1
|
Yelhekar TD, Meng M, Doupe J, Lin Y. All IEGs Are Not Created Equal-Molecular Sorting Within the Memory Engram. ADVANCES IN NEUROBIOLOGY 2024; 38:81-109. [PMID: 39008012 DOI: 10.1007/978-3-031-62983-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
When neurons are recruited to form the memory engram, they are driven to activate the expression of a series of immediate-early genes (IEGs). While these IEGs have been used relatively indiscriminately to identify the so-called engram neurons, recent research has demonstrated that different IEG ensembles can be physically and functionally distinct within the memory engram. This inherent heterogeneity of the memory engram is driven by the diversity in the functions and distributions of different IEGs. This process, which we call molecular sorting, is analogous to sorting the entire population of engram neurons into different sub-engrams molecularly defined by different IEGs. In this chapter, we will describe the molecular sorting process by systematically reviewing published work on engram ensemble cells defined by the following four major IEGs: Fos, Npas4, Arc, and Egr1. By comparing and contrasting these likely different components of the memory engram, we hope to gain a better understanding of the logic and significance behind the molecular sorting process for memory functions.
Collapse
Affiliation(s)
- Tushar D Yelhekar
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meizhen Meng
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joslyn Doupe
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yingxi Lin
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Transcriptome Analysis of Deafness: Intracellular Signal Transduction Signaling Pathways Regulate Neuroplastic Changes in the Auditory Cortex. Otol Neurotol 2020; 41:986-996. [PMID: 32501934 DOI: 10.1097/mao.0000000000002691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HYPOTHESIS AND BACKGROUND Hearing loss leads to synaptic changes in auditory neurons and their networks, and functions as a consequence of the interplay between genes and proteins. However, cellular and molecular mechanisms leading to deafness-induced plasticity in the auditory cortex (AC) remain unclear. Here, we examined the changes in gene expression and key signaling pathways that regulate differentially expressed genes (DEGs) in the AC following auditory deafferentation using RNA-sequencing (RNA-Seq) analysis. METHODS Cochlear ablation-induced bilaterally deafened Sprague-Dawley rats were maintained for 12 weeks and their ACs were harvested. RNA-seq analysis was performed on each sample to identify which genes were expressed. This information was then used for comparative analysis of DEGs between samples. The statistical significance of DEGs was determined by fold change (|FC| > 1.5) and independent t test (p < 0.05). RESULTS RNA-seq analysis identified 72 DEGs, of which 19 were upregulated and 53 were down-regulated after bilateral deafening in the ACs. Gene ontology (GO) analysis revealed the potential involvement of mitogen-activated protein kinase, tumor necrosis factor, and cyclic adenosine 3',5'-monophosphate (e.g., Bdnf, Gli1, and c-Fos) signaling pathways in regulating changes in the expression of the genes listed herein. The DEGs of interest-including c-Fos, Arc, Ntf3, and Gli1-from the RNA-seq analysis were consistent with result of quantitative reverse transcriptase polymerase chain reaction. CONCLUSION RNA-seq analysis revealed that auditory deprivation in adult rats elicited changes in gene expression, transcription factor levels, and their complex interaction at specific gene promoters in the AC. Particularly, activation of intracellular signal transduction signaling pathways may be key to neuronal plasticity in deafness.
Collapse
|
3
|
Warnet XL, Bakke Krog H, Sevillano-Quispe OG, Poulsen H, Kjaergaard M. The C-terminal domains of the NMDA receptor: How intrinsically disordered tails affect signalling, plasticity and disease. Eur J Neurosci 2020; 54:6713-6739. [PMID: 32464691 DOI: 10.1111/ejn.14842] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023]
Abstract
NMDA receptors are part of the ionotropic glutamate receptor family, and are crucial for neurotransmission and memory. At the cellular level, the effects of activating these receptors include long-term potentiation (LTP) or depression (LTD). The NMDA receptor is a stringently gated cation channel permeable to Ca2+ , and it shares the molecular architecture of a tetrameric ligand-gated ion channel with the other family members. Its subunits, however, have uniquely long cytoplasmic C-terminal domains (CTDs). While the molecular gymnastics of the extracellular domains have been described in exquisite detail, much less is known about the structure and function of these CTDs. The CTDs vary dramatically in length and sequence between receptor subunits, but they all have a composition characteristic of intrinsically disordered proteins. The CTDs affect channel properties, trafficking and downstream signalling output from the receptor, and these functions are regulated by alternative splicing, protein-protein interactions, and post-translational modifications such as phosphorylation and palmitoylation. Here, we review the roles of the CTDs in synaptic plasticity with a focus on biochemical mechanisms. In total, the CTDs play a multifaceted role as a modifier of channel function, a regulator of cellular location and abundance, and signalling scaffold control the downstream signalling output.
