1
|
Mikołajczyk K, Wróblewski K, Kmiecik S. Delving into human α1,4-galactosyltransferase acceptor specificity: The role of enzyme dimerization. Biochem Biophys Res Commun 2024; 736:150486. [PMID: 39111055 DOI: 10.1016/j.bbrc.2024.150486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 11/10/2024]
Abstract
Human α1,4-galactosyltransferase (A4galt), a Golgi apparatus-resident GT, synthesizes Gb3 glycosphingolipid (GSL) and P1 glycotope on glycoproteins (GPs), which are receptors for Shiga toxin types 1 and 2. Despite the significant role of A4galt in glycosylation processes, the molecular mechanisms underlying its varied acceptor specificities remain poorly understood. Here, we attempted to elucidate A4galt specificity towards GSLs and GPs by exploring its interaction with GTs with various acceptor specificities, GP-specific β1,4-galactosyltransferase 1 (B4galt1) and GSL-specific β1,4-galactosyltransferase isoenzymes 5 and 6 (B4galt5 and B4galt6). Using a novel NanoBiT assay, we found that A4galt can form homodimers and heterodimers with B4galt1 and B4galt5 in two cell lines, human embryonic kidney cells (HEK293T) and Chinese hamster ovary cells (CHO-Lec2). We found that A4galt-B4galts heterodimers preferred N-terminally tagged interactions, while in A4galt homodimers, the favored localization of the fused tag depended on the cell line used. Furthermore, by employing AlphaFold for state-of-the-art structural prediction, we analyzed the interactions and structures of these enzyme complexes. Our analysis highlighted that the A4galt-B4galt5 heterodimer exhibited the highest prediction confidence, indicating a significant role of A4galt heterodimerization in determining enzyme specificity toward GSLs and GPs. These findings enhance our knowledge of A4galt acceptor specificity and may contribute to a better comprehension of pathomechanisms of the Shiga toxin-related diseases.
Collapse
Affiliation(s)
- Krzysztof Mikołajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114, Wroclaw, Poland.
| | - Karol Wróblewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Wiertelak W, Olczak M, Maszczak-Seneczko D. Subcellular imaging of MGAT1/MGAT2 homo- and heteromers in living cells using bioluminescence microscopy. Biochem Biophys Res Commun 2024; 734:150470. [PMID: 39083973 DOI: 10.1016/j.bbrc.2024.150470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Protein-protein interactions (PPIs) play fundamental roles in many biological processes including the functioning of glycosylation machineries present in the endoplasmic reticulum (ER) and Golgi apparatus of mammalian cells. For the last couple of years, we have been successfully employing the most advanced version of the split luciferase complementation assay, termed NanoBiT, to demonstrate PPIs between solute carrier 35 (SLC35) family members with nucleotide sugar transporting activity and functionally related glycosyltransferases. NanoBiT has several unmatched advantages as compared with other strategies for studying PPIs. Firstly, the tendency of the free luciferase fragments to spontaneously associate is strongly reduced. As a consequence, the fragments of the reconstituted luciferase may dissociate upon the disruption of the PPI of interest. Secondly, the recombinant fusion proteins are expressed at low (near-endogenous) levels. Both of these features significantly minimize the possibility of obtaining false positive results. In this study we pushed the boundaries of this already powerful technique even further by coupling it with bioluminescence imaging of PPIs. Specifically, we visualized homo- and heterologous complexes formed by MGAT1 and MGAT2 glycosylation enzymes tagged with NanoBiT fragments and demonstrated ER-to-Golgi transitions between enzyme homo- and heteromers.
Collapse
Affiliation(s)
- Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383, Wroclaw, Poland.
| |
Collapse
|
3
|
Osada N, Nagae M, Yamasaki T, Harduin-Lepers A, Kizuka Y. Regulation of human GnT-IV family activity by the lectin domain. Carbohydr Res 2024; 545:109285. [PMID: 39369636 DOI: 10.1016/j.carres.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
N-Glycan branching critically regulates glycoprotein functions and is involved in various diseases. Among the glycosyltransferases involved in N-glycan branching is the human N-acetylglucosaminyltransferase-IV (GnT-IV) family, which has four members: GnT-IVa, GnT-IVb, GnT-IVc, and GnT-IVd. GnT-IVa and GnT-IVb have glycosyltransferase activity that generates the type-2 diabetes-related β1,4-GlcNAc branch on the α1,3-Man arm of N-glycans, whereas GnT-IVc and GnT-IVd do not. Recently, this enzyme family was found to have a unique lectin domain in the C-terminal region, which is essential for enzyme activity toward glycoprotein substrates but not toward free N-glycans. Furthermore, interaction between the lectin domain of GnT-IV and N-glycan attached to GnT-IV enables self-regulation of GnT-IV activity, indicating that the lectin domain plays a unique and pivotal role in the regulation of GnT-IV activity. In this review, we summarize the GnT-IV family's biological functions, selectivity for glycoprotein substrates, and regulation of enzymatic activity, with a focus on its unique C-terminal lectin domain.
