1
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
2
|
Gyawali YP, Jiang T, Yang J, Zheng H, Liu R, Zhang H, Feng C. Differential superoxide production in phosphorylated neuronal nitric oxide synthase mu and alpha variants. J Inorg Biochem 2024; 251:112454. [PMID: 38100901 PMCID: PMC10843652 DOI: 10.1016/j.jinorgbio.2023.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge. To address these issues, this study first expanded a recent genetic code expansion approach to produce phosphorylated rat nNOSμ and nNOSα holoproteins through site-specific incorporation of phosphoserine (pSer) at residues 1446 and 1412, respectively; this site is at the C-terminal tail region, a NOS-unique regulatory element. A quantitative mass spectrometric approach was then developed in-house to analyze unphosphorylated peptides in phosphatase-treated and -untreated phospho-nNOS proteins. The observed pSer-incorporation efficiency consistently exceeded 80%, showing high pSer-incorporation efficiency. Notably, EPR spin trapping results demonstrate that under l-arginine-depleted conditions, pSer1412 nNOSα presented a significant reduction in superoxide generation, whereas pSer1446 nNOSμ exhibited the opposite effect, compared to their unphosphorylated counterparts. This suggests that phosphorylation at the C-terminal tail has a regulatory effect on nNOS uncoupling that may differ between variant forms. Furthermore, the methodologies for incorporating pSer into large, complex protein and quantifying the percentage of phosphorylation in recombinant purified protein should be applicable to other protein systems.
Collapse
Affiliation(s)
| | - Ting Jiang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Huayu Zheng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rui Liu
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Haikun Zhang
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Boehme JT, Sun X, Lu Q, Barton J, Wu X, Gong W, Raff GW, Datar SA, Wang T, Fineman JR, Black SM. Simvastatin restores pulmonary endothelial function in the setting of pulmonary over-circulation. Nitric Oxide 2024; 142:58-68. [PMID: 38061411 PMCID: PMC11045265 DOI: 10.1016/j.niox.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
Statin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling. These features make CHD an ideal cohort in which to re-evaluate the potential pulmonary vascular benefits of statins, with a focus on endothelial biology. However, it is critical that the full gamut of the pleiotropic effects of statins in the endothelium are uncovered. The purpose of this investigation was to evaluate the therapeutic potential of simvastatin for children with CHD and pulmonary over-circulation, and examine mechanisms of simvastatin action on the endothelium. Our data demonstrate that daily simvastatin treatment preserves endothelial function in our shunt lamb model of pulmonary over-circulation. Further, using pulmonary arterial endothelial cells (PAECs) isolated from Shunt and control lambs, we identified a new mechanism of statin action mediated by increased expression of the endogenous Akt1 inhibitor, C-terminal modifying protein (CTMP). Increases in CTMP were able to decrease the Akt1-mediated mitochondrial redistribution of endothelial nitric oxide synthase (eNOS) which correlated with increased enzymatic coupling, identified by increases in NO generation and decreases in NOS-derived superoxide. Together our data identify a new mechanism by which simvastatin enhances NO signaling in the pulmonary endothelium and identify CTMP as a potential therapeutic target to prevent the endothelial dysfunction that occurs in children born with CHD resulting in pulmonary over-circulation.
Collapse
Affiliation(s)
- Jason T Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jubilee Barton
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, 85719, USA
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, CA, 95817, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
4
|
Giles J, Lopez V, McConnaha E, Hayden M, Kragenbring C, Carli D, Wauson E, Tran QK. Regulation of basal autophagy by calmodulin availability. FEBS J 2022; 289:5322-5340. [PMID: 35285161 DOI: 10.1111/febs.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter autophagy) is a process that degrades cellular components to maintain homeostasis. The Ca2+ sensor calmodulin (CaM) regulates numerous cell functions but is a limiting factor due to its insufficient availability for all target proteins. However, evidence that CaM availability regulates basal autophagy is lacking. Here, we have tested this hypothesis. CaM antagonists W-7, trifluoperazine and CGS9343b cause autophagosome accumulation and inhibit basal autophagic flux in the same manner as does chloroquine. These reagents promote the activity of AMP-activated protein kinase (AMPK) but not that of the mechanistic target of rapamycin (mTOR). Competitive binding assays using CaM sensors with different Ca2+ dependencies showed that chloroquine directly binds CaM in a Ca2+ -dependent fashion. The CaM antagonists have disparate effects on cytoplasmic Ca2+ , triggering from none to robust signals, indicating that their consistent inhibition of autophagy is due to inhibition of CaM and not Ca2+ . Chelating intracellular Ca2+ reduces the effect of the CaM antagonists to accumulate LC3-II, indicating that they do so by inhibiting CaM-dependent activities at basal Ca2+ level. The CaM antagonists cause lysosomal alkalinisation. Consistently, buffering CaM with a high-affinity CaM-binding protein that binds CaM at resting Ca2+ level increases lysosomal pH. Enhanced CaM buffering using a chimeric protein that contains two high-affinity CaM-binding sites that can collectively bind CaM at a large range of Ca2+ further increases lysosomal pH and increases LC3-II accumulation and AMPK activity, but not that of mTOR. These data demonstrate that CaM availability is required for basal autophagy.
Collapse
Affiliation(s)
- Jennifer Giles
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Vanessa Lopez
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Elizabeth McConnaha
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Matthew Hayden
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Caleb Kragenbring
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - David Carli
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Eric Wauson
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, IA, USA
| |
Collapse
|
5
|
Endothelial regulation of calmodulin expression and eNOS-calmodulin interaction in vascular smooth muscle. Mol Cell Biochem 2022; 477:1489-1498. [PMID: 35171400 DOI: 10.1007/s11010-022-04391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Calmodulin (CaM) is a Ca2+ sensor protein that is required for numerous vascular smooth muscle cell (VSMC) functions. Since CaM is not expressed enough for its many target proteins, factors that modulate its expression and interactions with targets in VSMCs can have extensive effects on vascular functions. VSMCs receive many regulatory inputs from endothelial cells (ECs). However, it is unknown if ECs regulate vascular functions via controlling expression of CaM and its interactions in VSMCs. In this work, we tested the hypothesis that ECs also affect VSMC signaling via regulation of CaM expression and interactions with its target proteins in VSMCs. Using ECs and VSMCs isolated from the same vessels and grown in a co-culture system, we observed that the presence of proliferating ECs significantly upregulates total CaM expression in VSMCs. An imaging module was devised to concurrently measure free Ca2+ and CaM levels in VSMCs in co-culture with ECs. Using indo-1/AM and a CaM biosensor built from a modified CaM-binding sequence of endothelial nitric oxide synthase (eNOS), this system revealed that in response to a generic Ca2+ signal, free Ca2+-bound CaM level is enhanced ~ threefold in VSMCs in co-culture with proliferating ECs. Interestingly, VSMCs express eNOS and eNOS-CaM association in response to the same Ca2+ stimulus is also enhanced ~ threefold in VSMCs co-cultured with ECs. Mechanistically, the endothelium-dependent upregulation of CaM in VSMCs is not affected by inhibition of NO production or endothelin receptors but is prevented by inhibition of vascular endothelial growth factor receptors. Consistently, VEGF-A level is upregulated in VSMCs co-cultured with proliferating ECs. These data indicate a new role of the endothelium in regulating vascular functions via upregulating CaM and its interactions in VSMCs.
