1
|
Maddur AA, Voehler M, Panizzi P, Meiler J, Bock PE, Verhamme IM. Mapping of the fibrinogen-binding site on the staphylocoagulase C-terminal repeat region. J Biol Chem 2021; 298:101493. [PMID: 34915025 PMCID: PMC8761706 DOI: 10.1016/j.jbc.2021.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Fibrin (Fbn) deposits are a hallmark of staphylocoagulase (SC)-positive endocarditis. Binding of the N terminus of Staphylococcus aureus SC to host prothrombin triggers formation of an active SC·prothrombin∗ complex that cleaves host fibrinogen to Fbn. In addition, the C-terminal domain of the prototypical SC contains one pseudorepeat (PR) and seven repeats (R1 → R7) that bind fibrinogen/Fbn fragment D (frag D) by a mechanism that is unclear. Here, we define affinities and stoichiometries of frag D binding to C-terminal SC constructs, using fluorescence equilibrium binding, NMR titration, alanine scanning, and native PAGE. We found that constructs containing the PR and single repeats bound frag D with KD ∼50 to 130 nM and a 1:1 stoichiometry, indicating a conserved binding site bridging the PR and each repeat. NMR titration of PR-R7 with frag D revealed that residues 22 to 49, bridging PR and R7, constituted the minimal peptide (MP) for binding, corroborated by alanine scanning, and binding of labeled MP to frag D. MP alignment with the PR-R and inter-repeat junctions identified critical conserved residues. Full-length PR-(R1 → R7) bound frag D with KD ∼20 nM and a stoichiometry of 1:5, whereas constructs containing the PR and various three repeats competed with PR-(R1 → R7) for frag D binding, with a 1:3 stoichiometry. These findings are consistent with binding at PR-R and R-R junctions with modest inter-repeat sequence variability. CD of PR-R7 and PR-(R1 → R7) suggested a disordered flexible structure, allowing binding of multiple fibrin(ogen) molecules. Taken together, these results provide insights into pathogen localization on host fibrin networks.
Collapse
Affiliation(s)
- Ashoka A. Maddur
- FUJIFILM Diosynth Biotechnologies, College Station, Texas, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| | - Markus Voehler
- Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA,Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Paul E. Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ingrid M. Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| |
Collapse
|
2
|
Cohen CT, Turner NA, Moake JL. Human endothelial cells and fibroblasts express and produce the coagulation proteins necessary for thrombin generation. Sci Rep 2021; 11:21852. [PMID: 34750441 PMCID: PMC8575941 DOI: 10.1038/s41598-021-01360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
In a previous study, we reported that human endothelial cells (ECs) express and produce their own coagulation factors (F) that can activate cell surface FX without the additions of external proteins or phospholipids. We now describe experiments that detail the expression and production in ECs and fibroblasts of the clotting proteins necessary for formation of active prothrombinase (FV-FX) complexes to produce thrombin on EC and fibroblast surfaces. EC and fibroblast thrombin generation was identified by measuring: thrombin activity; thrombin-antithrombin complexes; and the prothrombin fragment 1.2 (PF1.2), which is produced by the prothrombinase cleavage of prothrombin (FII) to thrombin. In ECs, the prothrombinase complex uses surface-attached FV and γ-carboxyl-glutamate residues of FX and FII to attach to EC surfaces. FV is also on fibroblast surfaces; however, lower fibroblast expression of the gene for γ-glutamyl carboxylase (GGCX) results in production of vitamin K-dependent coagulation proteins (FII and FX) with reduced surface binding. This is evident by the minimal surface binding of PF1.2, following FII activation, of fibroblasts compared to ECs. We conclude that human ECs and fibroblasts both generate thrombin without exogenous addition of coagulation proteins or phospholipids. The two cell types assemble distinct forms of prothrombinase to generate thrombin.
