transfer and catalysis. We investigated the role of the FMN-FAD/NADPH hinge in rat neuronal NOS (nNOS) by constructing mutants that either shortened or lengthened this hinge by 2, 4, and 6 residues. Shortening the hinge progressively inhibited electron flux through the calmodulin (CaM)-free and CaM-bound nNOS to cytochrome c, whereas hinge lengthening relieved repression of electron flux in CaM-free nNOS and had no impact or slowed electron flux through CaM-bound nNOS to cytochrome c. How hinge length influenced heme reduction depended on whether enzyme flavins were pre-reduced with NADPH prior to triggering heme reduction. Without pre-reduction, changing the hinge length was deleterious; with pre-reduction, the hinge shortening was deleterious, and hinge lengthening increased heme reduction rates beyond wild type. Flavin fluorescence and stopped-flow kinetic studies on CaM-bound enzymes suggested hinge lengthening slowed the domain-domain interaction needed for FMN reduction. All hinge length changes lowered NO synthesis activity and increased uncoupled NADPH consumption. We conclude that several aspects of catalysis are sensitive to FMN-FAD/NADPH hinge length and that the native hinge allows a best compromise among the FMN domain interactions and associated electron transfer events to maximize NO synthesis and minimize uncoupled NADPH consumption.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Mohammed A. Fadlalla
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kulwant S. Aulak
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Arnab Ghosh
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Deborah Durra
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J. Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
20
|
Lobe-specific calcium binding in calmodulin regulates endothelial nitric oxide synthase activation. PLoS One 2012; 7:e39851. [PMID: 22768143 PMCID: PMC3387242 DOI: 10.1371/journal.pone.0039851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human endothelial nitric oxide synthase (eNOS) requires calcium-bound calmodulin (CaM) for electron transfer but the detailed mechanism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Using a series of CaM mutants with E to Q substitution at the four calcium-binding sites, we found that single mutation at any calcium-binding site (B1Q, B2Q, B3Q and B4Q) resulted in ∼2-3 fold increase in the CaM concentration necessary for half-maximal activation (EC50) of citrulline formation, indicating that each calcium-binding site of CaM contributed to the association between CaM and eNOS. Citrulline formation and cytochrome c reduction assays revealed that in comparison with nNOS or iNOS, eNOS was less stringent in the requirement of calcium binding to each of four calcium-binding sites. However, lobe-specific disruption with double mutations in calcium-binding sites either at N- (B12Q) or at C-terminal (B34Q) lobes greatly diminished both eNOS oxygenase and reductase activities. Gel mobility shift assay and flavin fluorescence measurement indicated that N- and C-lobes of CaM played distinct roles in regulating eNOS catalysis; the C-terminal EF-hands in its calcium-bound form was responsible for the binding of canonical CaM-binding domain, while N-terminal EF-hands in its calcium-bound form controlled the movement of FMN domain. Limited proteolysis studies further demonstrated that B12Q and B34Q induced different conformational change in eNOS. CONCLUSIONS Our results clearly demonstrate that CaM controls eNOS electron transfer primarily through its lobe-specific calcium binding.
Collapse
|
21
|
Li W, Fan W, Chen L, Elmore BO, Piazza M, Guillemette JG, Feng C. Role of an isoform-specific serine residue in FMN-heme electron transfer in inducible nitric oxide synthase. J Biol Inorg Chem 2012; 17:675-85. [PMID: 22407542 DOI: 10.1007/s00775-012-0887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 01/30/2023]
Abstract
In the crystal structure of a calmodulin (CaM)-bound FMN domain of human inducible nitric oxide synthase (NOS), the CaM-binding region together with CaM forms a hinge, and pivots on an R536(NOS)/E47(CaM) pair (Xia et al. J Biol Chem 284:30708-30717, 2009). Notably, isoform-specific human inducible NOS S562 and C563 residues form hydrogen bonds with the R536 residue through their backbone oxygens. In this study, we investigated the roles of the S562 and C563 residues in the NOS FMN-heme interdomain electron transfer (IET), the rates of which can be used to probe the interdomain FMN/heme alignment. Human inducible NOS S562K and C563R mutants of an oxygenase/FMN (oxyFMN) construct were made by introducing charged residues at these sites as found in human neuronal NOS and endothelial NOS isoforms, respectively. The IET rate constant of the S562K mutant is notably decreased by one third, and its flavin fluorescence intensity per micromole per liter is diminished by approximately 24 %. These results suggest that a positive charge at position 562 destabilizes the hydrogen-bond-mediated NOS/CaM alignment, resulting in slower FMN-heme IET in the mutant. On the other hand, the IET rate constant of the C563R mutant is similar to that of the wild-type, indicating that the mutational effect is site-specific. Moreover, the human inducible NOS oxyFMN R536E mutant was constructed to disrupt the bridging CaM/NOS interaction, and its FMN-heme IET rate was decreased by 96 %. These results demonstrated a new role of the isoform-specific serine residue of the key CaM/FMN(NOS) bridging site in regulating the FMN-heme IET (possibly by tuning the alignment of the FMN and heme domains).