Collapse
|
6
|
Persechini A, Armbruster H, Keightley A. Investigating the landscape of intracellular [Ca 2+] in live cells by rapid photoactivated cross-linking of calmodulin-protein interactions. Cell Calcium 2021; 98:102450. [PMID: 34375924 DOI: 10.1016/j.ceca.2021.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
The Ca2+ sensor protein calmodulin interacts in a Ca2+-dependent manner with a large number of proteins that among them encompass a diverse assortment of functions and subcellular localizations. A method for monitoring calmodulin-protein interactions as they occur throughout a living cell would thus uniquely enable investigations of the intracellular landscape of [Ca2+] and its relationship to cell function. We have developed such a method based on capture of calmodulin-protein interactions by rapid photoactivated cross-linking (t1/2 ∼7s) in cells stably expressing a tandem affinity tagged calmodulin that have been metabolically labeled with a photoreactive methionine analog. Tagged adducts are stringently enriched, and captured calmodulin interactors are then identified and quantified based on tandem mass spectrometry data for their tryptic peptides. In this paper we show that the capture behaviors of interactors in cells are consistent with the presence of basal microdomains of elevated [Ca2+]. Ca2+ sensitivities for capture were determined, and these suggest that [Ca2+] levels are above ∼1 μM in these regions. Although the microdomains appear to affect capture of most proteins, capture of some is at an apparent Ca2+-dependent maximum, suggesting they are targeted to the domains. Removal of extracellular Ca2+ has both immediate (5 min) and delayed (30 min) effects on capture, implying that the microdomains are supported by a combination of Ca2+ influx across the cell membrane and Ca2+ derived from internal stores. The known properties of the presumptive microdomain targeted proteins suggestroles in a variety of Ca2+-dependent basal metabolism and in formation and maintenance of the domains.
Collapse
Affiliation(s)
- Anthony Persechini
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA.
| | - Hailey Armbruster
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Andrew Keightley
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri at Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| |
Collapse
|
7
|
Preethi D, Anishetty S, Gautam P. Molecular dynamics study of in silico mutations in the auto-inhibitory loop of human endothelial nitric oxide synthase FMN sub-domain. J Mol Model 2021; 27:63. [PMID: 33527205 DOI: 10.1007/s00894-020-04643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Abstract
Structural flexibility of the peptide linker connecting two domains is essential for the functioning of multi-domain complex. Nitric oxide synthase (NOS) isoforms contain the oxygenase and the reductase domains connected by calmodulin binding linker (CBL) region. Additionally, the endothelial NOS (eNOS) isoform contain an auto-inhibitory loop (AI) in the FMN reductase sub-domain which represses the inter-domain electron transfer process. Binding of Ca2+-Calmodulin complex on the CBL region relieves the AI loop repression and facilitates electron transfer from FMN in the reductase domain to the heme in the oxygenase domain. Few experimental studies have reported that in vitro mutation of Serine-615 (S615D) and Serine-633 (S633D) in the FMN reductase sub-domain to aspartic acid increased NO production and increased Ca2+ sensitivity. To understand the role of AI loop in eNOS repression and activation in serine mutants (S615D and S633D), we modelled the FMN reductase sub-domain of human eNOS protein with and without the CBL region. Molecular dynamics simulations performed indicated that the mutant protein AI loop structure was stabilized by salt bridge formed between D615 and R602. It was also found that mutation increased the flexibility of C-terminal residues of eNOS CBL region. The hinge-like movement of the AI loop allowed rotation of the FMN sub-domain clockwise which may favour electron-transfer in the mutant protein. This study provides insight on mutation (S615D and S633D) induced changes in AI loop and increased flexibility of CBL region which may lead to the protein activation and may also facilitate Calmodulin binding at physiological Ca2+ concentration. Graphical Abstract Mutation of amino acid residues contribute to structural changes at molecular level leading to alteration in protein dynamics and its function. Serine-615 and Serine-633 in the auto-inhibitory loop of human eNOS reductase model was mutated to aspartic acid in silico and molecular dynamics simulations of the protein showed that steric hindrance due to mutation altered the auto-inhibitory loop rearrangement and the FMN sub-domain movement favouring electron transfer.
Collapse
Affiliation(s)
- D Preethi
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Sharmila Anishetty
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600 025, India.
| | - P Gautam
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600 025, India. .,AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, 600 044, India.
| |
Collapse
|
8
|
Aulak KS, Barnes JW, Tian L, Mellor NE, Haque MM, Willard B, Li L, Comhair SC, Stuehr DJ, Dweik RA. Specific O-GlcNAc modification at Ser-615 modulates eNOS function. Redox Biol 2020; 36:101625. [PMID: 32863226 PMCID: PMC7334407 DOI: 10.1016/j.redox.2020.101625] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a progressive and devastating disease characterized by vascular smooth muscle and endothelial cell proliferation leading to a narrowing of the vessels in the lung. The increased resistance in the lung and the higher pressures generated result in right heart failure. Nitric Oxide (NO) deficiency is considered a hallmark of IPAH and altered function of endothelial nitric oxide synthase (eNOS), decreases NO production. We recently demonstrated that glucose dysregulation results in augmented protein serine/threonine hydroxyl-linked N-Acetyl-glucosamine (O-GlcNAc) modification in IPAH. In diabetes, dysregulated glucose metabolism has been shown to regulate eNOS function through inhibition of Ser-1177 phosphorylation. However, the link between O-GlcNAc and eNOS function remains unknown. Here we show that increased protein O-GlcNAc occurs on eNOS in PAH and Ser-615 appears to be a novel site of O-GlcNAc modification resulting in reduced eNOS dimerization. Functional characterization of Ser-615 demonstrated the importance of this residue on the regulation of eNOS activity through control of Ser-1177 phosphorylation. Here we demonstrate a previously unidentified regulatory mechanism of eNOS whereby the O-GlcNAc modification of Ser-615 results in reduced eNOS activity and endothelial dysfunction under conditions of glucose dysregulation.
Collapse
Affiliation(s)
- Kulwant S Aulak
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Jarrod W Barnes
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Liping Tian
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Noel E Mellor
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Mohammad M Haque
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Belinda Willard
- Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic, OH, USA
| | - Ling Li
- Mass Spectrometry Laboratory for Protein Sequencing, Cleveland Clinic, OH, USA
| | - Suzy C Comhair
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Dennis J Stuehr
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA
| | - Raed A Dweik
- Inflammation and Immunity, Lerner Research Institute. Cleveland Clinic, OH, USA; Department of Pulmonary, Allergy and Critical Care Medicine. Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Mauro AK, Berdahl DM, Khurshid N, Clemente L, Ampey AC, Shah DM, Bird IM, Boeldt DS. Conjugated linoleic acid improves endothelial Ca2+ signaling by blocking growth factor and cytokine-mediated Cx43 phosphorylation. Mol Cell Endocrinol 2020; 510:110814. [PMID: 32259635 PMCID: PMC7253345 DOI: 10.1016/j.mce.2020.110814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Sustained Ca2+ burst signaling is crucial for endothelial vasodilator production and is disrupted by growth factors and cytokines. Conjugated linoleic acid (CLA), a Src inhibitor in certain preparations, is generally regarded as safe during pregnancy by the FDA. Multiple CLA preparations; t10, c12 or c9, t11 CLA, or a 1:1 mixture of the two were administered before growth factor or cytokine treatment. Growth factors and cytokines caused a significant decrease in Ca2+ burst numbers in response to ATP stimulation. Both t10, c12 CLA and the 1:1 mixture rescued VEGF165 or TNFα inhibited Ca2+ bursts and correlated with Src-specific phosphorylation of connexin 43. VEGF165, TNFα, and IL-6 in combination at physiologic concentrations revealed IL-6 amplified the inhibitory effects of lower dose of VEGF165 and TNFα. Again, the 1:1 CLA mixture was most effective at rescue of function. Therefore, CLA formulations may be a promising treatment for endothelial dysfunction in diseases such as preeclampsia.