Collapse
Affiliation(s)
- Xavier L Warnet
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Helle Bakke Krog
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Oscar G Sevillano-Quispe
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark.,The Center for Proteins in Memory (PROMEMO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Klimanova EA, Sidorenko SV, Tverskoi AM, Shiyan AA, Smolyaninova LV, Kapilevich LV, Gusakova SV, Maksimov GV, Lopina OD, Orlov SN. Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers. BIOCHEMISTRY (MOSCOW) 2019; 84:1280-1295. [DOI: 10.1134/s0006297919110063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Del Arroyo AG, Hadjihambi A, Sanchez J, Turovsky E, Kasymov V, Cain D, Nightingale TD, Lambden S, Grant SGN, Gourine AV, Ackland GL. NMDA receptor modulation of glutamate release in activated neutrophils. EBioMedicine 2019; 47:457-469. [PMID: 31401196 PMCID: PMC6796524 DOI: 10.1016/j.ebiom.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023] Open
Abstract
Background Neutrophil depletion improves neurologic outcomes in experimental sepsis/brain injury. We hypothesized that neutrophils may exacerbate neuronal injury through the release of neurotoxic quantities of the neurotransmitter glutamate. Methods Real-time glutamate release by primary human neutrophils was determined using enzymatic biosensors. Bacterial and direct protein-kinase C (Phorbol 12-myristate 13-acetate; PMA) activation of neutrophils in human whole blood, isolated neutrophils or human cell lines were compared in the presence/absence of N-Methyl-d-aspartic acid receptor (NMDAR) antagonists. Bacterial and direct activation of neutrophils from wild-type and transgenic murine neutrophils deficient in NMDAR-scaffolding proteins were compared using flow cytometry (phagocytosis, reactive oxygen species (ROS) generation) and real-time respirometry (oxygen consumption). Findings Both glutamate and the NMDAR co-agonist d-serine are rapidly released by neutrophils in response to bacterial and PMA-induced activation. Pharmacological NMDAR blockade reduced both the autocrine release of glutamate, d-serine and the respiratory burst by activated primary human neutrophils. A highly specific small-molecule inhibitor ZL006 that limits NMDAR-mediated neuronal injury also reduced ROS by activated neutrophils in a murine model of peritonitis, via uncoupling of the NMDAR GluN2B subunit from its' scaffolding protein, postsynaptic density protein-95 (PSD-95). Genetic ablation of PSD-95 reduced ROS production by activated murine neutrophils. Pharmacological blockade of the NMDAR GluN2B subunit reduced primary human neutrophil activation induced by Pseudomonas fluorescens, a glutamate-secreting Gram-negative bacillus closely related to pathogens that cause hospital-acquired infections. Interpretation These data suggest that release of glutamate by activated neutrophils augments ROS production in an autocrine manner via actions on NMDAR expressed by these cells. Fund GLA: Academy Medical Sciences/Health Foundation Clinician Scientist. AVG is a Wellcome Trust Senior Research Fellow. Neutrophil depletion improves neurologic outcome after injury and infection. Pharmacologic NMDAR blockade reduces rapid autocrine release of glutamate/d-serine from activated neutrophils. Genetic ablation/small-molecule inhibition of PSD-95 reduces neutrophil ROS. NMDAR blockade reduces human neutrophil activated by glutamate-secreting bacteria. Activated neutrophils may exacerbate neuronal injury in various forms of critical illness through the release of glutamate.
Collapse
Affiliation(s)
- Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Jenifer Sanchez
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Egor Turovsky
- Institute of Cell Biophysics, Federal Research Center, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Russia
| | - Vitaly Kasymov
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - David Cain
- Clinical Physiology, Department of Medicine, University College London, United Kingdom
| | - Tom D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Simon Lambden
- Clinical Physiology, Department of Medicine, University College London, United Kingdom
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Coba MP. Regulatory mechanisms in postsynaptic phosphorylation networks. Curr Opin Struct Biol 2019; 54:86-94. [PMID: 30807903 PMCID: PMC7018365 DOI: 10.1016/j.sbi.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
The modulation of the postsynaptic signaling machinery by protein phosphorylation has attracted much interest since it is key for the understanding of the regulation of a variety of synaptic functions. While advances in mass spectrometry have allowed us to begin performing large-scale analysis of protein phosphorylation in components of the PSD, the systematic collection of datasets and their functional significance within the context of regulatory signaling networks is in its infancy. Here, we will focus on the composition of the PSD phosphoproteome describing kinase, phosphatase, and protein domain modules involved in the regulation of phosphorylation signaling. We will discuss the impact of synaptic plasticity mechanisms such as long-term potentiation (LTP) in mammalian kinomes and describe the general rules of signaling organization in the PSD phosphoproteome.