Collapse
Affiliation(s)
- Naoko Osada
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, 565-0871, Japan
| | - Takahiro Yamasaki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 -UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
4
|
Yuan W, Xu W, Xu X, Qu B, Zhao F. Exploration of potential novel drug targets for diabetic retinopathy by plasma proteome screening. Sci Rep 2024; 14:11726. [PMID: 38778174 PMCID: PMC11111739 DOI: 10.1038/s41598-024-62069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this study is to identify novel potential drug targets for diabetic retinopathy (DR). A bidirectional two-sample Mendelian randomization (MR) analysis was performed using protein quantitative trait loci (pQTL) of 734 plasma proteins as the exposures and clinically diagnosed DR as the outcome. Genetic instruments for 734 plasma proteins were obtained from recently published genome-wide association studies (GWAS), and external plasma proteome data was retrieved from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. Summary-level data of GWAS for DR were obtained from the Finngen Consortium, comprising 14,584 cases and 202,082 population controls. Steiger filtering, Bayesian co-localization, and phenotype scanning were used to further verify the causal relationships calculated by MR. Three significant (p < 6.81 × 10-5) plasma protein-DR pairs were identified during the primary MR analysis, including CFH (OR = 0.8; 95% CI 0.75-0.86; p = 1.29 × 10-9), B3GNT8 (OR = 1.09; 95% CI 1.05-1.12; p = 5.9 × 10-6) and CFHR4 (OR = 1.11; 95% CI 1.06-1.16; p = 1.95 × 10-6). None of the three proteins showed reverse causation. According to Bayesian colocalization analysis, CFH (coloc.abf-PPH4 = 0.534) and B3GNT8 (coloc.abf-PPH4 = 0.638) in plasma shared the same variant with DR. All three identified proteins were validated in external replication cohorts. Our research shows a cause-and-effect connection between genetically determined levels of CFH, B3GNT8 and CFHR4 plasma proteins and DR. The discovery implies that these proteins hold potential as drug target in the process of developing drugs to treat DR.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Bo Qu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China.
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China.
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No. 102, Nanqi Road, Heping District, Shenyang, Liaoning, China.
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China.
| |
Collapse
|
5
|
N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling. Cells 2023; 12:cells12060863. [PMID: 36980204 PMCID: PMC10047360 DOI: 10.3390/cells12060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/β-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/β-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntβ-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/β-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/β-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.
Collapse
|
6
|
Huang S, Haga Y, Li J, Zhang J, Kweon HK, Seino J, Hirayama H, Fujita M, Moremen KW, Andrews P, Suzuki T, Wang Y. Mitotic phosphorylation inhibits the Golgi mannosidase MAN1A1. Cell Rep 2022; 41:111679. [DOI: 10.1016/j.celrep.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
7
|
Fukuoka T, Moriwaki K, Takamatsu S, Kondo J, Tanaka-Okamoto M, Tomioka A, Semba M, Komazawa-Sakon S, Kamada Y, Kaji H, Miyamoto Y, Inoue M, Bessho K, Miyoshi Y, Ozono K, Nakano H, Miyoshi E. Lewis glycosphingolipids as critical determinants of TRAIL sensitivity in cancer cells. Oncogene 2022; 41:4385-4396. [PMID: 35970887 DOI: 10.1038/s41388-022-02434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 01/29/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cancer cell death and contributes to tumor rejection by cytotoxic lymphocytes in cancer immunosurveillance and immunotherapy. TRAIL and TRAIL receptor agonists have garnered wide popularity as promising agents for cancer therapy. We previously demonstrated that the loss of fucosylation in cancer cells impairs TRAIL sensitivity; however, the precise structures of the fucosylated glycans that regulate TRAIL sensitivity and their carrier molecules remain elusive. Herein, we observed that Lewis glycans among various fucosylated glycans positively regulate TRAIL-induced cell death. Specifically, Lewis glycans on lacto/neolacto glycosphingolipids, but not glycoproteins including TRAIL receptors, enhanced TRAIL-induced formation of the cytosolic caspase 8 complex, without affecting the formation of the membranous receptor complex. Furthermore, type I Lewis glycan expression in colon cancer cell lines and patient-derived cancer organoids was positively correlated with TRAIL sensitivity. These findings provide novel insights into the regulatory mechanism of TRAIL-induced cell death and facilitate the identification of novel predictive biomarkers for TRAIL-related cancer therapies in future.
