1
|
Ang WF, Liao D, Koh CY, Kini RM. Unveiling the potential role of natriuretic peptide receptor a isoforms in fine-tuning the cGMP production and tissue-specific function. Sci Rep 2023; 13:20439. [PMID: 37993528 PMCID: PMC10665444 DOI: 10.1038/s41598-023-47710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that regulates blood pressure and volume. ANP interacts with natriuretic peptide receptor-A (NPR-A) to lower the blood pressure through vasodilation, diuresis and natriuresis. Previously, we designed two human ANP analogues, one with exclusively diuretic function (DGD-ANP) and the other with exclusively vasodilatory function (DRD-ANP). Although both ANP analogues interact with NPR-A, their ability to produce cGMP was different. Three alternatively spliced isoforms of NPR-A were previously identified in rodents. Here, we evaluated the putative human isoforms for their cGMP production independently and in combination with WT NPR-A in various percentages. All three NPR-A isoforms failed to produce cGMP in the presence of ANP, DGD-ANP, or DRD-ANP. Co-expression of isoforms with WT NPR-A were found to significantly impair cGMP production. Considering the differential tissue expression levels of all three spliced isoforms in rodents have previously been demonstrated, the existence of these non-functional receptor isoforms may act as negative regulator for ANP/NPR-A activation and fine-tune cGMP production by WT NPR-A to different degree in different tissues. Thus, NPR-A isoforms potentially contribute to tissue-specific functions of ANP.
Collapse
Affiliation(s)
- Wei Fong Ang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Dan Liao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117559, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117559, Singapore.
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117558, Singapore.
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
2
|
Russwurm M, Koesling D. Measurement of cGMP-generating and -degrading activities and cGMP levels in cells and tissues: Focus on FRET-based cGMP indicators. Nitric Oxide 2018; 77:44-52. [PMID: 29684551 DOI: 10.1016/j.niox.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
The intracellular messenger molecule cGMP has an established function in the regulation of numerous physiological events. Yet for the identification of further biological cGMP-mediated functions, precise information whether a cGMP response exists in a certain cell type or tissue is mandatory. In this review, the techniques to measure cGMP i.e. cGMP-formation, -degradation or levels are outlined and discussed. As a superior method to measure cGMP, the article focusses on FRET-based cGMP indicators, describes the different cGMP indicators and discusses their advantages and drawbacks. Finally, the successful applications of these cGMP indicators to measure cGMP responses in cells and tissues are outlined and summarized. Hopefully, with the availability of the FRET-based cGMP indicators, the knowledge about the cGMP responses in special cells or tissues is going to increase thereby allowing to assess further cGMP-mediated functional responses and possibly to address their pathophysiology with the available guanylyl cyclase activators, stimulators and PDE inhibitors.
Collapse
Affiliation(s)
- Michael Russwurm
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany.
| | - Doris Koesling
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
3
|
Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease. Genes (Basel) 2018; 9:genes9010015. [PMID: 29300302 PMCID: PMC5793168 DOI: 10.3390/genes9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys) generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr) and c.2581G>C; p.(Ala861Pro) abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.
Collapse
|
4
|
Regulation of vascular function on posttranscriptional level. THROMBOSIS 2013; 2013:948765. [PMID: 24288605 PMCID: PMC3833109 DOI: 10.1155/2013/948765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Posttranscriptional control of gene expression is crucial for regulating plurality of proteins and functional plasticity of the proteome under (patho)physiologic conditions. Alternative splicing as well as micro (mi)RNA-mediated mechanisms play an important role for the regulation of protein expression on posttranscriptional level. Both alternative splicing and miRNAs were shown to influence cardiovascular functions, such as endothelial thrombogenicity and the vascular tone, by regulating the expression of several vascular proteins and their isoforms, such as Tissue Factor (TF) or the endothelial nitric oxide synthase (eNOS). This review will summarize and discuss the latest findings on the (patho)physiologic role of alternative splicing processes as well as of miRNAs on modulation of vascular functions, such as coagulation, thrombosis, and regulation of the vascular tone.