Collapse
Affiliation(s)
- Marcelo P Coba
- Zilkha Neurogenetic Institute, Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
7
|
Grant SGN. Synapse molecular complexity and the plasticity behaviour problem. Brain Neurosci Adv 2018; 2:2398212818810685. [PMID: 32166154 PMCID: PMC7058196 DOI: 10.1177/2398212818810685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Synapses are the hallmark of brain complexity and have long been thought of as simple connectors between neurons. We are now in an era in which we know the full complement of synapse proteins and this has created an existential crisis because the molecular complexity far exceeds the requirements of most simple models of synaptic function. Studies of the organisation of proteome complexity and its evolution provide surprising new insights that challenge existing dogma and promote the development of new theories about the origins and role of synapses in behaviour. The postsynaptic proteome of excitatory synapses is a structure with high molecular complexity and sophisticated computational properties that is disrupted in over 130 brain diseases. A key goal of 21st-century neuroscience is to develop comprehensive molecular datasets on the brain and develop theories that explain the molecular basis of behaviour.
Collapse
Affiliation(s)
- Seth G N Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Abstract
The temporal coding of action potential activity is fundamental to nervous system function. Here we consider how gene expression in neurons is regulated by specific patterns of action potential firing, with an emphasis on new information on epigenetic regulation of gene expression. Patterned action potential activity activates intracellular signaling networks selectively in accordance with the kinetics of activation and inactivation of second messengers, phosphorylation and dephosphorylation of protein kinases, and cytoplasmic and nuclear calcium dynamics, which differentially activate specific transcription factors. Increasing evidence also implicates activity-dependent regulation of epigenetic mechanisms to alter chromatin architecture. Changes in three-dimensional chromatin structure, including chromatin compaction, looping, double-stranded DNA breaks, histone and DNA modification, are altered by action potential activity to selectively inhibit or promote transcription of specific genes. These mechanisms of activity-dependent regulation of gene expression are important in neural development, plasticity, and in neurological and psychological disorders.
Collapse
Affiliation(s)
- Jillian Belgrad
- Nervous System Development and Plasticity Section, The
Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD), Bethesda, MD, USA
| | - R. Douglas Fields
- Nervous System Development and Plasticity Section, The
Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD), Bethesda, MD, USA
| |
Collapse
|
9
|
Manning CE, Williams ES, Robison AJ. Reward Network Immediate Early Gene Expression in Mood Disorders. Front Behav Neurosci 2017; 11:77. [PMID: 28503137 PMCID: PMC5408019 DOI: 10.3389/fnbeh.2017.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
Over the past three decades, it has become clear that aberrant function of the network of interconnected brain regions responsible for reward processing and motivated behavior underlies a variety of mood disorders, including depression and anxiety. It is also clear that stress-induced changes in reward network activity underlying both normal and pathological behavior also cause changes in gene expression. Here, we attempt to define the reward circuitry and explore the known and potential contributions of activity-dependent changes in gene expression within this circuitry to stress-induced changes in behavior related to mood disorders, and contrast some of these effects with those induced by exposure to drugs of abuse. We focus on a series of immediate early genes regulated by stress within this circuitry and their connections, both well-explored and relatively novel, to circuit function and subsequent reward-related behaviors. We conclude that IEGs play a crucial role in stress-dependent remodeling of reward circuitry, and that they may serve as inroads to the molecular, cellular, and circuit-level mechanisms of mood disorder etiology and treatment.
Collapse
Affiliation(s)
- Claire E Manning
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Alfred J Robison
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
10
|
Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Sci Rep 2017; 7:43765. [PMID: 28256583 PMCID: PMC5335607 DOI: 10.1038/srep43765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/23/2017] [Indexed: 12/17/2022] Open
Abstract
Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life.
Collapse
|
11
|
Gao P, Limpens JHW, Spijker S, Vanderschuren LJMJ, Voorn P. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration. Addict Biol 2017; 22:354-368. [PMID: 26598422 DOI: 10.1111/adb.12330] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use.