Collapse
Affiliation(s)
- Amanda K Mauro
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Danielle M Berdahl
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Luca Clemente
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Amanda C Ampey
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Dinesh M Shah
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics & Gynecology, University of Wisconsin - Madison, School Medicine and Public Health, Madison, WI, 53715, USA.
| |
Collapse
|
10
|
Rengarajan A, Mauro AK, Boeldt DS. Maternal disease and gasotransmitters. Nitric Oxide 2020; 96:1-12. [PMID: 31911124 DOI: 10.1016/j.niox.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The three known gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide are involved in key processes throughout pregnancy. Gasotransmitters are known to impact on smooth muscle tone, regulation of immune responses, and oxidative state of cells and their component molecules. Failure of the systems that tightly regulate gasotransmitter production and downstream effects are thought to contribute to common maternal diseases such as preeclampsia and preterm birth. Normal pregnancy-related changes in uterine blood flow depend heavily on gasotransmitter signaling. In preeclampsia, endothelial dysfunction is a major contributor to aberrant gasotransmitter signaling, resulting in hypertension after 20 weeks gestation. Maintenance of pregnancy to term also requires gasotransmitter-mediated uterine quiescence. As the appropriate signals for parturition occur, regulation of gasotransmitter signaling must work in concert with those endocrine signals in order for appropriate labor and delivery timing. Like preeclampsia, preterm birth may have origins in abnormal gasotransmitter signaling. We review the evidence for the involvement of gasotransmitters in preeclampsia and preterm birth, as well as mechanistic and molecular signaling targets.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Amanda K Mauro
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA.
| |
Collapse
|
11
|
Tran QK. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2020; 11:568203. [PMID: 33133016 PMCID: PMC7550652 DOI: 10.3389/fendo.2020.568203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.
Collapse
|
12
|
Porter JJ, Jang HS, Haque MM, Stuehr DJ, Mehl RA. Tyrosine nitration on calmodulin enhances calcium-dependent association and activation of nitric-oxide synthase. J Biol Chem 2019; 295:2203-2211. [PMID: 31914408 DOI: 10.1074/jbc.ra119.010999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Production of reactive oxygen species caused by dysregulated endothelial nitric-oxide synthase (eNOS) activity is linked to vascular dysfunction. eNOS is a major target protein of the primary calcium-sensing protein calmodulin. Calmodulin is often modified by the main biomarker of nitroxidative stress, 3-nitrotyrosine (nitroTyr). Despite nitroTyr being an abundant post-translational modification on calmodulin, the mechanistic role of this modification in altering calmodulin function and eNOS activation has not been investigated. Here, using genetic code expansion to site-specifically nitrate calmodulin at its two tyrosine residues, we assessed the effects of these alterations on calcium binding by calmodulin and on binding and activation of eNOS. We found that nitroTyr-calmodulin retains affinity for eNOS under resting physiological calcium concentrations. Results from in vitro eNOS assays with calmodulin nitrated at Tyr-99 revealed that this nitration reduces nitric-oxide production and increases eNOS decoupling compared with WT calmodulin. In contrast, calmodulin nitrated at Tyr-138 produced more nitric oxide and did so more efficiently than WT calmodulin. These results indicate that the nitroTyr post-translational modification, like tyrosine phosphorylation, can impact calmodulin sensitivity for calcium and reveal Tyr site-specific gain or loss of functions for calmodulin-induced eNOS activation.
Collapse
Affiliation(s)
- Joseph J Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Mohammad Mahfuzul Haque
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331.
| |
Collapse
|
13
|
Generation and characterization of functional phosphoserine-incorporated neuronal nitric oxide synthase holoenzyme. J Biol Inorg Chem 2018; 24:1-9. [PMID: 30315355 DOI: 10.1007/s00775-018-1621-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Phosphorylation is an important pathway for the regulation of nitric oxide synthase (NOS) at the posttranslational level. However, the molecular underpinnings of NOS regulation by phosphorylations remain unclear to date, mainly because of the problems in making a good amount of active phospho-NOS proteins. Herein, we have established a system in which recombinant rat nNOS holoprotein can be produced with site-specific incorporation of phosphoserine (pSer) at residue 1412, using a specialized bacterial host strain for pSer incorporation. The pSer1412 nNOS protein demonstrates UV-Vis, far-UV CD and fluorescence spectral properties that are identical to those of nNOS overexpressed in other bacterial strains. The protein is also functional, possessing normal NO production and NADPH oxidation activities in the presence of abundant substrate L-Arg. Conversely, the rate of FMN-heme interdomain electron transfer (IET) in pSer1412 nNOS is considerably lower than that of wild-type (wt) nNOS, while the phosphomimetic S1142E mutant possesses similar electron transfer kinetics to that of wt. The successful incorporation and high yield of pSer1412 into rat nNOS and the significant change in the IET kinetics upon the phosphorylation demonstrate a highly useful method for incorporating native phosphorylation sites as a substantial improvement to commonly used phosphomimetics.
Collapse
|
14
|
Arnett DC, Bailey SK, Johnson CK. Exploring the conformations of nitric oxide synthase with fluorescence. Front Biosci (Landmark Ed) 2018; 23:2133-2145. [PMID: 29772550 DOI: 10.2741/4694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-domain oxidoreductases are a family of enzymes that catalyze oxidation-reduction reactions through a series of electron transfers. Efficient electron transfer requires a sequence of protein conformations that position electron donor and acceptor domains in close proximity to each other so that electron transfer can occur efficiently. An example is mammalian nitric oxide synthase (NOS), which consists of an N-terminal oxygenase domain containing heme and a C-terminal reductase domain containing NADPH/FAD and FMN subdomains. We describe the use of time-resolved and single-molecule fluorescence to detect and characterize the conformations and conformational dynamics of the neuronal and endothelial isoforms of NOS. Fluorescence signals are provided by a fluorescent dye attached to the Ca2+-signaling protein calmodulin (CaM), which regulates NOS activity. Time-resolved fluorescence decays reveal the presence of at least four underlying conformational states that are differentiated by the extent of fluorescence quenching. Single-molecule fluorescence displays transitions between conformational states on the time scales of milliseconds to seconds. This review describes the type of information available by analysis of time-resolved and single-molecule fluorescence experiments.