Collapse
Affiliation(s)
- Tomoya Fukuoka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kenta Moriwaki
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, 143-8540, Japan.
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Sakyouku, Kyoto, 606-8501, Japan
| | - Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Azusa Tomioka
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Manami Semba
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, 143-8540, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-Ku, Tokyo, 125-8585, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Kaji
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, Chuo-ku, Osaka, 541-8567, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Sakyouku, Kyoto, 606-8501, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoko Miyoshi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Ota-ku, Tokyo, 143-8540, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Ryckman AE, Brockhausen I, Walia JS. Metabolism of Glycosphingolipids and Their Role in the Pathophysiology of Lysosomal Storage Disorders. Int J Mol Sci 2020; 21:E6881. [PMID: 32961778 PMCID: PMC7555265 DOI: 10.3390/ijms21186881] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide backbone and a carbohydrate-rich head group. GSLs populate lipid rafts of the cell membrane of eukaryotic cells, and serve important cellular functions including control of cell-cell signaling, signal transduction and cell recognition. Of the hundreds of unique GSL structures, anionic gangliosides are the most heavily implicated in the pathogenesis of lysosomal storage diseases (LSDs) such as Tay-Sachs and Sandhoff disease. Each LSD is characterized by the accumulation of GSLs in the lysosomes of neurons, which negatively interact with other intracellular molecules to culminate in cell death. In this review, we summarize the biosynthesis and degradation pathways of GSLs, discuss how aberrant GSL metabolism contributes to key features of LSD pathophysiology, draw parallels between LSDs and neurodegenerative proteinopathies such as Alzheimer's and Parkinson's disease and lastly, discuss possible therapies for patients.
Collapse
Affiliation(s)
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada;
| | - Jagdeep S. Walia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada;
| |
Collapse
|
9
|
Stringer RN, Lazniewska J, Weiss N. Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of diabetic mice and functional characterization on Ca v3.2 channels. Channels (Austin) 2020; 14:132-140. [PMID: 32233724 PMCID: PMC7153791 DOI: 10.1080/19336950.2020.1745406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cav3.2 T-type calcium channels play an essential role in the transmission of peripheral nociception in the dorsal root ganglia (DRG) and alteration of Cav3.2 expression is associated with the development of peripheral painful diabetic neuropathy (PDN). Several studies have previously documented the role of glycosylation in the expression and functioning of Cav3.2 and suggested that altered glycosylation of the channel may contribute to the aberrant expression of the channel in diabetic conditions. In this study, we aimed to analyze the expression of glycan-processing genes in DRG neurons from a leptin-deficient genetic mouse model of diabetes (db/db). Transcriptomic analysis revealed that several glycan-processing genes encoding for glycosyltransferases and sialic acid-modifying enzymes were upregulated in diabetic conditions. Functional analysis of these enzymes on recombinant Cav3.2 revealed an unexpected loss-of-function of the channel. Collectively, our data indicate that diabetes is associated with an alteration of the glycosylation machinery in DRG neurons. However, individual action of these enzymes when tested on recombinant Cav3.2 cannot explain the observed upregulation of T-type channels under diabetic conditions. Abbreviations: Galnt16: Polypeptide N-acetylgalactosaminyltransferase 16; B3gnt8: UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 8; B4galt1: Beta-1,4-galactosyltransferase 1; St6gal1: Beta-galactoside alpha-2,6-sialyltransferase 1; Neu3: Sialidase-3
Collapse
Affiliation(s)
- Robin N Stringer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Joanna Lazniewska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Togayachi A, Tomioka A, Fujita M, Sukegawa M, Noro E, Takakura D, Miyazaki M, Shikanai T, Narimatsu H, Kaji H. Identification of Poly-N-Acetyllactosamine-Carrying Glycoproteins from HL-60 Human Promyelocytic Leukemia Cells Using a Site-Specific Glycome Analysis Method, Glyco-RIDGE. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1138-1152. [PMID: 29675740 PMCID: PMC6004004 DOI: 10.1007/s13361-018-1938-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 05/15/2023]
Abstract