Collapse
Affiliation(s)
- Ping Gao
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam the Netherlands
| | - Jules H. W. Limpens
- Brain Center Rudolf Magnus, Department of Translational Neuroscience; University Medical Center Utrecht; Utrecht the Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam; VU University Amsterdam; Amsterdam the Netherlands
| | - Louk J. M. J. Vanderschuren
- Brain Center Rudolf Magnus, Department of Translational Neuroscience; University Medical Center Utrecht; Utrecht the Netherlands
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
| | - Pieter Voorn
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam; VU University Medical Center; Amsterdam the Netherlands
| |
Collapse
|
12
|
Chen PB, Kawaguchi R, Blum C, Achiro JM, Coppola G, O'Dell TJ, Martin KC. Mapping Gene Expression in Excitatory Neurons during Hippocampal Late-Phase Long-Term Potentiation. Front Mol Neurosci 2017; 10:39. [PMID: 28275336 PMCID: PMC5319997 DOI: 10.3389/fnmol.2017.00039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
The persistence of long-lasting changes in synaptic connectivity that underlie long-term memory require new RNA and protein synthesis. To elucidate the temporal pattern of gene expression that gives rise to long-lasting neuronal plasticity, we analyzed differentially-expressed (DE) RNAs in mouse hippocampal slices following induction of late phase long-term potentiation (L-LTP) specifically within pyramidal excitatory neurons using Translating Ribosome Affinity Purification RNA sequencing (TRAP-seq). We detected time-dependent changes in up- and down-regulated ribosome-associated mRNAs over 2 h following L-LTP induction, with minimal overlap of DE transcripts between time points. TRAP-seq revealed greater numbers of DE transcripts and magnitudes of LTP-induced changes than RNA-seq of all cell types in the hippocampus. Neuron-enriched transcripts had greater changes at the ribosome-loading level than the total RNA level, while RNA-seq identified many non-neuronal DE mRNAs. Our results highlight the importance of considering both time course and cell-type specificity in activity-dependent gene expression during memory formation.
Collapse
Affiliation(s)
- Patrick B Chen
- Interdepartmental Program in Neurosciences, University of California, Los Angeles Los Angeles, CA, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Charles Blum
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Jennifer M Achiro
- Department of Biological Chemistry, University of California, Los Angeles Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles Los Angeles, CA, USA
| | - Thomas J O'Dell
- Department of Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Kelsey C Martin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA; Department of Biological Chemistry, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
13
|
Xie Z, Li J, Baker J, Eagleson KL, Coba MP, Levitt P. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse. Biol Psychiatry 2016; 80:933-942. [PMID: 27086544 PMCID: PMC5001930 DOI: 10.1016/j.biopsych.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. METHODS Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. RESULTS Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. CONCLUSIONS The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Pediatrics and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jing Li
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jonathan Baker
- College of Science, University of Notre Dame, South Bend, Indiana
| | - Kathie L Eagleson
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and the Keck School of Medicine of the University of Southern California; Los Angeles, California; Program in Developmental Neurogenetics, Institute for the Developing Mind and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| |
Collapse
|
14
|
Zografos L, Tang J, Hesse F, Wanker EE, Li KW, Smit AB, Davies RW, Armstrong JD. Functional characterisation of human synaptic genes expressed in the Drosophila brain. Biol Open 2016; 5:662-7. [PMID: 27069252 PMCID: PMC4874349 DOI: 10.1242/bio.016261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype. Summary: This report describes a resource collection of Drosophila melanogaster strains expressing human synaptic genes and methods that can be applied in order to investigate the genes' function.
Collapse
Affiliation(s)
- Lysimachos Zografos
- Brainwave-Discovery Ltd., Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK Parkure Ltd., Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
| | - Joanne Tang
- Brainwave-Discovery Ltd., Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK
| | - Franziska Hesse
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ka Wan Li
- Dept. Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, De Boelelaan 1085, The Netherlands
| | - August B Smit
- Dept. Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, De Boelelaan 1085, The Netherlands
| | - R Wayne Davies
- Brainwave-Discovery Ltd., Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - J Douglas Armstrong
- Brainwave-Discovery Ltd., Hugh Robson Building, 15 George Square, Edinburgh EH8 9XD, UK Institute of Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
15
|
Sun X, Lin Y. Npas4: Linking Neuronal Activity to Memory. Trends Neurosci 2016; 39:264-275. [PMID: 26987258 DOI: 10.1016/j.tins.2016.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Immediate-early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be crucial for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity, and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discuss their implications.