Collapse
|
5
|
Johnson KR, Hoagland TM, Olson KR. Endogenous vascular synthesis of B-type and C-type natriuretic peptides in the rainbow trout. ACTA ACUST UNITED AC 2011; 214:2709-17. [PMID: 21795567 DOI: 10.1242/jeb.052415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, natriuretic peptides (NPs) lower blood pressure, reduce blood volume and broadly inhibit cardiovascular remodeling. NPs are often referred to as cardiac hormones, though they also have integral roles in regulating vascular tone, endothelial remodeling and inhibiting vascular smooth muscle cell hypertrophy. Two NPs [atrial (ANP) and C-type (CNP)] have been identified as endogenous constituents in the vasculature of mammals, though such a phenomenon has not previously been described in fishes. Here we describe the endogenous production of B-type NP (BNP) and CNP in multiple blood vessels of the rainbow trout. Western blot analysis showed pro-BNP and pro-CNP production in the efferent branchial artery, celiacomesenteric artery, ventral aorta and anterior cardinal vein. The detection of pro-BNP and pro-CNP was also supported by MALDI-TOF mass spectrometry analysis of NP-enriched tissue extracts. Although vascular pro-peptide levels of BNP and CNP were quantitatively quite comparable to those found in reference tissues (the atrium for BNP and brain for CNP), mRNA levels of these NPs in the vasculature were greatly reduced as determined by quantitative PCR. When the evolutionarily conserved vascular NP (CNP) was infused into un-anesthetized trout, it reduced central venous pressure and mean circulatory filling pressure. CNP also decreased cardiac output via a reduction in preload. The presence of endogenous NP production in the trout vasculature and potent in vivo hypotensive effects further support the numerous functional similarities between teleost and mammalian NP systems.
Collapse
Affiliation(s)
- Keven R Johnson
- University of Notre Dame, Department of Biological Sciences, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
6
|
Müller D, Hildebrand M, Lübberstedt J, Kuhn M, Middendorff R. The membrane receptors guanylyl cyclase-A and -B undergo distinctive changes in post-translational modification during brain development. J Neurochem 2010; 115:1024-34. [PMID: 20880010 DOI: 10.1111/j.1471-4159.2010.06985.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temporal carbohydrate expression patterns at cell surfaces are thought to be of crucial regulatory significance during developmental processes. Hitherto, however, data on individual membrane proteins undergoing development-associated changes in glycosylation are sparsely. Here, we show that the two natriuretic peptide receptors, guanylyl cyclase-A (GC-A) and GC-B are subject to pronounced size alterations in the rat brain between postnatal day 1 and adult. Comparable size changes were not detectable for GC-A and GC-B in peripheral tissues and for three other membrane proteins (insulin receptor, insulin-like growth factor-II/mannose-6-phoshate receptor, neutral endopeptidase) in brain, indicating remarkable specificity. As revealed by treatments with carbohydrate-digesting enzymes, both GC-A and GC-B are hyperglycosylated at N-linked glycosylation sites in the developing brain. At postnatal day 1, the vast majority of GC-B (but not GC-A) molecules contain additionally an O-linked carbohydrate modification of about 1 kDa in mass and a further modification of similar size which is resistant to enzymatic removal. The glycoforms exhibited functional activity in membrane GC assays, indicating proper folding and signaling capability. These data link recently reported roles of natriuretic peptides during brain development for the first time with specific glycosylation states of their cyclic GMP-generating receptors.