Collapse
Affiliation(s)
- David C Arnett
- Department of Chemistry, Northwestern College, 101 7th Street SW, Orange City, IA 51041
| | - Sheila K Bailey
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045,
| |
Collapse
|
15
|
Li Y, Lorca RA, Su EJ. Molecular and cellular underpinnings of normal and abnormal human placental blood flows. J Mol Endocrinol 2018; 60:R9-R22. [PMID: 29097590 PMCID: PMC5732864 DOI: 10.1530/jme-17-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ramón A Lorca
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily J Su
- Department of Obstetrics and GynecologyDivision of Maternal-Fetal Medicine/Division of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
16
|
Suppression of store-operated Ca2+ entry by activation of GPER: contribution to a clamping effect on endothelial Ca2+ signaling. Biochem J 2017; 474:3627-3642. [DOI: 10.1042/bcj20170630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
The G protein-coupled estrogen receptor 1 (GPER, formerly also known as GPR30) modulates many Ca2+-dependent activities in endothelial cells. However, the underlying mechanisms are poorly understood. We recently reported that GPER acts to prolong cytoplasmic Ca2+ signals by interacting with and promoting inhibitory phosphorylation of the plasma membrane Ca2+-ATPase. In the present study, we examined the role of GPER activation in modulating store-operated Ca2+ entry (SOCE) via effects on the stromal interaction molecule 1 (STIM1). GPER activation by agonist G-1 reduces the peak but prolongs the plateau of bradykinin-induced Ca2+ signals in primary endothelial cells. G-1 dose-dependently inhibits thapsigargin-induced SOCE measured by the Mn2+ quenching method. GPER heterologous expression reduces SOCE, which is further pronounced by G-1 treatment. Consistently, GPER gene silencing in endothelial cells is associated with an increase in SOCE. Treatment with G-1 reduces puncta formation by STIM1 triggered by the activation of SOCE. The effect of GPER activation to inhibit SOCE is not affected by combined nonphosphorylatable substitutions at serines 486 and 668 on STIM1, but is substantially reduced by similar substitutions at serines 575, 608 and 621. Taken together with our recently reported inhibitory actions of GPER on Ca2+ efflux, the current data contribute to a model in which GPER acts to clamp agonist-induced cytoplasmic Ca2+ signals. Kinetic modeling based on current and reported data is used to estimate the overall effect of GPER activation on point activity of endothelial nitric oxide synthase during the time course of agonist-induced total Ca2+ signals.
Collapse
|
17
|
Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol 2017; 232:R27-R44. [PMID: 27729465 PMCID: PMC5115955 DOI: 10.1530/joe-16-0340] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell-cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.
Collapse
Affiliation(s)
- D S Boeldt
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| | - I M Bird
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Cabrera L, Saavedra A, Rojas S, Cid M, Valenzuela C, Gallegos D, Careaga P, Basualto E, Haensgen A, Peña E, Rivas C, Vera JC, Gallardo V, Zúñiga L, Escudero C, Sobrevia L, Wareing M, González M. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitric Oxide Pathways. Front Physiol 2016; 7:529. [PMID: 27920724 PMCID: PMC5118463 DOI: 10.3389/fphys.2016.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
HIGHLIGHTSShort-term incubation with insulin increases the L-arginine transport in HUVECs. Short-term incubation with insulin increases the NO synthesis in HUVECs. Insulin induces relaxation in human placental vascular bed. Insulin attenuates the constriction induced by hydrogen peroxide in human placenta. The relaxation induced by insulin is dependent on BKCa channels activity in human placenta.
Insulin induces relaxation in umbilical veins, increasing the expression of human amino acid transporter 1 (hCAT-1) and nitric oxide synthesis (NO) in human umbilical vein endothelial cells (HUVECs). Short-term effects of insulin on vasculature have been reported in healthy subjects and cell cultures; however, its mechanisms remain unknown. The aim of this study was to characterize the effect of acute incubation with insulin on the regulation of vascular tone of placental vasculature. HUVECs and chorionic vein rings were isolated from normal pregnancies. The effect of insulin on NO synthesis, L-arginine transport, and hCAT-1 abundance was measured in HUVECs. Isometric tension induced by U46619 (thromboxane A2 analog) or hydrogen peroxide (H2O2) were measured in vessels previously incubated 30 min with insulin and/or the following pharmacological inhibitors: tetraethylammonium (KCa channels), iberiotoxin (BKCa channels), genistein (tyrosine kinases), and wortmannin (phosphatidylinositol 3-kinase). Insulin increases L-arginine transport and NO synthesis in HUVECs. In the placenta, this hormone caused relaxation of the chorionic vein, and reduced perfusion pressure in placental cotyledons. In vessels pre-incubated with insulin, the constriction evoked by H2O2 and U46619 was attenuated and the effect on H2O2-induced constriction was blocked with tetraethylammonium and iberiotoxin, but not with genistein, or wortmannin. Insulin rapidly dilates the placental vasculature through a mechanism involving activity of BKCa channels and L-arginine/NO pathway in endothelial cells. This phenomenon is related to quick increases of hCAT-1 abundance and higher capacity of endothelial cells to take up L-arginine and generate NO.
Collapse
Affiliation(s)
- Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Andrea Saavedra
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Susana Rojas
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Marcela Cid
- Department of Obstetrics and Childcare, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - Cristina Valenzuela
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pamela Careaga
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Emerita Basualto
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Astrid Haensgen
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Eduardo Peña
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Coralia Rivas
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Juan Carlos Vera
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Victoria Gallardo
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas (CIM), School of Medicine, Universidad de Talca Talca, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del BiobíoChillán, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of QueenslandHerston, QLD, Australia
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science CentreManchester, UK
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| |
Collapse
|
19
|
Boeldt DS, Krupp J, Yi FX, Khurshid N, Shah DM, Bird IM. Positive versus negative effects of VEGF165 on Ca2+ signaling and NO production in human endothelial cells. Am J Physiol Heart Circ Physiol 2016; 312:H173-H181. [PMID: 27836897 DOI: 10.1152/ajpheart.00924.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
The role increased vascular endothelial growth factor (VEGF) plays in vascular function during normal vs. preeclamptic pregnancy has been a source of some controversy of late. In this study, we seek to understand how VEGF165 influences vasodilator production via Ca2+ signaling mechanisms in human endothelial cells. We utilize human umbilical vein endothelial cells (HUVEC) as well as intact ex vivo human umbilical vein (HUV Endo) to address direct stimulation of Ca2+ and NO by VEGF165 alone, as well as the effect of VEGF165 on subsequent ATP-stimulated Ca2+ signaling and NO production. We show that VEGF165 stimulates Ca2+ responses in both HUVEC and HUV Endo, which results in a corresponding increase in NO production in HUV Endo. Longer-term VEGF165 pretreatment then inhibits sustained Ca2+ burst responses to ATP in HUVEC and HUV Endo. This is paralleled by a corresponding drop in ATP-stimulated NO production in HUV Endo, likely through inhibition of Cx43 gap-junction function. Thus, although VEGF165 makes a small initial positive impact on vasodilator production via direct stimulation of Ca2+ responses, this is outweighed by the greater subsequent negative impact on Ca2+ bursts and vasodilator production promoted by more potent agonists such as ATP. Overall, elevated levels of VEGF165 associated with preeclampsia could contribute to the endothelial dysfunction by preventing Ca2+ bursts to other agonists including but not limited to ATP. NEW & NOTEWORTHY In this manuscript, we show that VEGF levels associated with preeclampsia are a net negative contributor to potential vasodilator production in both a human ex vivo and in vitro endothelial cell model. Therefore, pharmacological targeting of VEGF-stimulated signaling pathways could be a novel treatment modality for preeclampsia-related hypertension.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Jennifer Krupp
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fu-Xian Yi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Nauman Khurshid
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and.,Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dinesh M Shah
- Division Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; and
| |
Collapse
|
20
|
Haque MM, Ray SS, Stuehr DJ. Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics. J Biol Chem 2016; 291:23047-23057. [PMID: 27613870 DOI: 10.1074/jbc.m116.737361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sougata Sinha Ray
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
21
|
Tran QK, Firkins R, Giles J, Francis S, Matnishian V, Tran P, VerMeer M, Jasurda J, Burgard MA, Gebert-Oberle B. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1. J Biol Chem 2016; 291:10805-23. [PMID: 26987903 DOI: 10.1074/jbc.m115.697334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca(2+) signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca(2+) and Ca(2+)-CaM indicated that E2 also increases free Ca(2+)-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca(2+)-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca(2+) efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca(2+) signals and promote Ca(2+)-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca(2+)/CaM signals and functional linkage in the endothelial CaM target network.
Collapse
Affiliation(s)
- Quang-Kim Tran
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Rachel Firkins
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Jennifer Giles
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Sarah Francis
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Vahe Matnishian
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Phuong Tran
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Mark VerMeer
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Jake Jasurda
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Michelle Ann Burgard
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Briana Gebert-Oberle
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| |
Collapse
|
22
|
Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation. Pflugers Arch 2016; 468:705-16. [DOI: 10.1007/s00424-015-1778-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 01/07/2023]
|
23
|
Astashkin AV, Feng C. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer. J Phys Chem A 2015; 119:11066-75. [PMID: 26477677 DOI: 10.1021/acs.jpca.5b08414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
24
|
Anaya HA, Yi FX, Boeldt DS, Krupp J, Grummer MA, Shah DM, Bird IM. Changes in Ca2+ Signaling and Nitric Oxide Output by Human Umbilical Vein Endothelium in Diabetic and Gestational Diabetic Pregnancies. Biol Reprod 2015. [PMID: 26203178 DOI: 10.1095/biolreprod.115.128645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diabetes (DM) complicates 3%-10% of pregnancies, resulting in significant maternal and neonatal morbidity and mortality. DM pregnancies are also associated with vascular dysfunction, including blunted nitric oxide (NO) output, but it remains unclear why. Herein we examine changes in endothelial NO production and its relationship to Ca(2+) signaling in endothelial cells of intact umbilical veins from control versus gestational diabetic (GDM) or preexisting diabetic subjects. We have previously reported that endothelial cells of intact vessels show sustained Ca(2+) bursting in response to ATP, and these bursts drive prolonged NO production. Herein we show that in both GDM and DM pregnancies, the incidence of Ca(2+) bursts remains similar, but there is a reduction in overall sustained phase Ca(2+) mobilization and a reduction in NO output. Further studies show damage has occurred at the level of NOS3 protein itself. Since exposure to DM serum is known to impair normal human umbilical vein endothelial cell (HUVEC) function, we further studied the ability of HUVEC to signal through Ca(2+) after they were isolated from DM and GDM subjects and maintained in culture for several days. These HUVEC showed differences in the rate of Ca(2+) bursting, with DM > GDM = control HUVEC. Both GDM- and DM-derived HUVEC showed smaller Ca(2+) bursts that were less capable of NOS3 activation compared to control HUVEC. We conclude that HUVEC from DM and GDM subjects are reprogrammed such that the Ca(2+) bursting peak shape and duration are permanently impaired. This may explain why ROS therapy alone is not effective in DM and GDM subjects.
Collapse
Affiliation(s)
- Heather A Anaya
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin Rush University Medical Center, Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Chicago, Illinois
| | - Fu-Xian Yi
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Derek S Boeldt
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jennifer Krupp
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Mary A Grummer
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Dinesh M Shah
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ian M Bird
- Perinatal Research Laboratories and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
25
|
Arnett DC, Persechini A, Tran QK, Black DJ, Johnson CK. Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes. FEBS Lett 2015; 589:1173-8. [PMID: 25871521 DOI: 10.1016/j.febslet.2015.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Activation of endothelial nitric oxide synthase (eNOS) by calmodulin (CaM) facilitates formation of a sequence of conformational states that is not well understood. Fluorescence decays of fluorescently labeled CaM bound to eNOS reveal four distinct conformational states and single-molecule fluorescence trajectories show multiple fluorescence states with transitions between states occurring on time scales of milliseconds to seconds. A model is proposed relating fluorescence quenching states to enzyme conformations. Specifically, we propose that the most highly quenched state corresponds to CaM docked to an oxygenase domain of the enzyme. In single-molecule trajectories, this state occurs with time lags consistent with the oxygenase activity of the enzyme.
Collapse
Affiliation(s)
- David C Arnett
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA; Department of Chemistry, Northwestern College, Orange City, IA 51041, USA
| | - Anthony Persechini
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - Quang-Kim Tran
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - D J Black
- Division of Molecular Biology and Biochemistry and Division of Cell Biology and Biophysics, University of Missouri at Kansas City, Kansas City, MO 64410, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
26
|
Tran QK, VerMeer M, Burgard MA, Hassan AB, Giles J. Hetero-oligomeric Complex between the G Protein-coupled Estrogen Receptor 1 and the Plasma Membrane Ca2+-ATPase 4b. J Biol Chem 2015; 290:13293-307. [PMID: 25847233 DOI: 10.1074/jbc.m114.628743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Indexed: 11/06/2022] Open
Abstract
The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca(2+)-ATPase (PMCA) is essential for removal of cytoplasmic Ca(2+) and for shaping the time courses of Ca(2+)-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca(2+) extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17β-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca(2+) signaling and GPER/GPR30-mediated activities.
Collapse
Affiliation(s)
- Quang-Kim Tran
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Mark VerMeer
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Michelle A Burgard
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Ali B Hassan
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| | - Jennifer Giles
- From the Department of Physiology and Pharmacology, College of Osteopathic Medicine, Des Moines University, Des Moines, Iowa 50312
| |
Collapse
|
27
|
Boeldt DS, Grummer MA, Magness RR, Bird IM. Altered VEGF-stimulated Ca2+ signaling in part underlies pregnancy-adapted eNOS activity in UAEC. J Endocrinol 2014; 223:1-11. [PMID: 25063757 PMCID: PMC4161637 DOI: 10.1530/joe-14-0252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pregnancy, the uterine vasculature undergoes dramatic vasodilatory adaptations. Previously, vascular endothelial growth factor (VEGF) has been shown to stimulate endothelial nitric oxide synthase (eNOS) in uterine artery endothelial cells (UAECs) derived from pregnant ewes to a greater extent than those from non-pregnant ewes in a manner not fully explained by changes in the phosphorylation of eNOS. In this study, we used Fura-2 Ca(2+) imaging and arginine-to-citrulline conversion eNOS activity assays to assess the importance of VEGF-stimulated Ca(2+) responses in pregnancy-related changes in NO production in UAEC. In this study, we show that pregnancy-induced changes in VEGF-stimulated Ca(2+) responses could account in part for the greater capacity of VEGF to stimulate eNOS in UAECs from pregnant versus non-pregnant animals. VEGF-stimulated Ca(2+) responses in UAECs from pregnant and non-pregnant animals were mediated through VEGF receptor 2 and were detected in roughly 15% of all cells. There were no pregnancy-specific differences in area under the curve or peak height. UAECs from pregnant animals were more consistent in the time to response initiation, had a larger component of extracellular Ca(2+) entry, and were more sensitive to a submaximal dose of VEGF. In UAECs from pregnant and non-pregnant animals Ca(2+) responses and eNOS activation were sensitive to the phospholipase C/inositol 1,4,5-trisphosphate pathway inhibitors 2-aminoethoxydiphenylborane and U73122. Thus, changes in VEGF-stimulated [Ca(2+)]i are necessary for eNOS activation in UAECs, and pregnancy-induced changes in Ca(2+) responses could also in part explain the pregnancy-specific adaptive increase in eNOS activity in UAECs.
Collapse
Affiliation(s)
- Derek S Boeldt
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Mary A Grummer
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Ronald R Magness
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Ian M Bird
- Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA Perinatal Research LaboratoriesDepartment of Obstetrics and Gynecology, School Medicine and Public Health, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, Wisconsin 53715, USADepartment of PediatricsSchool Medicine and Public HealthDepartment of Animal SciencesUniversity of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| |
Collapse
|
28
|
The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Biosci Rep 2014; 34:BSR20140079. [PMID: 24993645 PMCID: PMC4122979 DOI: 10.1042/bsr20140079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NO production catalysed by eNOS (endothelial nitric-oxide synthase) plays an important role in the cardiovascular system. A variety of agonists activate eNOS through the Ser1177 phosphorylation concomitant with Thr495 dephosphorylation, resulting in increased ·NO production with a basal level of calcium. To date, the underlying mechanism remains unclear. We have previously demonstrated that perturbation of the AIE (autoinhibitory element) in the FMN-binding subdomain can also lead to eNOS activation with a basal level of calcium, implying that the AIE might regulate eNOS activation through modulating phosphorylation at Thr495 and Ser1177. Here we generated stable clones in HEK-293 (human embryonic kidney 293) cells with a series of deletion mutants in both the AIE (Δ594-604, Δ605-612 and Δ626-634) and the C-terminal tail (Δ14; deletion of 1164-1177). The expression of Δ594-604 and Δ605-612 mutants in non-stimulated HEK-293 cells substantially increased nitrate/nitrite release into the culture medium; the other two mutants, Δ626-634 and Δ1164-1177, displayed no significant difference when compared with WTeNOS (wild-type eNOS). Intriguingly, mutant Δ594-604 showed close correlation between Ser1177 phosphorylation and Thr495 dephosphorylation, and NO production. Our results have indicated that N-terminal portion of AIE (residues 594-604) regulates eNOS activity through coordinated phosphorylation on Ser1177 and Thr495.
Collapse
|
29
|
Tran QK, VerMeer M. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1. PLoS One 2014; 9:e89669. [PMID: 24586950 PMCID: PMC3931812 DOI: 10.1371/journal.pone.0089669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 01/24/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+)-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s), we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs). Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+)-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+) indicators identified separate Ca(2+) sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+) response, representing two distinct species (SMD1 sp1 and SMD1 sp2) with drastically different Ca(2+) sensitivities. The Ca(2+) sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+)) values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER-dependent signaling at the receptor level through multiple interaction sites. FRET biosensors represent a simple method to identify unknown calmodulin-binding domains in G protein-coupled receptors and to quantitatively assess binding properties.
Collapse
Affiliation(s)
- Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, Des Moines, Iowa, United States of America
- * E-mail:
| | - Mark VerMeer
- Department of Physiology & Pharmacology, Des Moines University Osteopathic Medical Center, Des Moines, Iowa, United States of America
| |
Collapse
|
30
|
Review: Novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 2014; 35 Suppl:S86-92. [DOI: 10.1016/j.placenta.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022]
|
31
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Krupp J, Boeldt DS, Yi FX, Grummer MA, Bankowski Anaya HA, Shah DM, Bird IM. The loss of sustained Ca(2+) signaling underlies suppressed endothelial nitric oxide production in preeclamptic pregnancies: implications for new therapy. Am J Physiol Heart Circ Physiol 2013; 305:H969-79. [PMID: 23893163 PMCID: PMC3798749 DOI: 10.1152/ajpheart.00250.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/23/2013] [Indexed: 01/12/2023]
Abstract
Approximately 8% of pregnancies are complicated by preeclampsia (PE), a hypertensive condition characterized by widespread endothelial dysfunction. Reduced nitric oxide (NO) output in PE subjects has been inferred but not directly measured, and there is little understanding of why this occurs. To address this we have used direct imaging of changes in intracellular Ca(2+) concentration ([Ca(2+)]i) and NO in umbilical vein endothelium of normal and PE subjects that is still intact and on the vessel luminal surface. This was achieved by dissection and preloading with fura 2 and DAF-2 imaging dyes, respectively, before subsequent challenge with ATP (100 μM, 30 min). As a control to reveal the content of active endothelial nitric oxide synthase (eNOS) per vessel segment, results were compared with a maximal stimulus with ionomycin (5 μM, 30 min). We show for the first time that normal umbilical vein endothelial cells respond to ATP with sustained bursting that parallels sustained NO output. Furthermore, in subjects with PE, a failure of sustained [Ca(2+)]i bursting occurs in response to ATP and is associated with blunted NO output. In contrast, NO responses to maximal [Ca(2+)]i elevation using ionomycin and the levels of eNOS protein are more similar between groups than the responses to ATP. When the endothelial cells from PE subjects are isolated and allowed to recover in culture, they regain the ability under fura 2 imaging to show multiple [Ca(2+)]i bursts otherwise seen in the cells from normal subjects. Thus novel clinical therapy aimed at restoring function in vivo may be possible.
Collapse
Affiliation(s)
- Jennifer Krupp
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin; and
| | | | | | | | | | | | | |
Collapse
|
33
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Calmodulin-induced structural changes in endothelial nitric oxide synthase. FEBS Lett 2012; 587:297-301. [PMID: 23266515 DOI: 10.1016/j.febslet.2012.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/21/2022]
Abstract
We have derived structures of intact calmodulin (CaM)-free and CaM-bound endothelial nitric oxide synthase (eNOS) by reconstruction from cryo-electron micrographs. The CaM-free reconstruction is well fitted by the oxygenase domain dimer, but the reductase domains are not visible, suggesting they are mobile and thus delocalized. Additional protein is visible in the CaM-bound reconstruction, concentrated in volumes near two basic patches on each oxygenase domain. One of these corresponds with a presumptive docking site for the reductase domain FMN-binding module. The other is proposed to correspond with a docking site for CaM. A model is suggested in which CaM binding and docking position the reductase domains near the oxygenase domains and promote docking of the FMN-binding modules required for electron transfer.