Collapse
Affiliation(s)
- Xiaochen Sun
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Molecular and Cellular Neuroscience Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Xing L, Larsen RS, Bjorklund GR, Li X, Wu Y, Philpot BD, Snider WD, Newbern JM. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 2016; 5. [PMID: 26848828 PMCID: PMC4758957 DOI: 10.7554/elife.11123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability. DOI:http://dx.doi.org/10.7554/eLife.11123.001 In the nervous system, cells called neurons form networks that relay information in the form of electrical signals around the brain and the rest of the body. Typically, an electrical signal travels from branch-like structures at one end of the cell, through the cell body and then along a long fiber called an axon to reach junctions with another neurons. The connections between neurons start to form as the nervous system develops in the embryo, and any errors or delays in this process can cause severe neurological disorders and intellectual disabilities. For example, genetic mutations affecting a communication system within cells known as the ERK/MAPK pathway can lead to a family of syndromes called the “RASopathies”. Abnormalities in this pathway may also contribute to certain types of autism. However, it is not clear how alterations to the ERK/MAPK pathway cause these conditions. Xing et al. investigated whether ERK/MAPK signaling regulates the formation of connections between neurons and the activity of neurons in mouse brains. The experiments showed that the growth of axons that extend from an area of the brain called the cerebral cortex towards the spinal cord are particularly sensitive to changes in the level of signaling through the ERK/MAPK pathway. On the other hand, inhibiting the pathway has relatively little effect on the growth of axons within the cerebral cortex. Further experiments showed that many neurons in the cerebral cortex require the ERK/MAPK pathway to activate genes that alter neuronal activity and the strength of the connections between neurons. Xing et al.’s findings suggest that defects in the connections between the cerebral cortex and different regions of the nervous system may contribute to the symptoms observed in patients with conditions linked to alterations in ERK/MAPK activity. Future studies will focus on understanding the molecular mechanisms by which ERK/MAPK pathway influences the organization and activity of neuron circuits during the development of the nervous system. DOI:http://dx.doi.org/10.7554/eLife.11123.002
Collapse
Affiliation(s)
- Lei Xing
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, United States
| | | | - Xiaoyan Li
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Yaohong Wu
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Benjamin D Philpot
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - William D Snider
- University of North Carolina Neuroscience Center, The University of North Carolina School of Medicine, Chapel Hill, United States.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, The University of North Carolina School of Medicine, Chapel Hill, United States
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
17
|
The Role of the Neuroprotective Factor Npas4 in Cerebral Ischemia. Int J Mol Sci 2015; 16:29011-28. [PMID: 26690124 PMCID: PMC4691091 DOI: 10.3390/ijms161226144] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
Stroke is one of the leading causes of death and adult disability in the world. Although many molecules have been documented to have a neuroprotective effect, the majority of these molecules failed to improve the neurological outcomes for patients with brain ischemia. It has been proposed that neuroprotection alone may, in fact, not be adequate for improving the prognosis of ischemic stroke. Neuroprotectants that can regulate other processes which occur in the brain during ischemia could potentially be targets for the development of effective therapeutic interventions in stroke. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischemia. It has been shown that Npas4 plays an important role in protecting neurons against many types of neurodegenerative insult. Recently, it was demonstrated that Npas4 indeed has a neuroprotective role in ischemic stroke and that Npas4 might be involved in modulating the cell death pathway and inflammatory response. In this review, we summarize the current knowledge of the roles that Npas4 may play in neuroinflammation and ischemia. Understanding how ischemic lesion size in stroke may be reduced through modulation of Npas4-dependent apoptotic and inflammatory pathways could lead to the development of new stroke therapies.
Collapse
|
18
|
Temporal and spatial transcriptional fingerprints by antipsychotic or propsychotic drugs in mouse brain. PLoS One 2015; 10:e0118510. [PMID: 25693194 PMCID: PMC4334909 DOI: 10.1371/journal.pone.0118510] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R) activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs), raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP) profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR). Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist), olanzapine (antagonist), and aripiprazole (partial agonist) all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP) exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP) displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.
Collapse
|
19
|
The neuronal activity-driven transcriptome. Mol Neurobiol 2014; 51:1071-88. [PMID: 24935719 DOI: 10.1007/s12035-014-8772-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an "omics" perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.
Collapse
|
20
|
Systems consolidation and the content of memory. Neurobiol Learn Mem 2013; 106:365-71. [DOI: 10.1016/j.nlm.2013.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/12/2023]
|
21
|
Zhang Z, Fei P, Mu J, Li W, Song J. Hippocampal expression of aryl hydrocarbon receptor nuclear translocator 2 and neuronal PAS domain protein 4 in a rat model of depression. Neurol Sci 2013; 35:277-82. [DOI: 10.1007/s10072-013-1505-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
|