To elucidate the relationship between the protein function and the diversity and heterogeneity of glycans conjugated to the protein, glycosylation sites, glycan variation, and glycan proportions at each site of the glycoprotein must be analyzed. Glycopeptide-based structural analysis technology using mass spectrometry has been developed; however, complicated analyses of complex spectra obtained by multistage fragmentation are necessary, and sensitivity and throughput of the analyses are low. Therefore, we developed a liquid chromatography/mass spectrometry (MS)-based glycopeptide analysis method to reveal the site-specific glycome (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile, Glyco-RIDGE). This method used accurate masses and retention times of glycopeptides, without requiring MS2, and could be applied to complex mixtures. To increase the number of identified peptide, fractionation of sample glycopeptides for reduction of sample complexity is required. Therefore, in this study, glycopeptides were fractionated into four fractions by hydrophilic interaction chromatography, and each fraction was analyzed using the Glyco-RIDGE method. As a result, many glycopeptides having long glycans were enriched in the highest hydrophilic fraction. Based on the monosaccharide composition, these glycans were thought to be poly-N-acetyllactosamine (polylactosamine [pLN]), and 31 pLN-carrier proteins were identified in HL-60 cells. Gene ontology enrichment analysis revealed that pLN carriers included many molecules related to signal transduction, receptors, and cell adhesion. Thus, these findings provided important insights into the analysis of the glycoproteome using our novel Glyco-RIDGE method. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Akira Togayachi
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Azusa Tomioka
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Mika Fujita
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Masako Sukegawa
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Erika Noro
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Daisuke Takakura
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Michiyo Miyazaki
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Toshihide Shikanai
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hisashi Narimatsu
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Hiroyuki Kaji
- Glycoscience & Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
11
|
Jiang Z, Zhang H, Liu C, Yin J, Tong S, Lv J, Wei S, Wu S. β3GnT8 Promotes Colorectal Cancer Cells Invasion via CD147/MMP2/Galectin3 Axis. Front Physiol 2018; 9:588. [PMID: 29875690 PMCID: PMC5974207 DOI: 10.3389/fphys.2018.00588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
β1,3-N-acetylglucosaminyltransferase (β3GnT8) and β3GnT2 are key enzymes that catalyzes the formation of polylactosamine glycan structures by transferring GlcNAc to tetra-antennary β1-6-branched N-glycan and it also has an important effect on the progression of various types of human cancer. They have been reported to participate in tumor invasion and metastasis by regulating the expression of matrix metalloproteinases (MMPs), CD147, and polylactosamine. However, whether β3GnT8 and β3GnT2 play a role in colorectal cancer and, if so, the underlying mechanisms remain unclear. In our study, we detected the expression of β3GnT8, CD147, MMP2, and galectin3 by immunohistochemistry on 90 paraffin-embedded slices. And β3GnT8, CD147, MMP2, and galectin3 were over-expressed in colorectal cancer tissues. We found that overexpression of β3GnT8 and β3GnT2 promoted invasion of colorectal cancer cells, whereas knockdown of β3GnT8 and β3GnT2 inhibited the invasive activity. Mechanistically, β3GnT8 and β3GnT2 regulated the expression of HG-CD147 and the level of polylactosamines in colorectal cancer cells. Together, these results illustrate that the novel role and the molecular mechanism of β3GnT8 and β3GnT2 in promotion of colorectal cancer invasion. These results suggest that the potential use of β3GnT8 as a tumor target for the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Huan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Chunliang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Tong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junxing Lv
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| | - Shaohua Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Liu C, Qiu H, Lin D, Wang Z, Shi N, Tan Z, Liu J, Jiang Z, Wu S. c-Jun-dependent β3GnT8 promotes tumorigenesis and metastasis of hepatocellular carcinoma by inducing CD147 glycosylation and altering N-glycan patterns. Oncotarget 2018; 9:18327-18340. [PMID: 29719608 PMCID: PMC5915075 DOI: 10.18632/oncotarget.24192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
β3GnT8, a key polylactosamine synthase, plays a vital role in progression of various types of human cancer. The role of β3GnT8 in hepatocellular carcinoma (HCC) and the underlying mechanisms, however, remain largely unknown. In this study, we found that β3GnT8 and polylactosamine were highly expressed in HCC tissues compared with those in adjacent paracancer tissues. Overexpression of β3GnT8 promoted while knockdown of β3GnT8 inhibited HCC cell invasion and migration in vitro. Importantly, enhanced tumorigenesis was observed in nude mice inoculated with β3GnT8-overexpressing HCC cells, suggesting that β3GnT8 is important for HCC development in vitro and in vivo. Mechanistically, β3GnT8 modulated the N-glycosylation patterns of CD147 and altered the polylactosamine structures in HCC cells by physically interacting with CD147. In addition, our data showed the c-Jun could directly bind to the promoter of β3GnT8 gene and regulate β3GnT8 expression. β3GnT8 regulated HCC cell invasion and migration in a C-Jun-dependent manner. Collectively, our study identified β3GnT8 as a novel regulator for HCC invasion and tumorigenesis. Targeting β3GnT8 may be a potential therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dandan Lin
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zerong Wang
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215007, P.R. China
| | - Ning Shi
- Department of Physiology and Pharmacology, University of Georgia, Athens 30602 GA, USA
| | - Zengqi Tan
- College of Life Science, Northwest University, Xian, