1
|
Nickens DG, Bochman ML. Genetic and biochemical interactions of yeast DNA helicases. Methods 2022; 204:234-240. [PMID: 35483549 DOI: 10.1016/j.ymeth.2022.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
DNA helicases function in many types of nucleic acid transactions, and as such, they are vital for genome integrity. Although they are often considered individually, work from many groups demonstrates that these enzymes often genetically and biochemically interact in vivo. Here, we highlight methods to interrogate such interactions among the PIF1 (Pif1 and Rrm3) and RecQ (Hrq1 and Sgs1) family helicases in Saccharomyces cerevisiae. The interactions among these enzymes were investigated in vivo using deletion and inactivation alleles with a gross-chromosomal rearrangement (GCR) assay. Further, wild-type and inactive recombinant proteins were used to determine the effects of the helicases on telomerase activity in vitro. We found that synergistic increases in GCR rates often occur in double vs. single mutants, suggesting that the helicases function in distinct genome integrity pathways. Further, the recombinant helicases can function together in vitro to modulate telomerase activity. Overall, the data suggest that the interactions among the members of these DNA helicase families are multipartite and argue for a comprehensive systems biology approach to fully elucidate the physiological interplay between these enzymes.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405 USA
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405 USA.
| |
Collapse
|
2
|
Zacheja T, Toth A, Harami GM, Yang Q, Schwindt E, Kovács M, Paeschke K, Burkovics P. Mgs1 protein supports genome stability via recognition of G-quadruplex DNA structures. FASEB J 2020; 34:12646-12662. [PMID: 32748509 DOI: 10.1096/fj.202000886r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
Abstract
The integrity of the genetic material is crucial for every organism. One intrinsic attack to genome stability is stalling of the replication fork which can result in DNA breakage. Several factors, such as DNA lesions or the formation of stable secondary structures (eg, G-quadruplexes) can lead to replication fork stalling. G-quadruplexes (G4s) are well-characterized stable secondary DNA structures that can form within specific single-stranded DNA sequence motifs and have been shown to block/pause the replication machinery. In most genomes several helicases have been described to regulate G4 unfolding to preserve genome integrity, however, different experiments raise the hypothesis that processing of G4s during DNA replication is more complex and requires additional, so far unknown, proteins. Here, we show that the Saccharomyces cerevisiae Mgs1 protein robustly binds to G4 structures in vitro and preferentially acts at regions with a strong potential to form G4 structures in vivo. Our results suggest that Mgs1 binds to G4-forming sites and has a role in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Theresa Zacheja
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Agnes Toth
- Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Qianlu Yang
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Eike Schwindt
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Mihály Kovács
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Burkovics
- Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
3
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
4
|
Telomere Dysfunction Triggers Palindrome Formation Independently of Double-Strand Break Repair Mechanisms. Genetics 2016; 203:1659-68. [PMID: 27334270 PMCID: PMC4981268 DOI: 10.1534/genetics.115.183020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Inverted chromosome duplications or palindromes are linked with genetic disorders and malignant transformation. They are considered by-products of DNA double-strand break (DSB) repair: the homologous recombination (HR) and the nonhomologous end joining (NHEJ). Palindromes near chromosome ends are often triggered by telomere losses. An important question is to what extent their formation depends upon DSB repair mechanisms. Here we addressed this question using yeast genetics and comparative genomic hybridization. We induced palindrome formation by passaging cells lacking any form of telomere maintenance (telomerase and telomere recombination). Surprisingly, we found that DNA ligase 4, essential for NHEJ, did not make a significant contribution to palindrome formation induced by telomere losses. Moreover RAD51, important for certain HR-derived mechanisms, had little effect. Furthermore RAD52, which is essential for HR in yeast, appeared to decrease the number of palindromes in cells proliferating without telomeres. This study also uncovered an important role for Rev3 and Rev7 (but not for Pol32) subunits of polymerase ζ in the survival of cells undergoing telomere losses and forming palindromes. We propose a model called short-inverted repeat-induced synthesis in which DNA synthesis, rather than DSB repair, drives the inverted duplication triggered by telomere dysfunction.