22
|
Cheng MC, Chuang YA, Lu CL, Chen YJ, Luu SU, Li JM, Hsu SH, Chen CH. Genetic and functional analyses of early growth response (EGR) family genes in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:149-55. [PMID: 22691714 DOI: 10.1016/j.pnpbp.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Early growth response genes (EGR1, 2, 3, and 4) encode a family of nuclear proteins that function as transcriptional regulators. They are involved in the regulation of synaptic plasticity, learning, and memory, and are implicated in the pathogenesis of schizophrenia. METHODS We conducted a genetic association analysis of 14 SNPs selected from the EGR1, 2, 3, and 4 genes of 564 patients with schizophrenia and 564 control subjects. We also conducted Western blot analysis and promoter activity assay to characterize the EGR genes associated with schizophrenia RESULTS We did not detect a true genetic association of these 14 SNPs with schizophrenia in this sample. However, we observed a nominal over-representation of C/C genotype of rs9990 of EGR2 in female schizophrenia as compared to female control subjects (p=0.012, uncorrected for multiple testing). Further study showed that the average mRNA level of the EGR2 gene in the lymphoblastoid cell lines of female schizophrenia patients was significantly higher than that in female control subjects (p=0.002). We also detected a nominal association of 4 SNPs (rs6747506, rs6718289, rs2229294, and rs3813226) of the EGR4 gene that form strong linkage disequilibrium with schizophrenia in males. Reporter gene assay showed that the haplotype T-A derived from rs6747506 and rs6718289 at the promoter region had significantly reduced promoter activity compared with the haplotype A-G. CONCLUSION Our data suggest a tendency of gender-specific association of EGR2 and EGR4 in schizophrenia, with an elevated expression of EGR2 in lympoblastoid cell lines of female schizophrenia patients and a reduced EGR4 gene expression in male schizophrenia patients.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Veterans Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Upregulation of Npas4 protein expression by chronic administration of amphetamine in rat nucleus accumbens in vivo. Neurosci Lett 2012; 528:210-4. [PMID: 22884934 DOI: 10.1016/j.neulet.2012.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/26/2012] [Indexed: 11/21/2022]
Abstract
The neuronal PAS domain protein 4 (Npas4) is a transcription factor that is almost exclusively expressed in the mammalian brain. As an activity-dependent transcription factor, Npas4 regulates the transcription of discrete genes and transcriptionally controls the experience-dependent learning and memory. In this study, we explored the impact of the psychostimulant amphetamine (AMPH) on Npas4 protein expression in the rat striatum. We found that acute systemic injection of AMPH had a minimal effect on protein levels of Npas4 in the caudate putamen (CPu) and nucleus accumbens (NAc), while AMPH readily increased protein products of the immediate early gene c-Fos in these regions. In contrast, repeated administration of AMPH (5mg/kg, once daily for 5 days) triggered a significant increase in Npas4 expression in the NAc, although repeated AMPH did not alter Npas4 in the CPu. These data demonstrate that Npas4 is an AMPH-sensitive transcription factor. It is inducible selectively in the NAc in response to repeated AMPH administration.
Collapse
|
24
|
Smolen P, Baxter DA, Byrne JH. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model. PLoS Comput Biol 2012; 8:e1002620. [PMID: 22876169 PMCID: PMC3410876 DOI: 10.1371/journal.pcbi.1002620] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/12/2012] [Indexed: 01/17/2023] Open
Abstract
Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been “tagged” by a stimulus sufficient for LTP and learning can “capture” PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance. A fundamental problem in neurobiology is to understand how memories are maintained for up to years. Long-term potentiation (LTP), an enduring increase in the strength of specific connections (synapses) between neurons, is thought to comprise, at least in part, the substrate of learning and memory. What processes transduce brief stimuli into persistent LTP? Persistent increased activity of an enzyme denoted protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Only synapses that have been “tagged” by a stimulus, such as stimuli needed for LTP and learning, can “capture” PKMζ. We developed a model simulating dynamics of key molecules required for LTP and its opposite, long-term depression (LTD). The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. It makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP and memory is predicted to require positive feedback in which PKMζ enhances its own synthesis at potentiated synapses. Without synaptic capture of PKMζ, no positive feedback would occur. LTD induction is also predicted to increase PKMζ synthesis. The model also makes predictions about regulation of PKMζ synthesis. Experiments testing the above predictions would advance the understanding of memory maintenance.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas, United States of America.
| | | | | |
Collapse
|
25
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
26
|
Kim SH, Song JY, Joo EJ, Lee KY, Shin SY, Lee YH, Ahn YM, Kim YS. Genetic association of the EGR2 gene with bipolar disorder in Korea. Exp Mol Med 2012; 44:121-9. [PMID: 22089088 PMCID: PMC3296808 DOI: 10.3858/emm.2012.44.2.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2011] [Indexed: 12/23/2022] Open
Abstract