Collapse
|
35
|
Rafikov R, Rafikova O, Aggarwal S, Gross C, Sun X, Desai J, Fulton D, Black SM. Asymmetric dimethylarginine induces endothelial nitric-oxide synthase mitochondrial redistribution through the nitration-mediated activation of Akt1. J Biol Chem 2012; 288:6212-26. [PMID: 23255608 DOI: 10.1074/jbc.m112.423269] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently demonstrated that asymmetric dimethylarginine (ADMA) induces the translocation of endothelial nitric-oxide synthase (eNOS) to the mitochondrion via a mechanism that requires protein nitration. Thus, the goal of this study was elucidate how eNOS redistributes to mitochondria and to identify the nitrated protein responsible for this event. Our data indicate that exposure of pulmonary arterial endothelial cells to ADMA enhanced eNOS phosphorylation at the Akt1-dependent phosphorylation sites Ser(617) and Ser(1179). Mutation of these serine residues to alanine (S617A and S1179A) inhibited nitration-mediated eNOS translocation to the mitochondria, whereas the phosphormimic mutations (S617D and S1179D) exhibited increased mitochondrial redistribution in the absence of ADMA. The overexpression of a dominant-negative Akt1 also attenuated ADMA-mediated eNOS mitochondrial translocation. Furthermore, ADMA enhanced Akt1 nitration and increased its activity. Mass spectrometry identified a single nitration site in Akt1 located at the tyrosine residue (Tyr(350)) located within the client-binding domain. Replacement of Tyr(350) with phenylalanine abolished peroxynitrite-mediated eNOS translocation to mitochondria. We also found that in the absence of ADMA, eNOS translocation decreased mitochondrial oxygen consumption and superoxide production without altering cellular ATP level. This suggests that under physiologic conditions, eNOS translocation enhances mitochondria coupling. In conclusion, we have identified a new mechanism by which eNOS translocation to mitochondria is regulated by the phosphorylation of eNOS at Ser(617) and Ser(1179) by Akt1 and that this is enhanced when Akt1 becomes nitrated at Tyr(350).
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Piazza M, Futrega K, Spratt DE, Dieckmann T, Guillemette JG. Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation. Biochemistry 2012; 51:3651-61. [PMID: 22486744 DOI: 10.1021/bi300327z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes. Knowledge of how this is regulated is important. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic. To investigate the dynamic properties of CaM-NOS interactions, we determined the solution structure of CaM bound to the inducible NOS (iNOS) and endothelial NOS (eNOS) CaM binding region peptides. In addition, we investigated the effect of CaM phosphorylation. Tyrosine 99 (Y99) of CaM is reported to be phosphorylated in vivo. We have produced a phosphomimetic Y99E CaM to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. All three mammalian NOS isoforms were included in the investigation. Our results show that a phosphomimetic Y99E CaM significantly reduces the maximal synthase activity of eNOS by 40% while having little effect on nNOS or iNOS activity. A comparative nuclear magnetic resonance study between phosphomimetic Y99E CaM and wild-type CaM bound to the eNOS CaM binding region peptide was performed. This investigation provides important insights into how the increased electronegativity of a phosphorylated CaM protein affects the binding, dynamics, and activation of the NOS enzymes.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
37
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
38
|
McMurry JL, Chrestensen CA, Scott IM, Lee EW, Rahn AM, Johansen AM, Forsberg BJ, Harris KD, Salerno JC. Rate, affinity and calcium dependence of nitric oxide synthase isoform binding to the primary physiological regulator calmodulin. FEBS J 2011; 278:4943-54. [PMID: 22004458 DOI: 10.1111/j.1742-4658.2011.08395.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using interferometry-based biosensors the binding and release of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) from calmodulin (CaM) was measured. In both isoforms, binding to CaM is diffusion limited and within approximately three orders of magnitude of the Smoluchowski limit imposed by orientation-independent collisions. This suggests that the orientation of CaM is facilitated by the charge arrays on the CaM-binding site and the complementary surface on CaM. Protein kinase C phosphorylation of eNOS T495, adjacent to the CaM-binding site, abolishes or greatly slows CaM binding. Kinases which increase the activity of eNOS did not stimulate the binding of CaM, which is already diffusion limited. The coupling of Ca(2+) binding and CaM/NOS binding equilibria links the affinity of CaM for NOS to the Ca(2+) dependence of CaM binding. Hence, changes in the Ca(2+) sensitivity of CaM binding always imply changes in the NOS-CaM affinity. It is possible, however, that in some regimes binding and activation are not synonymous, so that Ca(2+) sensitivity need not be tightly linked to CaM sensitivity of activation. This study is being extended using mutants to probe the roles of individual structural elements in binding and release.
Collapse
Affiliation(s)
- Jonathan L McMurry
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 2011; 210:271-84. [PMID: 21642378 PMCID: PMC3326601 DOI: 10.1530/joe-11-0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rather than being a constitutive enzyme as was first suggested, endothelial nitric oxide synthase (eNOS) is dynamically regulated at the transcriptional, posttranscriptional, and posttranslational levels. This review will focus on how changes in eNOS function are conferred by various posttranslational modifications. The latest knowledge regarding eNOS targeting to the plasma membrane will be discussed as the role of protein phosphorylation as a modulator of catalytic activity. Furthermore, new data are presented that provide novel insights into how disruption of the eNOS dimer prevents eNOS uncoupling and the production of superoxide under conditions of elevated oxidative stress and identifies a novel regulatory region we have termed the 'flexible arm'.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center: CB-3211B, Georgia Health Sciences University, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Boeldt DS, Yi FX, Bird IM. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium--new insights into eNOS regulation through adaptive cell signaling. J Endocrinol 2011; 210:243-58. [PMID: 21555345 PMCID: PMC4059042 DOI: 10.1530/joe-11-0053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pregnancy, vascular nitric oxide (NO) production is increased in the systemic and more so in the uterine vasculature, thereby supporting maximal perfusion of the uterus. This high level of functionality is matched in the umbilical vein, and in corresponding disease states such as pre-eclampsia, reduced vascular responses are seen in both uterine artery and umbilical vein. In any endothelial cell, NO actually produced by endothelial NO synthase (eNOS) is determined by the maximum capacity of the cell (eNOS expression levels), eNOS phosphorylation state, and the intracellular [Ca(2+)](i) concentration in response to circulating hormones or physical forces. Herein, we discuss how pregnancy-specific reprogramming of NO output is determined as much by pregnancy adaptation of [Ca(2+)](i) signaling responses as it is by eNOS expression and phosphorylation. By examining the changes in [Ca(2+)](i) signaling responses from human hand vein endothelial cells, uterine artery endothelial cells, and human umbilical vein endothelial cells in (where appropriate) nonpregnant, normal pregnant, and pathological pregnant (pre-eclamptic) state, it is clear that pregnancy adaptation of NO output occurs at the level of sustained phase 'capacitative entry' [Ca(2+)](i) response, and the adapted response is lacking in pre-eclamptic pregnancies. Moreover, gap junction function is an essential permissive regulator of the capacitative response and impairment of NO output results from any inhibitor of gap junction function, or capacitative entry using TRPC channels. Identifying these [Ca(2+)](i) signaling mechanisms underlying normal pregnancy adaptation of NO output not only provides novel targets for future treatment of diseases of pregnancy but may also apply to other common forms of hypertension.