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
23
|
Comparing the temperature dependence of FMN to heme electron transfer in full length and truncated inducible nitric oxide synthase proteins. FEBS Lett 2011; 586:159-62. [PMID: 22198200 DOI: 10.1016/j.febslet.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 11/20/2022]
Abstract
The FMN-heme interdomain (intraprotein) electron transfer (IET) kinetics in full length and oxygenase/FMN (oxyFMN) construct of human iNOS were determined by laser flash photolysis over the temperature range from 283 to 304K. An appreciable increase in the rate constant value was observed with an increase in the temperature. Our previous viscosity study indicated that the IET process is conformationally gated, and Eyring equation was thus used to analyze the temperature dependence data. The obtained magnitude of activation entropy for the IET in the oxyFMN construct is only one-fifth of that for the holoenzyme. This indicates that the FMN domain in the holoenzyme needs to sample more conformations before the IET takes place, and that the FMN domain in the oxyFMN construct is better poised for efficient IET.
Collapse
|
24
|
Haque MM, Kenney C, Tejero J, Stuehr DJ. A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual-flavin enzyme-simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains. FEBS J 2011; 278:4055-69. [PMID: 21848659 DOI: 10.1111/j.1742-4658.2011.08310.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NADPH-dependent dual-flavin enzymes provide electrons in many redox reactions, although the mechanism responsible for regulating their electron flux remains unclear. We recently proposed a four-state kinetic model that links the electron flux through a dual-flavin enzyme to its rates of interflavin electron transfer and FMN domain conformational motion [Stuehr DJ et al. (2009) FEBS J276, 3959-3974]. In the present study, we ran computer simulations of the kinetic model to determine whether it could fit the experimentally-determined, pre-steady-state and steady-state traces of electron flux through the neuronal and endothelial NO synthase flavoproteins (reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, respectively) to cytochrome c. We found that the kinetic model accurately fitted the experimental data. The simulations gave estimates for the ensemble rates of interflavin electron transfer and FMN domain conformational motion in the reductase domains of neuronal nitric oxide synthase and endothelial nitric oxide synthase, provided the minimum rate boundary values, and predicted the concentrations of the four enzyme species that cycle during catalysis. The findings of the present study suggest that the rates of interflavin electron transfer and FMN domain conformational motion are counterbalanced such that both processes may limit electron flux through the enzymes. Such counterbalancing would allow a robust electron flux at the same time as keeping the rates of interflavin electron transfer and FMN domain conformational motion set at relatively slow levels.
Collapse
Affiliation(s)
- Mohammad M Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | | | | | | |
Collapse
|
25
|
Li W, Fan W, Elmore BO, Feng C. Effect of solution viscosity on intraprotein electron transfer between the FMN and heme domains in inducible nitric oxide synthase. FEBS Lett 2011; 585:2622-6. [PMID: 21803041 DOI: 10.1016/j.febslet.2011.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 11/15/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN construct were determined by laser flash photolysis as a function of solution viscosity (1.0-3.0 cP). In the presence of ethylene glycol or sucrose, an appreciable decrease in the IET rate constant value was observed with an increase in the solution viscosity. The IET rate constant is inversely proportional to the viscosity for both viscosogens. This demonstrates that viscosity, and not other properties of the added viscosogens, causes the dependence of IET rates on the solvent concentration. The IET kinetics results indicate that the FMN-heme IET in iNOS is gated by a large conformational change of the FMN domain. The kinetics and NOS flavin fluorescence results together indicate that the docked FMN/heme state is populated transiently.
Collapse
Affiliation(s)
- Wenbing Li
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
26
|
Role of the interface between the FMN and FAD domains in the control of redox potential and electronic transfer of NADPH-cytochrome P450 reductase. Biochem J 2011; 435:197-206. [PMID: 21265736 DOI: 10.1042/bj20101984] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CPR (NADPH-cytochrome P450 reductase) is a multidomain protein containing two flavin-containing domains joined by a connecting domain thought to control the necessary movements of the catalytic domains during electronic cycles. We present a detailed biochemical analysis of two chimaeric CPRs composed of the association of human or yeast FMN with the alternative connecting/FAD domains. Despite the assembly of domains having a relatively large evolutionary distance between them, our data support the idea that the integrity of the catalytic cycle is conserved in our chimaeric enzymes, whereas the recognition, interactions and positioning of both catalytic domains are probably modified. The main consequences of the chimaerogenesis are a decrease in the internal electron-transfer rate between both flavins correlated with changes in the geometry of chimaeric CPRs in solution. Results of the present study highlight the role of the linker and connecting domain in the recognition at the interfaces between the catalytic domains and the impact of interdomain interactions on the redox potentials of the flavins, the internal electron-transfer efficiency and the global conformation and dynamic equilibrium of the CPRs.
Collapse
|
27
|
Abstract
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons, to some extent in astrocytes and neuronal stem cells. The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS, including nNOS-α, nNOS-β, nNOS-µ, nNOS-γ and nNOS-2. Monomer of nNOS is inactive, and dimer is the active form. Dimerization requires tetrahydrobiopterin (BH4), heme and L-arginine binding. Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity, and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70, calmodulin (CaM), phosphorylation and dephosphorylation at Ser847 and Ser1412, and the protein inhibitor of nNOS (PIN). There are primarily 9 nNOS-interacting proteins, including post-synaptic density protein 95 (PSD95), clathrin assembly lymphoid leukemia (CALM), calcium/calmodulin-dependent protein kinase II alpha (CAMKIIA), Disks large homolog 4 (DLG4), DLG2, 6-phosphofructokinase, muscle type (PFK-M), carboxy-terminal PDZ ligand of nNOS (CAPON) protein, syntrophin and dynein light chain (LC). Among them, PSD95, CAPON and PFK-M are important nNOS adapter proteins in neurons. The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death. nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states, and negatively regulates neurogenesis under physiological and pathological conditions.
Collapse
|
28
|
Mesohaem substitution reveals how haem electronic properties can influence the kinetic and catalytic parameters of neuronal NO synthase. Biochem J 2011; 433:163-74. [PMID: 20950274 DOI: 10.1042/bj20101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NOSs (NO synthases, EC 1.14.13.39) are haem-thiolate enzymes that catalyse a two-step oxidation of L-arginine to generate NO. The structural and electronic features that regulate their NO synthesis activity are incompletely understood. To investigate how haem electronics govern the catalytic properties of NOS, we utilized a bacterial haem transporter protein to overexpress a mesohaem-containing nNOS (neuronal NOS) and characterized the enzyme using a variety of techniques. Mesohaem-nNOS catalysed NO synthesis and retained a coupled NADPH consumption much like the wild-type enzyme. However, mesohaem-nNOS had a decreased rate of Fe(III) haem reduction and had increased rates for haem-dioxy transformation, Fe(III) haem-NO dissociation and Fe(II) haem-NO reaction with O2. These changes are largely related to the 48 mV decrease in haem midpoint potential that we measured for the bound mesohaem cofactor. Mesohaem nNOS displayed a significantly lower Vmax and KmO2 value for its NO synthesis activity compared with wild-type nNOS. Computer simulation showed that these altered catalytic behaviours of mesohaem-nNOS are consistent with the changes in the kinetic parameters. Taken together, the results of the present study reveal that several key kinetic parameters are sensitive to changes in haem electronics in nNOS, and show how these changes combine to alter its catalytic behaviour.
Collapse
|
29
|
Feng C, Fan W, Dupont A, Guy Guillemette J, Ghosh DK, Tollin G. Electron transfer in a human inducible nitric oxide synthase oxygenase/FMN construct co-expressed with the N-terminal globular domain of calmodulin. FEBS Lett 2010; 584:4335-8. [PMID: 20868689 DOI: 10.1016/j.febslet.2010.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
The FMN-heme intraprotein electron transfer (IET) kinetics in a human inducible NOS (iNOS) oxygenase/FMN (oxyFMN) construct co-expressed with NCaM, a truncated calmodulin (CaM) construct that includes only its N-terminal globular domain consisting of residues 1-75, were determined by laser flash photolysis. The IET rate constant is significantly decreased by nearly fourfold (compared to the iNOS oxyFMN co-expressed with full length CaM). This supports an important role of full length CaM in proper interdomain FMN/heme alignment in iNOS. The IET process was not observed with added excess EDTA, suggesting that Ca(2+) depletion results in the FMN domain moving away from the heme domain. The results indicate that a Ca(2+)-dependent reorganization of the truncated CaM construct could cause a major modification of the NCaM/iNOS association resulting in a loss of the IET.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Astashkin AV, Elmore BO, Fan W, Guillemette JG, Feng C. Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase. J Am Chem Soc 2010; 132:12059-67. [PMID: 20695464 PMCID: PMC2931817 DOI: 10.1021/ja104461p] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian nitric oxide synthase (NOS) is a homodimeric flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide (NO). Regulation of NO biosynthesis by NOS is primarily through control of interdomain electron transfer (IET) processes in NOS catalysis. The IET from the flavin mononucleotide (FMN) to heme domains is essential in the delivery of electrons required for O(2) activation in the heme domain and the subsequent NO synthesis by NOS. The NOS output state for NO production is an IET-competent complex of the FMN-binding domain and heme domain, and thereby it facilitates the IET from the FMN to the catalytic heme site. The structure of the functional output state has not yet been determined. In the absence of crystal structure data for NOS holoenzyme, it is important to experimentally determine the Fe...FMN distance to provide a key calibration for computational docking studies and for the IET kinetics studies. Here we used the relaxation-induced dipolar modulation enhancement (RIDME) technique to measure the electron spin echo envelope modulation caused by the dipole interactions between paramagnetic FMN and heme iron centers in the [Fe(III)][FMNH(*)] (FMNH(*): FMN semiquinone) form of a human inducible NOS (iNOS) bidomain oxygenase/FMN construct. The FMNH(*)...Fe distance has been directly determined from the RIDME spectrum. This distance (18.8 +/- 0.1 A) is in excellent agreement with the IET rate constant measured by laser flash photolysis [Feng, C. J.; Dupont, A.; Nahm, N.; Spratt, D.; Hazzard, J. T.; Weinberg, J.; Guillemette, J.; Tollin, G.; Ghosh, D. K. J. Biol. Inorg. Chem. 2009, 14, 133-142].
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
31
|
Laursen T, Jensen K, Møller BL. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:132-8. [PMID: 20624491 DOI: 10.1016/j.bbapap.2010.07.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/09/2010] [Accepted: 07/01/2010] [Indexed: 01/18/2023]
Abstract
The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR undergoes large conformational changes. This mini-review discusses the new evidence provided for such conformational changes involving a combination of a "swinging" and "rotating" model and highlights the molecular mechanisms by which formation of these conformations are controlled and thereby enables CPR to serve as an effective electron transferring "nano-machine".