The early growth response gene 2 (EGR2) is located at chromosome 10q21, one of the susceptibility loci in bipolar disorder (BD). EGR2 is involved in cognitive function, myelination, and signal transduction related to neuregulin-ErbB receptor, Bcl-2 family proteins, and brain-derived neurotrophic factor. This study investigated the genetic association of the EGR2 gene with BD and schizophrenia (SPR) in Korea. In 946 subjects (350 healthy controls, 352 patients with BD, and 244 with SPR), nine single nucleotide polymorphisms (SNPs) in the EGR2 gene region were genotyped. Five SNPs showed nominally significant allelic associations with BD (rs2295814, rs61865882, rs10995315, rs2297488, and rs2297489), and the positive associations of all except rs2297488 remained significant after multiple testing correction. Linkage disequilibrium structure analysis revealed two haplotype blocks. Among the common identified haplotypes (frequency > 5%), 'T-G-A-C-T (block 1)' and 'A-A-G-C (block 2)' haplotypes were over-represented, while 'C-G-G-T-T (block 1)' haplotype was under-represented in BD. In contrast, no significant associations were found with SPR. Although an extended analysis with a larger sample size or independent replication is required, these findings suggest a genetic association of EGR2 with BD. Combined with a plausible biological function of EGR2, the EGR2 gene is a possible susceptibility gene in BD.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Errico F, Nisticò R, Napolitano F, Oliva AB, Romano R, Barbieri F, Florio T, Russo C, Mercuri NB, Usiello A. Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiol Aging 2011; 32:2061-74. [DOI: 10.1016/j.neurobiolaging.2009.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/20/2009] [Accepted: 12/08/2009] [Indexed: 11/29/2022]
|
28
|
Ploski JE, Monsey MS, Nguyen T, DiLeone RJ, Schafe GE. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS One 2011; 6:e23760. [PMID: 21887312 PMCID: PMC3161786 DOI: 10.1371/journal.pone.0023760] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 07/24/2011] [Indexed: 11/18/2022] Open
Abstract
The Neuronal PAS domain protein 4 (Npas4) is a neuronal activity-dependent immediate early gene that has recently been identified as a transcription factor which regulates the transcription of genes that control inhibitory synapse development and synaptic plasticity. The role Npas4 in learning and memory, however, is currently unknown. Here, we systematically examine the role of Npas4 in auditory Pavlovian fear conditioning, an amygdala-dependent form of emotional learning. In our first series of experiments, we show that Npas4 mRNA and protein are regulated in the rat lateral nucleus of the amygdala (LA) in a learning-dependent manner. Further, knockdown of Npas4 protein in the LA via adeno-associated viral (AAV) mediated gene delivery of RNAi was observed to impair fear memory formation, while innate fear and the expression of fear memory were not affected. In our second series of experiments, we show that Npas4 protein is regulated in the LA by retrieval of an auditory fear memory and that knockdown of Npas4 in the LA impairs retention of a reactivated, but not a non-reactivated, fear memory. Collectively, our findings provide the first comprehensive look at the functional role of Npas4 in learning and memory.
Collapse
Affiliation(s)
- Jonathan E. Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Melissa S. Monsey
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Tam Nguyen
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| | - Ralph J. DiLeone
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Glenn E. Schafe
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
30
|
Prentice LM, d'Anglemont de Tassigny X, McKinney S, Ruiz de Algara T, Yap D, Turashvili G, Poon S, Sutcliffe M, Allard P, Burleigh A, Fee J, Huntsman DG, Colledge WH, Aparicio SAJ. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent. BMC Genomics 2011; 12:209. [PMID: 21527035 PMCID: PMC3111392 DOI: 10.1186/1471-2164-12-209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Humans and mice with loss of function mutations in GPR54 (KISS1R) or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. RESULTS We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix) and quantitative polymerase chain reaction (QPCR) validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC). Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T) levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i) genotype only dependent regulation, (ii) T only dependent regulation, (iii) genotype and T-dependent regulation with interaction between these variables, (iv) genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2), proteases (Klk1b22), and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. CONCLUSIONS Taken together, global transcriptional profiling shows that loss of GPR54 and kisspeptin are not fully equivalent in the mouse hypothalamus.
Collapse
Affiliation(s)
- Leah M Prentice
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | - Xavier d'Anglemont de Tassigny
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge,CB2 3EG, UK
| | - Steven McKinney
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Ruiz de Algara
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Damian Yap
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Gulisa Turashvili
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Steven Poon
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Margaret Sutcliffe
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Pat Allard
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Angela Burleigh
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - John Fee
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
- Genetic Pathology Evaluation Centre of the Prostate Centre, Department of Pathology, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge,CB2 3EG, UK
| | - Samuel AJ Aparicio
- Molecular Oncology and Breast Cancer Program, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Valor LM, Barco A. Hippocampal gene profiling: toward a systems biology of the hippocampus. Hippocampus 2010; 22:929-41. [PMID: 21080408 DOI: 10.1002/hipo.20888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2010] [Indexed: 01/17/2023]
Abstract