Collapse
Affiliation(s)
- Clay T Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Modeling Thrombin Generation in Plasma under Diffusion and Flow. Biophys J 2020; 119:162-181. [PMID: 32544388 DOI: 10.1016/j.bpj.2020.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
We investigate the capacity of published numerical models of thrombin generation to reproduce experimentally observed threshold behavior under conditions in which diffusion and/or flow are important. Computational fluid dynamics simulations incorporating species diffusion, fluid flow, and biochemical reactions are compared with published data for thrombin generation in vitro in 1) quiescent plasma exposed to patches of tissue factor and 2) plasma perfused through a capillary coated with tissue factor. Clot time is correctly predicted in individual cases, and some models qualitatively replicate thrombin generation thresholds across a series of tissue factor patch sizes or wall shear rates. Numerical results suggest that there is not a genuine patch size threshold in quiescent plasma-clotting always occurs given enough time-whereas the shear rate threshold observed under flow is a genuine physical limit imposed by flow-mediated washout of active coagulation factors. Despite the encouraging qualitative results obtained with some models, no single model robustly reproduces all experiments, demonstrating that greater understanding of the underlying reaction network, and particularly of surface reactions, is required. In this direction, additional simulations provide evidence that 1) a surface-localized enzyme, speculatively identified as meizothrombin, is significantly active toward the fluorescent thrombin substrate used in the experiments or, less likely, 2) thrombin is irreversibly inhibited at a faster-than-expected rate, possibly explained by a stimulatory effect of plasma heparin on antithrombin. These results highlight the power of simulation to provide novel mechanistic insights that augment experimental studies and build our understanding of complex biophysicochemical processes. Further validation work is critical to unleashing the full potential of coagulation models as tools for drug development and personalized medicine.
Collapse
|
4
|
Maddur AA, Kroh HK, Aschenbrenner ME, Gibson BHY, Panizzi P, Sheehan JH, Meiler J, Bock PE, Verhamme IM. Specificity and affinity of the N-terminal residues in staphylocoagulase in binding to prothrombin. J Biol Chem 2020; 295:5614-5625. [PMID: 32156702 PMCID: PMC7186164 DOI: 10.1074/jbc.ra120.012588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/09/2020] [Indexed: 11/06/2022] Open
Abstract
In Staphylococcus aureus-caused endocarditis, the pathogen secretes staphylocoagulase (SC), thereby activating human prothrombin (ProT) and evading immune clearance. A previous structural comparison of the SC(1-325) fragment bound to thrombin and its inactive precursor prethrombin 2 has indicated that SC activates ProT by inserting its N-terminal dipeptide Ile1-Val2 into the ProT Ile16 pocket, forming a salt bridge with ProT's Asp194, thereby stabilizing the active conformation. We hypothesized that these N-terminal SC residues modulate ProT binding and activation. Here, we generated labeled SC(1-246) as a probe for competitively defining the affinities of N-terminal SC(1-246) variants preselected by modeling. Using ProT(R155Q,R271Q,R284Q) (ProTQQQ), a variant refractory to prothrombinase- or thrombin-mediated cleavage, we observed variant affinities between ∼1 and 650 nm and activation potencies ranging from 1.8-fold that of WT SC(1-246) to complete loss of function. Substrate binding to ProTQQQ caused allosteric tightening of the affinity of most SC(1-246) variants, consistent with zymogen activation through occupation of the specificity pocket. Conservative changes at positions 1 and 2 were well-tolerated, with Val1-Val2, Ile1-Ala2, and Leu1-Val2 variants exhibiting ProTQQQ affinity and activation potency comparable with WT SC(1-246). Weaker binding variants typically had reduced activation rates, although at near-saturating ProTQQQ levels, several variants exhibited limiting rates similar to or higher than that of WT SC(1-246). The Ile16 pocket in ProTQQQ appears to favor nonpolar, nonaromatic residues at SC positions 1 and 2. Our results suggest that SC variants other than WT Ile1-Val2-Thr3 might emerge with similar ProT-activating efficiency.