Collapse
Affiliation(s)
- Tomas Laursen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
32
|
Tejero J, Hannibal L, Mustovich A, Stuehr DJ. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. J Biol Chem 2010; 285:27232-27240. [PMID: 20592038 DOI: 10.1074/jbc.m110.138842] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitric-oxide synthases (NOS, EC 1.14.13.39) are modular enzymes containing attached flavoprotein and heme (NOSoxy) domains. To generate nitric oxide (NO), the NOS FMN subdomain must interact with the NOSoxy domain to deliver electrons to the heme for O(2) activation during catalysis. The molecular basis and how the interaction is regulated is unclear. We explored the role of eight positively charged residues that create an electropositive patch on NOSoxy in enabling the electron transfer by incorporating mutations that neutralized or reversed their individual charges. Stopped-flow and steady-state experiments revealed that individual charges at Lys(423), Lys(620), and Lys(660) were the most important in enabling heme reduction in nNOS. Charge reversal was more disruptive than neutralization in all cases, and the effects on heme reduction were not due to a weakening in the thermodynamic driving force for heme reduction. Mutant NO synthesis activities displayed a complex pattern that could be simulated by a global model for NOS catalysis. This analysis revealed that the mutations impact the NO synthesis activity only through their effects on heme reduction rates. We conclude that heme reduction and NO synthesis in nNOS is enabled by electrostatic interactions involving Lys(423), Lys(620), and Lys(660), which form a triad of positive charges on the NOSoxy surface. A simulated docking study reveals how electrostatic interactions of this triad can enable an FMN-NOSoxy interaction that is productive for electron transfer.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Luciana Hannibal
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Anthony Mustovich
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
33
|
Tejero J, Haque MM, Durra D, Stuehr DJ. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism. J Biol Chem 2010; 285:25941-9. [PMID: 20529840 DOI: 10.1074/jbc.m110.126797] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg(752) in the FMN subdomain and Glu(47) in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg(752)-Glu(47) bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
34
|
Branco LGS, Bicego KC, Carnio EC, Pittman QJ. Gaseous neurotransmitters and their role in anapyrexia. Front Biosci (Elite Ed) 2010; 2:948-60. [PMID: 20515766 PMCID: PMC3554786 DOI: 10.2741/e154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammals keep their body temperature (Tb) relatively constant even under a wide range of ambient temperature variation. However, in some particular situations it may be beneficial to increase or to decrease Tb. For instance, under hypoxic conditions, a regulated drop in Tb (anapyrexia) takes place which has been reported to be crucial for survival in a number of different species. This review highlights major advances in the research about nitric oxide (NO) and carbon monoxide (CO- where data are relatively less abundant), before focusing on the role played by these gaseous neuromediators in thermoregulation, under the conditions of euthermia and anapyrexia. Available data are consistent with the notion that both NO and CO, acting on the CNS, participate in thermoregulation, with NO decreasing Tb and CO increasing it. However further studies are required before definitive conclusions can be made as to their physiological mechanisms of action.
Collapse
Affiliation(s)
- Luiz G S Branco
- Dental School of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
35
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
36
|
Ellis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG, Roberts GCK. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering. J Biol Chem 2009; 284:36628-36637. [PMID: 19858215 PMCID: PMC2794777 DOI: 10.1074/jbc.m109.054304] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/21/2009] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the (1)H-(15)N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2',5'-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.
Collapse
Affiliation(s)
- Jacqueline Ellis
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Aldo Gutierrez
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Igor L Barsukov
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wei-Cheng Huang
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - J Günter Grossmann
- Molecular Biophysics Group, Science and Technology Facilities Council Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Gordon C K Roberts
- Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
37
|
Guan ZW, Haque MM, Wei CC, Garcin ED, Getzoff ED, Stuehr DJ. Lys842 in neuronal nitric-oxide synthase enables the autoinhibitory insert to antagonize calmodulin binding, increase FMN shielding, and suppress interflavin electron transfer. J Biol Chem 2009; 285:3064-75. [PMID: 19948738 DOI: 10.1074/jbc.m109.000810] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI. We investigated its role by substituting residues that neutralize (Ala) or reverse (Glu) the charge at Lys(842). Compared with wild type nNOS, the mutant enzymes had greater cytochrome c reductase and NADPH oxidase activities in the CaM-free state, were able to bind CaM at lower calcium concentration, and had lower rates of heme reduction and NO synthesis in one case (K842A). Moreover, stopped-flow spectrophotometric experiments with the nNOS reductase domain indicate that the CaM-free mutants had faster flavin reduction kinetics and had less shielding of their FMN subdomains compared with wild type and no longer increased their level of FMN shielding in response to NADPH binding. Thus, Lys(842) is critical for the known functions of the AI and also enables two additional functions of the AI as newly identified here: suppression of electron transfer to FMN and control of the conformational equilibrium of the nNOS reductase domain. Its effect on the conformational equilibrium probably explains suppression of catalysis by the AI.