Collapse
|
5
|
Xue Y, Marvin ME, Ivanova IG, Lydall D, Louis EJ, Maringele L. Rif1 and Exo1 regulate the genomic instability following telomere losses. Aging Cell 2016; 15:553-62. [PMID: 27004475 PMCID: PMC4854909 DOI: 10.1111/acel.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Telomere attrition is linked to cancer, diabetes, cardiovascular disease and aging. This is because telomere losses trigger further genomic modifications, culminating with loss of cell function and malignant transformation. However, factors regulating the transition from cells with short telomeres, to cells with profoundly altered genomes, are little understood. Here, we use budding yeast engineered to lack telomerase and other forms of telomere maintenance, to screen for such factors. We show that initially, different DNA damage checkpoint proteins act together with Exo1 and Mre11 nucleases, to inhibit proliferation of cells undergoing telomere attrition. However, this situation changes when survivors lacking telomeres emerge. Intriguingly, checkpoint pathways become tolerant to loss of telomeres in survivors, yet still alert to new DNA damage. We show that Rif1 is responsible for the checkpoint tolerance and proliferation of these survivors, and that is also important for proliferation of cells with a broken chromosome. In contrast, Exo1 drives extensive genomic modifications in survivors. Thus, the conserved proteins Rif1 and Exo1 are critical for survival and evolution of cells with lost telomeres.
Collapse
Affiliation(s)
- Yuan Xue
- Newcastle University, Institute for Cell and Molecular Biosciences Institute for Cell and Molecular Biosciences (ICaMB) Newcastle upon Tyne UK
| | - Marcus E. Marvin
- Department of Genetics, Centre for Genetic Architecture of Complex Traits University of Leicester Leicester UK
| | - Iglika G. Ivanova
- Newcastle University, Institute for Cell and Molecular Biosciences Institute for Cell and Molecular Biosciences (ICaMB) Newcastle upon Tyne UK
| | - David Lydall
- Newcastle University, Institute for Cell and Molecular Biosciences Institute for Cell and Molecular Biosciences (ICaMB) Newcastle upon Tyne UK
| | - Edward J. Louis
- Department of Genetics, Centre for Genetic Architecture of Complex Traits University of Leicester Leicester UK
| | - Laura Maringele
- Newcastle University, Institute for Cell and Molecular Biosciences Institute for Cell and Molecular Biosciences (ICaMB) Newcastle upon Tyne UK
| |
Collapse
|
6
|
Abstract
The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT) and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:5/6/a012666. [PMID: 23732473 DOI: 10.1101/cshperspect.a012666] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Collapse
Affiliation(s)
- Christopher J Webb
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
8
|
Hu Y, Tang HB, Liu NN, Tong XJ, Dang W, Duan YM, Fu XH, Zhang Y, Peng J, Meng FL, Zhou JQ. Telomerase-null survivor screening identifies novel telomere recombination regulators. PLoS Genet 2013; 9:e1003208. [PMID: 23390378 PMCID: PMC3547846 DOI: 10.1371/journal.pgen.1003208] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 11/12/2012] [Indexed: 01/17/2023] Open
Abstract
Telomeres are protein–DNA structures found at the ends of linear chromosomes and are crucial for genome integrity. Telomeric DNA length is primarily maintained by the enzyme telomerase. Cells lacking telomerase will undergo senescence when telomeres become critically short. In Saccharomyces cerevisiae, a very small percentage of cells lacking telomerase can remain viable by lengthening telomeres via two distinct homologous recombination pathways. These “survivor” cells are classified as either Type I or Type II, with each class of survivor possessing distinct telomeric DNA structures and genetic requirements. To elucidate the regulatory pathways contributing to survivor generation, we knocked out the telomerase RNA gene TLC1 in 280 telomere-length-maintenance (TLM) gene mutants and examined telomere structures in post-senescent survivors. We uncovered new functional roles for 10 genes that affect the emerging ratio of Type I versus Type II survivors and 22 genes that are required for Type II survivor generation. We further verified that Pif1 helicase was required for Type I recombination and that the INO80 chromatin remodeling complex greatly affected the emerging frequency of Type I survivors. Finally, we found the Rad6-mediated ubiquitination pathway and the KEOPS complex were required for Type II recombination. Our data provide an independent line of evidence supporting the idea that these genes play important roles in telomere dynamics. Homologous recombination is a means for an organism or a cell to repair damaged DNA in its genome. Eukaryotic chromosomes have a linear configuration with two ends that are special DNA–protein structures called telomeres. Telomeres can be recognized by the cell as DNA double-strand breaks and subjected to repair by homologous recombination. In the baker's yeast Saccharomyces cerevisiae, cells that lack the enzyme telomerase, which is the primary factor responsible for telomeric DNA elongation, are able to escape senescence and cell death when telomeres undergo repair via homologous recombination. In this study, we have performed genetic screens to identify genes that affect telomeric DNA recombination. By examining the telomere structures in 280 mutants, each of which lacks both a telomere-length-maintenance gene and telomerase RNA gene, we identified 32 genes that were not previously known to be involved in telomere recombination. These genes have functions in a variety of cellular processes, and our work provides new insights into the regulation of telomere recombination in the absence of telomerase.