Collapse
Affiliation(s)
- Ashoka A Maddur
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Mary E Aschenbrenner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Breanne H Y Gibson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Institute for Drug Discovery, Departments of Chemistry and Computer Science, Leipzig University Medical School, SAC 04103 Leipzig, Germany
| | - Paul E Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561
| | - Ingrid M Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561.
| |
Collapse
|
5
|
Chinnaraj M, Planer W, Pozzi N. Structure of Coagulation Factor II: Molecular Mechanism of Thrombin Generation and Development of Next-Generation Anticoagulants. Front Med (Lausanne) 2018; 5:281. [PMID: 30333979 PMCID: PMC6176116 DOI: 10.3389/fmed.2018.00281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/14/2018] [Indexed: 01/13/2023] Open
Abstract
Coagulation factor II, or prothrombin, is a multi-domain glycoprotein that is essential for life and a key target of anticoagulant therapy. In plasma, prothrombin circulates in two forms at equilibrium, “closed” (~80%) and “open” (~20%), brokered by the flexibility of the linker regions. Its structure remained elusive until recently when our laboratory solved the first X-ray crystal structure of the zymogen locked in the predominant closed form. Because of this technical breakthrough, fascinating aspects of the biology of prothrombin have started to become apparent, and with this, novel and important questions arise. Here, we examine the significance of the “closed”/“open” equilibrium in the context of the mechanism of thrombin generation. Further, we discuss the potential translational opportunities for the development of next-generation anticoagulants that arise from this discovery. By providing a structural overview of each alternative conformation, this minireview also offers a relevant example of modern structural biology and establishes a practical workflow to elucidate the structural features of analogous clotting and complement factors.
Collapse
Affiliation(s)
- Mathivanan Chinnaraj
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William Planer
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Bradford HN, Krishnaswamy S. The Fragment 1 Region of Prothrombin Facilitates the Favored Binding of Fragment 12 to Zymogen and Enforces Zymogen-like Character in the Proteinase. J Biol Chem 2016; 291:11114-23. [PMID: 27013660 DOI: 10.1074/jbc.m116.723072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 11/06/2022] Open
Abstract
Thrombin is produced from the C-terminal half of prothrombin following its proteolytic activation. The N-terminal half, released as the propiece Fragment 12 (F12), is composed of an N-terminal γ-carboxyglutamate domain (Gla) followed by two kringles (K1 and K2). The propiece plays essential roles in regulating prothrombin activation and proteinase function. The latter results from the ability of F12 to reversibly bind to the (pro)catalytic domain through K2 with high affinity and highly favorable thermodynamic constants when it is a zymogen in comparison to proteinase. Such discrimination is lost for K2 binding after proteolytic removal of the N-terminal Gla-K1 region of F12. The Ca(2+)-stabilized structure of the Gla domain is not required for F12 to bind the zymogen form more favorably. Enhanced binding to zymogen versus proteinase correlates with the ability of the propiece to enforce zymogen-like character in the proteinase. This is evident in variants of meizothrombin, an intermediate of prothrombin activation that contains the propiece covalently attached. This phenomenon is also independent of the Gla domain. Thus, the presence of K1 in covalent linkage with K2 in the propiece governs the ability of K2 to bind the (pro)catalytic domain in favor of zymogen, thereby enforcing zymogen-like character in the proteinase.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, and
| | - Sriram Krishnaswamy
- From the Research Institute, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
7
|
Adams TE, Huntington JA. Structural transitions during prothrombin activation: On the importance of fragment 2. Biochimie 2015; 122:235-42. [PMID: 26365066 PMCID: PMC4756804 DOI: 10.1016/j.biochi.2015.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
Abstract
Prothrombin is activated to thrombin by the prothrombinase complex through sequential cleavage at two distinct sites. This occurs at sites of vascular injury in a highly regulated cascade of serine protease and cofactor activation, where activated platelets provide a suitable surface for protease/cofactor/substrate assembly. The precise structural and conformational changes undergone during the transition from prothrombin to thrombin have been studied for decades, and several structures of prothrombin fragments along the activation pathway have been solved. Here we present a new structure analyzed in context of other recent structures and biochemical studies. What emerges is an unexpected mechanism that involves a change in the mode of binding of the F2 domain (fragment 2) on the catalytic domain after cleavage at Arg320, and a subsequent reorientation of the linker between the F2 and catalytic domain to present the Arg271 site for cleavage. The catalytic domain of thrombin precursors binds to its F2 domain by two distinct modes. Cleavage of prothrombin at either Arg271 or Arg320 results in shift from mode 2 to mode 1. After cleavage at Arg320, movement of F2 helps to present the second cleavage site at Arg271.