Collapse
Affiliation(s)
- Zhi-Wen Guan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
38
|
Feng C, Tollin G. Regulation of interdomain electron transfer in the NOS output state for NO production. Dalton Trans 2009:6692-700. [PMID: 19690675 PMCID: PMC2997718 DOI: 10.1039/b902884f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is still much that is unknown about how nitric oxide (NO) biosynthesis by NO synthase (NOS) isoform is tightly regulated at the molecular level. This is remarkable because deviated NO production in vivo has been implicated in an increasing number of diseases that currently lack effective treatments, including stroke and cancer. Given the significant public health burden of these diseases, the NOS enzyme family is a key target for development of new pharmaceuticals. Three NOS isoforms, inducible, endothelial and neuronal NOS (iNOS, eNOS and nNOS, respectively), achieve their key biological functions via stringent regulations of interdomain electron transfer (IET) processes. Unlike iNOS, eNOS and nNOS isoforms are controlled by calmodulin (CaM) binding through facilitating catalytically significant IET processes. The CaM-modulated NOS output state is an IET-competent complex between the flavin mononucleotide (FMN) domain and the catalytic heme domain. The output state facilitates the catalytically essential FMN-heme IET, and thereby enables NO production by NOS. Due to lack of reliable techniques for specifically determining the inter-domain FMN-heme interactions and their direct effects on the catalytic heme center, the molecular mechanism that underlies the output state formation remains elusive. The recent developments in our understanding of mechanisms of the NOS output state formation that are driven by a combination of molecular biology, laser flash photolysis, and spectroscopic techniques are the subject of this perspective.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA. Fax: +1 505-272-6749; Tel: +1 505-925-4326
| | - Gordon Tollin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA. Fax: +1 520-621-9288; Tel: +1 520-621-3447
| |
Collapse
|
39
|
Stuehr DJ, Tejero J, Haque MM. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 2009; 276:3959-74. [PMID: 19583767 PMCID: PMC2864727 DOI: 10.1111/j.1742-4658.2009.07120.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide synthases belong to a family of dual-flavin enzymes that transfer electrons from NAD(P)H to a variety of heme protein acceptors. During catalysis, their FMN subdomain plays a central role by acting as both an electron acceptor (receiving electrons from FAD) and an electron donor, and is thought to undergo large conformational movements and engage in two distinct protein-protein interactions in the process. This minireview summarizes what we know about the many factors regulating nitric oxide synthase flavoprotein domain function, primarily from the viewpoint of how they impact electron input/output and conformational behaviors of the FMN subdomain.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
40
|
Sempombe J, Elmore BO, Sun X, Dupont A, Ghosh DK, Guillemette JG, Kirk ML, Feng C. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase. J Am Chem Soc 2009; 131:6940-1. [PMID: 19405537 PMCID: PMC2754207 DOI: 10.1021/ja902141v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.
Collapse
Affiliation(s)
- Joseph Sempombe
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bradley O. Elmore
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xi Sun
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andrea Dupont
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dipak K. Ghosh
- Department of Medicine, Duke University and VA Medical Centers, Durham, NC 27705, USA
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Martin L. Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
41
|
Haque MM, Fadlalla M, Wang ZQ, Ray SS, Panda K, Stuehr DJ. Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex. J Biol Chem 2009; 284:19237-47. [PMID: 19473991 DOI: 10.1074/jbc.m109.013144] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nitric-oxide synthases (NOSs) are calmodulin-dependent flavoheme enzymes that oxidize l-Arg to nitric oxide (NO) and l-citrulline. Their catalytic behaviors are complex and are determined by their rates of heme reduction (k(r)), ferric heme-NO dissociation (k(d)), and ferrous heme-NO oxidation (k(ox)). We found that point mutation (E762N) of a conserved residue on the enzyme's FMN subdomain caused the NO synthesis activity to double compared with wild type nNOS. However, in the absence of l-Arg, NADPH oxidation rates suggested that electron flux through the heme was slower in E762N nNOS, and this correlated with the mutant having a 60% slower k(r). During NO synthesis, little heme-NO complex accumulated in the mutant, compared with approximately 50-70% of the wild-type nNOS accumulating as this complex. This suggested that the E762N nNOS is hyperactive because it minimizes buildup of an inactive ferrous heme-NO complex during NO synthesis. Indeed, we found that k(ox) was 2 times faster in the E762N mutant than in wild-type nNOS. The mutational effect on k(ox) was independent of calmodulin. Computer simulation and experimental measures both indicated that the slower k(r) and faster k(ox) of E762N nNOS combine to lower its apparent K(m,O(2)) for NO synthesis by at least 5-fold, which in turn increases its V/K(m) value and enables it to be hyperactive in steady-state NO synthesis. Our work underscores how sensitive nNOS activity is to changes in the k(ox) and reveals a novel means for the FMN module or protein-protein interactions to alter nNOS activity.