Collapse
Affiliation(s)
- Yan Hu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hong-Bo Tang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ning-Ning Liu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xia-Jing Tong
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Dang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi-Min Duan
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong Fu
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Peng
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Modulation of telomeres in alternative lengthening of telomeres type I like human cells by the expression of werner protein and telomerase. JOURNAL OF ONCOLOGY 2012; 2012:806382. [PMID: 22545052 PMCID: PMC3321466 DOI: 10.1155/2012/806382] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 02/06/2023]
Abstract
The alternative lengthening of telomeres (ALT) is a recombination-based mechanism of telomere maintenance activated in 5–20% of human cancers. In Saccharomyces cerevisiae, survivors that arise after inactivation of telomerase can be classified as type I or type II ALT. In type I, telomeres have a tandem array structure, with each subunit consisting of a subtelomeric Y′ element and short telomere sequence. Telomeres in type II have only long telomere repeats and require Sgs1, the S. cerevisiae RecQ family helicase. We previously described the first human ALT cell line, AG11395, that has a telomere structure similar to type I ALT yeast cells. This cell line lacks the activity of the Werner syndrome protein, a human RecQ helicase. The telomeres in this cell line consist of tandem repeats containing SV40 DNA, including the origin of replication, and telomere sequence. We investigated the role of the SV40 origin of replication and the effects of Werner protein and telomerase on telomere structure and maintenance in AG11395 cells. We report that the expression of Werner protein facilitates the transition in human cells of ALT type I like telomeres to type II like telomeres in some aspects. These findings have implications for the diagnosis and treatment of cancer.
Collapse
|
10
|
Sealey DCF, Kostic AD, LeBel C, Pryde F, Harrington L. The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis. BMC Mol Biol 2011; 12:45. [PMID: 22011238 PMCID: PMC3215184 DOI: 10.1186/1471-2199-12-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/18/2011] [Indexed: 12/03/2022] Open
Abstract
Background The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully. Results To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb in vivo function (NAAIRS92, NAAIRS122) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking EST1, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres. Conclusions These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of S. cerevisiae Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.
Collapse
Affiliation(s)
- David C F Sealey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
11
|
Genome-wide analysis to identify pathways affecting telomere-initiated senescence in budding yeast. G3-GENES GENOMES GENETICS 2011; 1:197-208. [PMID: 22384331 PMCID: PMC3276134 DOI: 10.1534/g3.111.000216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/01/2011] [Indexed: 12/23/2022]
Abstract
In telomerase-deficient yeast cells, like equivalent mammalian cells, telomeres shorten over many generations until a period of senescence/crisis is reached. After this, a small fraction of cells can escape senescence, principally using recombination-dependent mechanisms. To investigate the pathways that affect entry into and recovery from telomere-driven senescence, we combined a gene deletion disrupting telomerase (est1Δ) with the systematic yeast deletion collection and measured senescence characteristics in high-throughput assays. As expected, the vast majority of gene deletions showed no strong effects on entry into/exit from senescence. However, around 200 gene deletions behaving similarly to a rad52Δest1Δ archetype (rad52Δ affects homologous recombination) accelerated entry into senescence, and such cells often could not recover growth. A smaller number of strains similar to a rif1Δest1Δ archetype (rif1Δ affects proteins that bind telomeres) accelerated entry into senescence but also accelerated recovery from senescence. Our genome-wide analysis identifies genes that affect entry into and/or exit from telomere-initiated senescence and will be of interest to those studying telomere biology, replicative senescence, cancer, and ageing. Our dataset is complementary to other high-throughput studies relevant to telomere biology, genetic stability, and DNA damage responses.
Collapse
|
12
|
Brosh RM. Put on your thinking cap: G-quadruplexes, helicases, and telomeres. Aging (Albany NY) 2011; 3:332-335. [PMID: 21732565 PMCID: PMC3117443 DOI: 10.18632/aging.100307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 05/31/2023]
|
13
|
Abstract
Replicative senescence is a permanent cell cycle arrest in response to extensive telomere shortening. To understand the mechanisms behind a permanent arrest, we screened for factors affecting replicative senescence in budding yeast lacking telomere elongation pathways. Intriguingly, we found that DNA polymerase epsilon (Pol ε) acts synergistically with Exo1 nuclease to maintain replicative senescence. In contrast, the Pol ε-associated checkpoint and replication protein Mrc1 facilitates escape from senescence. To understand this paradox, in which DNA-synthesizing factors cooperate with DNA-degrading factors to maintain arrest, whereas a checkpoint protein opposes arrest, we analyzed the dynamics of double- and single-stranded DNA (ssDNA) at chromosome ends during senescence. We found evidence for cycles of DNA resection, followed by resynthesis. We propose that resection of the shortest telomere, activating a Rad24(Rad17)-dependent checkpoint pathway, alternates in time with an Mrc1-regulated Pol ε resynthesis of a short, double-stranded chromosome end, which in turn activates a Rad9(53BP1)-dependent checkpoint pathway. Therefore, instead of one type of DNA damage, different types (ssDNA and a double-strand break-like structure) alternate in a "vicious circle," each activating a different checkpoint sensor. Every time resection and resynthesis switches, a fresh signal initiates, thus preventing checkpoint adaptation and ensuring the permanent character of senescence.