Collapse
Affiliation(s)
- Ty E Adams
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - James A Huntington
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
8
|
Pawlak K, Mysliwiec M, Pawlak D. oxLDL - the molecule linking hypercoagulability with the presence of cardiovascular disease in hemodialyzed uraemic patients. Thromb Res 2014; 134:711-6. [PMID: 25065558 DOI: 10.1016/j.thromres.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/05/2014] [Accepted: 07/01/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Patients with end-stage renal disease (ESRD) exhibit features of a hypercoagulable state, which may contribute to cardiovascular complications. Data from "in vitro" studies suggest that cell-free plasma lipids and lipoproteins may be capable to support thrombin generation. The aim of this study has been to establish the role of plasma oxidized LDL (oxLDL) in the coagulation activation in hemodialyzed (HD) patients with and without cardiovascular disease (CVD). MATERIALS AND METHODS We examined relationship between a marker of coagulation activation - prothrombin fragments 1+2 (F1+2), and plasma oxLDL levels in 60 HD patients with and without CVD and in 20 healthy controls. RESULTS F1+2 levels were significantly higher in HD patients than in controls, and they were higher in HD patients with CVD compared to those without CVD (p<0.001). Conversely, oxLDL levels were similar in HD patients with CVD and healthy controls, whereas this parameter was lower in HD patients without CVD when compared to controls and patients with CVD (both p<0.01). Close positive and independent association was between F1+2 and oxLDL levels in HD patients. Nitrates treatment and the presence of pyelonephritis were associated with reduced oxLDL as well as hypercoagulability in HD patients with cardiovascular complications. CONCLUSION This study demonstrates the independent association between oxLDL and the marker of coagulation activation - F1+2 in HD patients. This new observation may offer a better understanding of the complex mechanism leading to hypercoagulability, which is markedly intensified in these patients, particularly in those with CVD.
Collapse
Affiliation(s)
- Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University, Bialystok, Poland.
| | - Michal Mysliwiec
- Department of Nephrology and Clinical Transplantation, Medical University, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University, Bialystok, Poland
| |
Collapse
|
9
|
Abstract
The proteolytic conversion of prothrombin to thrombin catalyzed by prothrombinase is one of the more extensively studied reactions of blood coagulation. Sophisticated biophysical and biochemical insights into the players of this reaction were developed in the early days of the field. Yet, many basic enzymological questions remained unanswered. I summarize new developments that uncover mechanisms by which high substrate specificity is achieved, and the impact of these strategies on enzymic function. Two principles emerge that deviate from conventional wisdom that has otherwise dominated thinking in the field. (i) Enzymic specificity is dominated by the contribution of exosite binding interactions between substrate and enzyme rather than by specific recognition of sequences flanking the scissile bond. Coupled with the regulation of substrate conformation as a result of the zymogen to proteinase transition, novel mechanistic insights result for numerous aspects of enzyme function. (ii) The transition of zymogen to proteinase following cleavage is not absolute and instead, thrombin can reversibly interconvert between zymogen-like and proteinase-like forms depending on the complement of ligands bound to it. This establishes new paradigms for considering proteinase allostery and how enzyme function may be modulated by ligand binding. These insights into the action of prothrombinase on prothrombin have wide-ranging implications for the understanding of function in blood coagulation.