Collapse
Affiliation(s)
- Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany.
| | | | | | | | | |
Collapse
|
7
|
Klaiber M, Kruse M, Völker K, Schröter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londoño JEC, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M. Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 2010; 105:583-95. [PMID: 20352235 PMCID: PMC2916114 DOI: 10.1007/s00395-010-0098-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/17/2010] [Accepted: 03/16/2010] [Indexed: 01/12/2023]
Abstract
Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on beta-adrenergic versus Angiotensin II (Ang II)-dependent (G(s) vs. G(alphaq) mediated) modulation of Ca(2+) (i)-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca(2+) currents and Ca(2+) (i) transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca(2+) currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca(2+)/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, beta-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca(2+)-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca(2+) (i)-dependent hypertrophic growth response to Ang II, but not to beta-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT(1) signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for beta-adrenergic Ca(2+) (i)-stimulation in adult myocytes.
Collapse
Affiliation(s)
- Michael Klaiber
- Institute of Physiology, University of Würzburg, Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Martin Kruse
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Juliane Schröter
- Institute of Physiology, University of Würzburg, Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Marc Freichel
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Andrea Gerling
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Tübingen, Germany
| | - Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Hideo A. Baba
- Institute of Pathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC USA
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC USA
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| |
Collapse
|
8
|
Schröter J, Zahedi RP, Hartmann M, Gassner B, Gazinski A, Waschke J, Sickmann A, Kuhn M. Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. FEBS J 2010; 277:2440-53. [PMID: 20456499 PMCID: PMC2901513 DOI: 10.1111/j.1742-4658.2010.07658.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Atrial natriuretic peptide (ANP), via its guanylyl cyclase A (GC-A) receptor and intracellular guanosine 3',5'-cyclic monophosphate production, is critically involved in the regulation of blood pressure. In patients with chronic heart failure, the plasma levels of ANP are increased, but the cardiovascular actions are severely blunted, indicating a receptor or postreceptor defect. Studies on metabolically labelled GC-A-overexpressing cells have indicated that GC-A is extensively phosphorylated, and that ANP-induced homologous desensitization of GC-A correlates with receptor dephosphorylation, a mechanism which might contribute to a loss of function in vivo. In this study, tandem MS analysis of the GC-A receptor, expressed in the human embryonic kidney cell line HEK293, revealed unambiguously that the intracellular domain of the receptor is phosphorylated at multiple residues: Ser487, Ser497, Thr500, Ser502, Ser506, Ser510 and Thr513. MS quantification based on multiple reaction monitoring demonstrated that ANP-provoked desensitization was accompanied by a complex pattern of receptor phosphorylation and dephosphorylation. The population of completely phosphorylated GC-A was diminished. However, intriguingly, the phosphorylation of GC-A at Ser487 was selectively enhanced after exposure to ANP. The functional relevance of this observation was analysed by site-directed mutagenesis. The substitution of Ser487 by glutamate (which mimics phosphorylation) blunted the activation of the GC-A receptor by ANP, but prevented further desensitization. Our data corroborate previous studies suggesting that the responsiveness of GC-A to ANP is regulated by phosphorylation. However, in addition to the dephosphorylation of the previously postulated sites (Ser497, Thr500, Ser502, Ser506, Ser510), homologous desensitization seems to involve the phosphorylation of GC-A at Ser487, a newly identified site of phosphorylation. The identification and further characterization of the specific mechanisms involved in the downregulation of GC-A responsiveness to ANP may have important pathophysiological implications.
Collapse
Affiliation(s)
- Juliane Schröter
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Porzionato A, Macchi V, Rucinski M, Malendowicz LK, De Caro R. Natriuretic Peptides in the Regulation of the Hypothalamic–Pituitary–Adrenal Axis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:1-39. [DOI: 10.1016/s1937-6448(10)80001-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem 2009; 334:37-51. [DOI: 10.1007/s11010-009-0335-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
|
11
|
Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 2009; 334:53-65. [PMID: 19937369 DOI: 10.1007/s11010-009-0326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023]
Abstract
Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.
Collapse
Affiliation(s)
- G Martel
- Laboratory of Cellular Biology of Hypertension, Centre for Ecogenomic Models of Human Diseases, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Technopôle Angus, 2901 rue Rachel est, bureau 314, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|