Transcriptomics and proteomics approaches give a unique perspective for understanding brain and hippocampal functions but also pose unique challenges because of the singular complexity of the nervous system. The proliferation of genome-wide expression studies during the last decade has provided important insight into the molecular underpinnings of brain anatomy, neural plasticity, and neurological diseases. Microarray technology has dominated transcriptomics research, but this situation is rapidly changing with the recent technological advances in high-throughput sequencing. The full potential of transcriptomics in the neurosciences will be achieved as a result of its integration with other "-omics" disciplines as well as the development of novel analytical bioinformatics and systems biology tools for meta-analysis. Here, we review some of the most relevant advances in the gene profiling of the hippocampus, its relationship with proteomics approaches, and the promising perspectives for the future.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Campus de Sant Joan, Apt. 18, Sant Joan d'Alacant, 03550, Alicante, Spain
| | | |
Collapse
|
32
|
Yang JH, Wada A, Yoshida K, Miyoshi Y, Sayano T, Esaki K, Kinoshita MO, Tomonaga S, Azuma N, Watanabe M, Hamase K, Zaitsu K, Machida T, Messing A, Itohara S, Hirabayashi Y, Furuya S. Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 2010; 285:41380-90. [PMID: 20966073 DOI: 10.1074/jbc.m110.187443] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian brain, D-serine is synthesized from L-serine by serine racemase, and it functions as an obligatory co-agonist at the glycine modulatory site of N-methyl-D-aspartate (NMDA)-selective glutamate receptors. Although diminution in D-serine level has been implicated in NMDA receptor hypofunction, which is thought to occur in schizophrenia, the source of the precursor L-serine and its role in D-serine metabolism in adult brain have yet to be determined. We investigated whether L-serine synthesized in brain via the phosphorylated pathway is essential for D-serine synthesis by generating mice with a conditional deletion of D-3-phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95). This enzyme catalyzes the first step in L-serine synthesis via the phosphorylated pathway. HPLC analysis of serine enantiomers demonstrated that both L- and D-serine levels were markedly decreased in the cerebral cortex and hippocampus of conditional knock-out mice, whereas the serine deficiency did not alter protein expression levels of serine racemase and NMDA receptor subunits in these regions. The present study provides definitive proof that L-serine-synthesized endogenously via the phosphorylated pathway is a key rate-limiting factor for maintaining steady-state levels of D-serine in adult brain. Furthermore, NMDA-evoked transcription of Arc, an immediate early gene, was diminished in the hippocampus of conditional knock-out mice. Thus, this study demonstrates that in mature neuronal circuits L-serine availability determines the rate of D-serine synthesis in the forebrain and controls NMDA receptor function at least in the hippocampus.
Collapse
Affiliation(s)
- Jung Hoon Yang
- Laboratory of Metabolic Regulation Research, Kyushu University Bio-Architecture Center, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Proline-rich tyrosine kinase 2 (PYK2), also known as cell adhesion kinase beta or protein tyrosine kinase 2b, is a calcium-dependent signaling protein involved in cell migration. Phosphorylation of residue Y402 is associated with activation of PYK2 and leads to the recruitment of downstream signaling molecules. PYK2 was previously implicated in long-term potentiation (LTP); however, the role of PYK2 in long-term depression (LTD) is unknown. Here, we report that PYK2 is activated by NMDA receptor stimulation (chemical LTD) in cultured neurons. Small hairpin RNA-mediated knockdown of PYK2 blocks LTD, but not LTP, in hippocampal slice cultures. We find that the Y402 residue and, to a lesser extent, PYK2 kinase activity contribute to PYK2's role in LTD. Knockdown experiments indicate that PYK2 is required to suppress NMDA-induced extracellular signal-regulated kinase (ERK) phosphorylation. Overexpression of PYK2 depresses NMDA-induced ERK phosphorylation and inhibits LTP, but not LTD. Our data indicate that PYK2 is critical for the induction of LTD, possibly in part by antagonizing ERK signaling in hippocampal neurons.
Collapse
|
34
|
Ploski JE, Park KW, Ping J, Monsey MS, Schafe GE. Identification of plasticity-associated genes regulated by Pavlovian fear conditioning in the lateral amygdala. J Neurochem 2009; 112:636-50. [PMID: 19912470 DOI: 10.1111/j.1471-4159.2009.06491.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most recent studies aimed at defining the cellular and molecular mechanisms of Pavlovian fear conditioning have focused on protein kinase signaling pathways and the transcription factor cAMP-response element binding protein (CREB) that promote fear memory consolidation in the lateral nucleus of the amygdala (LA). Despite this progress, there still remains a paucity of information regarding the genes downstream of CREB that are required for long-term fear memory formation in the LA. We have adopted a strategy of using microarray technology to initially identify genes induced within the dentate gyrus following in vivo long-term potentiation (LTP) followed by analysis of whether these same genes are also regulated by fear conditioning within the LA. In the present study, we first identified 34 plasticity-associated genes that are induced within 30 min following LTP induction utilizing a combination of DNA microarray, qRT-PCR, and in situ hybridization. To determine whether these genes are also induced in the LA following Pavlovian fear conditioning, we next exposed rats to an auditory fear conditioning protocol or to control conditions that do not support fear learning followed by qRT-PCR on mRNA from microdissected LA samples. Finally, we asked whether identified genes induced by fear learning in the LA are downstream of the extracellular-regulated kinase/mitogen-activated protein kinase signaling cascade. Collectively, our findings reveal a comprehensive list of genes that represent the first wave of transcription following both LTP induction and fear conditioning that largely belong to a class of genes referred to as 'neuronal activity dependent genes' that are likely calcium, extracellular-regulated kinase/mitogen-activated protein kinase, and CREB-dependent.
Collapse
Affiliation(s)
- Jonathan E Ploski
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|