Collapse
Affiliation(s)
- S Krishnaswamy
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Leiderman K, Fogelson AL. The influence of hindered transport on the development of platelet thrombi under flow. Bull Math Biol 2012; 75:1255-83. [PMID: 23097125 DOI: 10.1007/s11538-012-9784-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 10/09/2012] [Indexed: 01/27/2023]
Abstract
Vascular injury triggers two intertwined processes, platelet deposition and coagulation, and can lead to the formation of an intravascular clot (thrombus) that may grow to occlude the vessel. Formation of the thrombus involves complex biochemical, biophysical, and biomechanical interactions that are also dynamic and spatially-distributed, and occur on multiple spatial and temporal scales. We previously developed a spatial-temporal mathematical model of these interactions and looked at the interplay between physical factors (flow, transport to the clot, platelet distribution within the blood) and biochemical ones in determining the growth of the clot. Here, we extend this model to include reduction of the advection and diffusion of the coagulation proteins in regions of the clot with high platelet number density. The effect of this reduction, in conjunction with limitations on fluid and platelet transport through dense regions of the clot can be profound. We found that hindered transport leads to the formation of smaller and denser clots compared to the case with no protein hindrance. The limitation on protein transport confines the important activating complexes to small regions in the interior of the thrombus and greatly reduces the supply of substrates to these complexes. Ultimately, this decreases the rate and amount of thrombin production and leads to greatly slowed growth and smaller thrombus size. Our results suggest a possible physical mechanism for limiting thrombus growth.
Collapse
Affiliation(s)
- Karin Leiderman
- Applied Mathematics Unit, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA.
| | | |
Collapse
|
11
|
Kroh HK, Bock PE. Effect of zymogen domains and active site occupation on activation of prothrombin by von Willebrand factor-binding protein. J Biol Chem 2012; 287:39149-57. [PMID: 23012355 DOI: 10.1074/jbc.m112.415562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH(2)-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1-263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1-474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1-474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1-263) or vWbp(1-474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1-263) and vWbp(1-474), with a 30-45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with D-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their K(D) values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
12
|
Bradford HN, Krishnaswamy S. Meizothrombin is an unexpectedly zymogen-like variant of thrombin. J Biol Chem 2012; 287:30414-25. [PMID: 22815477 DOI: 10.1074/jbc.m112.394809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.
Collapse
Affiliation(s)
- Harlan N Bradford
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Fogelson AL, Hussain YH, Leiderman K. Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophys J 2012; 102:10-8. [PMID: 22225793 DOI: 10.1016/j.bpj.2011.10.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/04/2011] [Accepted: 10/31/2011] [Indexed: 10/14/2022] Open
Abstract
A previously validated mathematical model of intravascular platelet deposition and tissue factor (TF)-initiated coagulation under flow is extended and used to assess the influence on thrombin production of the activation of factor XI (fXI) by thrombin and of the activation of factor IX (fIX) by fXIa. It is found that the importance of the thrombin-fXIa-fIXa feedback loop to robust thrombin production depends on the concentration of platelets in the blood near the injury. At a near-wall platelet concentration of ~250,000/μL, typical in vessels in which the shear rate is <200 s(-1), thrombin activation of fXI makes a significant difference only at low densities of exposed TF. If the near-wall platelet concentration is significantly higher than this, either because of a higher systemic platelet count or because of the redistribution of platelets toward the vessel walls at high shear rates, then thrombin activation of fXI makes a major difference even for relatively high densities of exposed TF. The model predicts that the effect of a severe fXI deficiency depends on the platelet count, and that fXI becomes more important at high platelet counts.
Collapse
Affiliation(s)
- Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.
| | | | | |
Collapse
|
14
|
Majumder R, Liang X, Quinn-Allen MA, Kane WH, Lentz BR. Modulation of prothrombinase assembly and activity by phosphatidylethanolamine. J Biol Chem 2011; 286:35535-35542. [PMID: 21859710 DOI: 10.1074/jbc.m111.260141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ∼10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va(2) (K(d) = ∼6.5 μm) and to factor Xa (K(d) = ∼91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (K(d)(app) = ∼40 nm) of a partially active prothrombinase complex between factor Xa and factor Va(2), compared with K(d)(app) for C6PS ∼2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting.