Collapse
|
14
|
Abstract
The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.
Collapse
|
15
|
Paeschke K, McDonald KR, Zakian VA. Telomeres: structures in need of unwinding. FEBS Lett 2010; 584:3760-72. [PMID: 20637196 DOI: 10.1016/j.febslet.2010.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/25/2010] [Accepted: 07/02/2010] [Indexed: 11/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
16
|
Abstract
Mutations in the highly conserved RecQ helicase, BLM, cause the rare cancer predisposition disorder, Bloom's syndrome. The orthologues of BLM in Saccharomyces cerevisiae and Schizosaccharomyces pombe are SGS1 and rqh1(+), respectively. Studies in these yeast species have revealed a plethora of roles for the Sgs1 and Rqh1 proteins in repair of double strand breaks, restart of stalled replication forks, processing of aberrant intermediates that arise during meiotic recombination, and maintenance of telomeres. In this review, we focus on the known roles of Sgs1 and Rqh1 and how studies in yeast species have improved our knowledge of how BLM suppresses neoplastic transformation.
Collapse
Affiliation(s)
- Thomas M Ashton
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
17
|
Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 2009; 28:2174-87. [PMID: 19629039 PMCID: PMC2722249 DOI: 10.1038/emboj.2009.176] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/03/2009] [Indexed: 11/09/2022] Open
Abstract
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.
Collapse
|
18
|
Abstract
Double-strand breaks (DSBs) are deleterious DNA lesions and if left unrepaired result in severe genomic instability. Cells use two main pathways to repair DSBs: homologous recombination (HR) or non-homologous end joining (NHEJ) depending on the phase of the cell cycle and the nature of the DSB ends. A key step where pathway choice is exerted is in the 'licensing' of 5'-3' resection of the ends to produce recombinogenic 3' single-stranded tails. These tails are substrate for binding by Rad51 to initiate pairing and strand invasion with homologous duplex DNA. Moreover, the single-stranded DNA generated after end processing is important to activate the DNA damage response. The mechanism of end processing is the focus of this review and we will describe recent findings that shed light on this important initiating step for HR. The conserved MRX/MRN complex appears to be a major regulator of DNA end processing. Sae2/CtIP functions with the MRX complex, either to activate the Mre11 nuclease or via the intrinsic endonuclease, in an initial step to trim the DSB ends. In a second step, redundant systems remove long tracts of DNA to reveal extensive 3' single-stranded tails. One system is dependent on the helicase Sgs1 and the nuclease Dna2, and the other on the 5'-3' exonuclease Exo1.
Collapse
Affiliation(s)
- Eleni P Mimitou
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States
| | | |
Collapse
|
19
|
Telomere maintenance and survival in saccharomyces cerevisiae in the absence of telomerase and RAD52. Genetics 2009; 182:671-84. [PMID: 19380905 DOI: 10.1534/genetics.109.102939] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomeres are essential features of linear genomes that are crucial for chromosome stability. Telomeric DNA is usually replenished by telomerase. Deletion of genes encoding telomerase components leads to telomere attrition with each cycle of DNA replication, eventually causing cell senescence or death. In the Saccharomyces cerevisiae strain W303, telomerase-null populations bypass senescence and, unless EXO1 is also deleted, this survival is RAD52 dependent. Unexpectedly, we found that the S. cerevisiae strain S288C could survive the removal of RAD52 and telomerase at a low frequency without additional gene deletions. These RAD52-independent survivors were propagated stably and exhibited a telomere organization typical of recombination between telomeric DNA tracts, and in diploids behaved as a multigenic trait. The polymerase-delta subunit Pol32 was dispensable for the maintenance of RAD52-independent survivors. The incidence of this rare escape was not affected by deletion of other genes necessary for RAD52-dependent survival, but correlated with initial telomere length. If W303 strains lacking telomerase and RAD52 first underwent telomere elongation, rare colonies could then bypass senescence. We suggest that longer telomeres provide a more proficient substrate for a novel telomere maintenance mechanism that does not rely on telomerase, RAD52, or POL32.
Collapse
|
20
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
21
|
Current awareness on yeast. Yeast 1990. [DOI: 10.1002/yea.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|