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ilagan RP, Tejero J, Aulak KS, Sinha Ray S, Hemann C, Wang ZQ, Gangoda M, Zweier JL, Stuehr DJ. Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 2009; 48:3864-76. [PMID: 19290671 PMCID: PMC2888274 DOI: 10.1021/bi8021087] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthases (NOS) are modular, calmodulin- (CaM-) dependent, flavoheme enzymes that catalyze oxidation of l-arginine to generate nitric oxide (NO) and citrulline. During catalysis, the FMN subdomain cycles between interaction with an NADPH-FAD subdomain to receive electrons and interaction with an oxygenase domain to deliver electrons to the NOS heme. This process can be described by a three-state, two-equilibrium model for the conformation of the FMN subdomain, in which it exists in two distinct bound states (FMN-shielded) and one common unbound state (FMN-deshielded). We studied how each partner subdomain, the FMN redox state, and CaM binding may regulate the conformational equilibria of the FMN module in rat neuronal NOS (nNOS). We utilized four nNOS protein constructs of different subdomain composition, including the isolated FMN subdomain, and determined changes in the conformational state by measuring the degree of FMN shielding by fluorescence, electron paramagnetic resonance, or stopped-flow spectroscopic techniques. Our results suggest the following: (i) The NADPH-FAD subdomain has a far greater capacity to interact with the FMN subdomain than does the oxygenase domain. (ii) CaM binding has no direct effects on the FMN subdomain. (iii) CaM destabilizes interaction of the FMN subdomain with the NADPH-FAD subdomain but does not measurably increase its interaction with the oxygenase domain. Our results imply that a different set point and CaM regulation exists for either conformational equilibrium of the FMN subdomain. This helps to explain the unique electron transfer and catalytic behaviors of nNOS, relative to other dual-flavin enzymes.
Collapse
Affiliation(s)
- Robielyn P. Ilagan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Zhi-Qiang Wang
- Department of Chemistry, Kent State University-Tuscarawas, New Philadelphia, Ohio 44663
| | - Mahinda Gangoda
- Department of Chemistry, Kent State University, Kent, Ohio 44242
| | - Jay L. Zweier
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
43
|
Hamdane D, Xia C, Im SC, Zhang H, Kim JJP, Waskell L. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 2009; 284:11374-84. [PMID: 19171935 PMCID: PMC2670143 DOI: 10.1074/jbc.m807868200] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/12/2009] [Indexed: 11/06/2022] Open
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.
Collapse
Affiliation(s)
- Djemel Hamdane
- University of Michigan Medical School and Veterans Affairs Medical Research Center, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | |
Collapse
|
44
|
Feng C, Dupont AL, Nahm NJ, Spratt DE, Hazzard JT, Weinberg JB, Guillemette JG, Tollin G, Ghosh DK. Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme. J Biol Inorg Chem 2009; 14:133-42. [PMID: 18830722 PMCID: PMC2596912 DOI: 10.1007/s00775-008-0431-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/09/2008] [Indexed: 01/13/2023]
Abstract
Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN-heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808-3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 +/- 5 and 35 +/- 3 s(-1), respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, United States
| | - Andrea L. Dupont
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Nickolas J. Nahm
- Department of Medicine, Duke University and VA Medical Centers, Durham, NC 27705, United States
| | - Donald E. Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James T. Hazzard
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, United States
| | - J. Brice Weinberg
- Department of Medicine, Duke University and VA Medical Centers, Durham, NC 27705, United States
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gordon Tollin
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, United States
| | - Dipak K. Ghosh
- Department of Medicine, Duke University and VA Medical Centers, Durham, NC 27705, United States
| |
Collapse
|
45
|
Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S, Stuehr DJ. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. J Biol Chem 2008; 283:33498-507. [PMID: 18815130 PMCID: PMC2586280 DOI: 10.1074/jbc.m806122200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/24/2008] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|