Collapse
Affiliation(s)
- Rinku Majumder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.
| | - Xiaoe Liang
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656
| | - Mary Ann Quinn-Allen
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656
| | - William H Kane
- Division of Hematology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27702-3656.
| | - Barry R Lentz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
15
|
Huntington JA. Thrombin plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:246-52. [PMID: 21782041 DOI: 10.1016/j.bbapap.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
Abstract
Thrombin is the final protease generated in the blood coagulation cascade. It has multiple substrates and cofactors, and serves both pro- and anti-coagulant functions. How thrombin activity is directed throughout the evolution of a clot and the role of conformational change in determining thrombin specificity are issues that lie at the heart of the haemostatic balance. Over the last 20 years there have been a great number of studies supporting the idea that thrombin is an allosteric enzyme that can exist in two conformations differing in activity and specificity. However, recent work has shown that thrombin in its unliganded state is inherently flexible in regions that are important for activity. The effect of flexibility on activity is discussed in this review in context of the zymogen-to-protease conformational transition. Understanding thrombin function in terms of 'plasticity' provides a new conceptual framework for understanding regulation of enzyme activity in general. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.
| |
Collapse
|
16
|
Kroh HK, Panizzi P, Tchaikovski S, Baird TR, Wei N, Krishnaswamy S, Tans G, Rosing J, Furie B, Furie BC, Bock PE. Active site-labeled prothrombin inhibits prothrombinase in vitro and thrombosis in vivo. J Biol Chem 2011; 286:23345-56. [PMID: 21531712 DOI: 10.1074/jbc.m111.230292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse and human prothrombin (ProT) active site specifically labeled with D-Phe-Pro-Arg-CH(2)Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProT(S195A) mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProT(S195A) as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProT(S195A), the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH(2)Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.
Collapse
Affiliation(s)
- Heather K Kroh
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Houston DF, Timson DJ. Interaction of prothrombin with a phospholipid surface: evidence for a membrane-induced conformational change. Mol Cell Biochem 2010; 348:109-15. [DOI: 10.1007/s11010-010-0644-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022]
Affiliation(s)
- David F Houston
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
18
|
Abstract
Prothrombin fragment 1+2 (F1+2), which comes from in vivo cleavage of prothrombin by factor Xa, is considered to be useful for diagnosis of thrombosis. Recognition of the central role of thrombosis in the pathogenesis ofcardiovascular disease has prompted growing interest in the association o F1+2 with cardiovascular clinical syndromes. Increased F1+2 levels have reported in venous thromboembolism, inflammation, cancer, sepsis, acute coronary syndromes, stroke, peripheral arterial disease, atrial fibrillation and during the postoperative period. However, a clear relationship with the appearance of thrombosis has not always been consistently demonstrated. Besides its potential prognostic and diagnostic value, it could also be usefu in assessing the impact of various therapies. However, it should be kept in mind that measurement of hemostasis activation markers has several important biological and methodological disadvantages. Activation markers reflect the presence of thrombosis in any vascular bed, so they are not specific. Furthermore, elevations occur not only in the presence of overt thrombosis but also during the hypercoagulable state. The cutoff level to be used for the definition of elevations is still largely unknown due to the use of different analytical methods, none of which have been standardized until know. Finally, the prognostic value of F1+2 and other markers of coagulation activation remains to be fully defined in future studies.