Collapse
Affiliation(s)
- D S Boeldt
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 7E Meriter Hospital/Park, 202 South Park Street, Madison, WI 53715, USA
| | | | | |
Collapse
|
41
|
Bird IM. Endothelial nitric oxide synthase activation and nitric oxide function: new light through old windows. J Endocrinol 2011; 210:239-41. [PMID: 21824899 DOI: 10.1530/joe-11-0216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principle mechanisms operating at the level of endothelial nitric oxide synthase (eNOS) itself to control its activity are phosphorylation, the auto-regulatory properties of the protein itself, and Ca(2)(+)/calmodulin binding. It is now clear that activation of eNOS is greatest when phosphorylation of certain serine and threonine residues is accompanied by elevation of cytosolic [Ca2+](i). While eNOS also contains an autoinhibitory loop, Rafikov et al. (2011) present the evidence for a newly identified 'flexible arm' that operates in response to redox state. Boeldt et al. (2011) also review the evidence that changes in the nature of endothelial Ca(2)(+) signaling itself in different physiologic states can extend both the amplitude and duration of NO output, and a failure to change these responses in pregnancy is associated with preeclampsia. The change in Ca(2)(+) signaling is mediated through altering capacitative entry mechanisms inherent in the cell, and so many agonist responses using this mechanism are altered. The term 'adaptive cell signaling' is also introduced for the first time to describe this phenomenon. Finally NO is classically regarded as a regulator of vascular function, but NO has other actions. One proposed role is regulation of steroid biosynthesis but the physiologic relevance was unclear. Ducsay & Myers (2011) now present new evidence that NO may provide the adrenal with a mechanism to regulate cortisol output according to exposure to hypoxia. One thing all three of these reviews show is that even after several decades of study into NO biosynthesis and function, there are clearly still many things left to discover.
Collapse
|
42
|
Thebault S, González C, García C, Zamarripa DA, Nava G, Vaca L, López-Casillas F, de la Escalera GM, Clapp C. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058677 DOI: 10.3390/ph4071052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-442-238-1029; Fax: +52-442-238-1005
| | - Carmen González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| | - Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| | - Gabriel Nava
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, México, D.F., 04510, Mexico; E-Mails: (L.V.); (F.L.-C.)
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Del. Coyoacán, México, D.F., 04510, Mexico; E-Mails: (L.V.); (F.L.-C.)
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro 76230, Mexico; E-Mails: (C.G.); (C.G.); (D.A.Z.); (G.N.); (G.M.E.); (C.C.)
| |
Collapse
|
43
|
Leidi M, Mariotti M, Maier JA. EDF-1 contributes to the regulation of nitric oxide release in VEGF-treated human endothelial cells. Eur J Cell Biol 2010; 89:654-60. [DOI: 10.1016/j.ejcb.2010.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 04/16/2010] [Accepted: 05/25/2010] [Indexed: 11/29/2022] Open
|
44
|
Makhro A, Wang J, Vogel J, Boldyrev AA, Gassmann M, Kaestner L, Bogdanova A. Functional NMDA receptors in rat erythrocytes. Am J Physiol Cell Physiol 2010; 298:C1315-25. [DOI: 10.1152/ajpcell.00407.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptors are ligand-gated nonselective cation channels mediating fast neuronal transmission and long-term potentiation in the central nervous system. These channels have a 10-fold higher permeability for Ca2+compared with Na+or K+and binding of the agonists (glutamate, homocysteine, homocysteic acid, NMDA) triggers Ca2+uptake. The present study demonstrates the presence of NMDA receptors in rat erythrocytes. The receptors are most abundant in both erythroid precursor cells and immature red blood cells, reticulocytes. Treatment of erythrocytes with NMDA receptor agonists leads to a rapid increase in intracellular Ca2+resulting in a transient shrinkage via Gardos channel activation. Additionally, the exposure of erythrocytes to NMDA receptor agonists causes activation of the nitric oxide (NO) synthase facilitating either NO production in l-arginine-containing medium or superoxide anion (O2·−) generation in the absence of l-arginine. Conversely, treatment with an NMDA receptor antagonist MK-80, or the removal of Ca2+from the incubation medium causes suppression of Ca2+accumulation and prevents attendant changes in cell volume and NO/O2·−production. These results suggest that the NMDA receptor activity in circulating erythrocytes is regulated by the plasma concentrations of homocysteine and homocysteic acid. Moreover, receptor hyperactivation may contribute to an increased incidence of thrombosis during hyperhomocysteinemia.
Collapse
Affiliation(s)
- Asya Makhro
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jue Wang
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany; and
| | - Johannes Vogel
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Alexander A. Boldyrev
- International Biotechnology Centre, Department of Biochemistry, Moscow State University, Moscow, Russia
| | - Max Gassmann
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Institute for Molecular Cell Biology, Medical Faculty, Saarland University, Homburg/Saar, Germany; and
| | - Anna Bogdanova
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. [PMID: 20303412 DOI: 10.1016/j.niox.2010.03.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 02/24/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
Abstract
Production of NO from arginine and molecular oxygen is a complex chemical reaction unique to biology. Our understanding of the chemical and regulation mechanisms of the NO synthases has developed over the past two decades, uncovering some extraordinary features. This article reviews recent progress and highlights current issues and controversies. The structure of the enzyme has now been determined almost in entirety, although it is as a selection of fragments, which are difficult to assemble unambiguously. NO synthesis is driven by electron transfer through FAD and FMN cofactors, which is controlled by calmodulin binding in the constitutive mammalian enzymes. Many of the unique structural features involved have been characterised, but the mechanics of calmodulin-dependent activation are largely unresolved. Ultimately, NO is produced in the active site by the reaction of arginine with activated heme-bound oxygen in two distinct cycles. The unique role of the tetrahydrobiopterin cofactor as an electron donor in this process has now been established, but the subsequent chemical events are currently a matter of intense speculation and debate.
Collapse
|
46
|
Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. Biochem J 2010; 426:85-90. [PMID: 19925457 DOI: 10.1042/bj20091580] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin stimulates endothelial NO (nitric oxide) synthesis via PKB (protein kinase B)/Akt-mediated phosphorylation and activation of eNOS (endothelial NO synthase) at Ser-1177. In previous studies, we have demonstrated that stimulation of eNOS phosphorylation at Ser-1177 may be required, yet is not sufficient for insulin-stimulated NO synthesis. We therefore investigated the role of phosphorylation of eNOS at alternative sites to Ser-1177 as candidate parallel mechanisms contributing to insulin-stimulated NO synthesis. Stimulation of human aortic endothelial cells with insulin rapidly stimulated phosphorylation of both Ser-615 and Ser-1177 on eNOS, whereas phosphorylation of Ser-114, Thr-495 and Ser-633 was unaffected. Insulin-stimulated Ser-615 phosphorylation was abrogated by incubation with the PI3K (phosphoinositide 3-kinase) inhibitor wortmannin, infection with adenoviruses expressing a dominant-negative mutant PKB/Akt or pre-incubation with TNFalpha (tumour necrosis factor alpha), but was unaffected by high culture glucose concentrations. Mutation of Ser-615 to alanine reduced insulin-stimulated NO synthesis, whereas mutation of Ser-615 to aspartic acid increased NO production by NOS in which Ser-1177 had been mutated to an aspartic acid residue. We propose that the rapid PKB-mediated stimulation of phosphorylation of Ser-615 contributes to insulin-stimulated NO synthesis.
Collapse
|