Collapse
|
19
|
Kamath P, Huntington JA, Krishnaswamy S. Ligand binding shuttles thrombin along a continuum of zymogen- and proteinase-like states. J Biol Chem 2010; 285:28651-8. [PMID: 20639195 DOI: 10.1074/jbc.m110.154914] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical and multiple roles of thrombin in blood coagulation are regulated by ligands and cofactors. Zymogen activation imparts proteolytic activity to thrombin and also affects the binding of ligands to its two principal exosites. We have used the activation peptide fragment 1.2 (F12), a ligand for anion-binding exosite 2, to probe the zymogenicity of thrombin by isothermal titration calorimetry. We show that F12 binding is sensitive to subtle aspects of proteinase formation beyond simply reporting on zymogen cleavage. Large thermodynamic differences in F12 binding distinguish between a series of thrombin species poised along the transition of zymogen to proteinase. Active-site ligands transitioned a zymogen-like state to a proteinase-like state. Conversely, removal of Na(+) converted proteinase-like thrombin to a more zymogen-like form. Thrombin mutants, with deformed x-ray structures, previously considered to be emblematic of specific regulated states of the enzyme, are instead shown to be variously zymogen-like and can be made proteinase-like by active-site ligation. Thermodynamic linkage between anion-binding exosite 2, the Na(+)-binding site, and the active site arises from interconversions of thrombin between a continuum of zymogen- and proteinase-like states. These interconversions, reciprocally regulated by different ligands, cast new light on the problem of thrombin allostery and provide a thermodynamic framework to explain the regulation of thrombin by different ligands.
Collapse
Affiliation(s)
- Parvathi Kamath
- Research Institute, Children's Hospital of Philadelphia, USA
| | | | | |
Collapse
|
20
|
Berny MA, Munnix ICA, Auger JM, Schols SEM, Cosemans JMEM, Panizzi P, Bock PE, Watson SP, McCarty OJT, Heemskerk JWM. Spatial distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear. PLoS One 2010; 5:e10415. [PMID: 20454680 PMCID: PMC2861630 DOI: 10.1371/journal.pone.0010415] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/31/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear. METHODOLOGY/PRINCIPAL FINDINGS Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca(2+) signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl(3). Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen). CONCLUSIONS/SIGNIFICANCE FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).
Collapse
Affiliation(s)
- Michelle A. Berny
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Imke C. A. Munnix
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jocelyn M. Auger
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saskia E. M. Schols
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | | | - Peter Panizzi
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
21
|
Buddai SK, Layzer JM, Lu G, Rusconi CP, Sullenger BA, Monroe DM, Krishnaswamy S. An anticoagulant RNA aptamer that inhibits proteinase-cofactor interactions within prothrombinase. J Biol Chem 2009; 285:5212-23. [PMID: 20022942 DOI: 10.1074/jbc.m109.049833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of factor Xa with factor Va on membranes to form prothrombinase profoundly increases the rate of the proteolytic conversion of prothrombin to thrombin. We present the characterization of an RNA aptamer (RNA(11F7t)) selected from a combinatorial library based on its ability to bind factor Xa. We show that RNA(11F7t) inhibits thrombin formation catalyzed by prothrombinase without obscuring the active site of Xa within the enzyme complex. Selective inhibition of protein substrate cleavage arises from the ability of the aptamer to bind to factor Xa and exclude interactions between the proteinase and cofactor within prothrombinase. Competition for enzyme complex assembly results from the binding of RNA(11F7t) to factor Xa with nanomolar affinity in a Ca(2+)-dependent interaction. RNA(11F7t) binds equivalently to the zymogen factor X as well as derivatives lacking gamma-carboxyglutamic acid residues. We suggest that the ability of RNA(11F7t) to compete for the Xa-Va interaction with surprisingly high affinity likely reflects a significant contribution from its ability to indirectly impact regions of Xa that participate in the proteinase-cofactor interaction. Thus, despite the complexity of the macromolecular interactions that underlie the assembly of prothrombinase, efficient inhibition of enzyme complex assembly and thrombin formation can be achieved by tight binding ligands that target factor Xa in a discrete manner.
Collapse
Affiliation(s)
- Sai K Buddai
- Joseph Stokes Research Institute, Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|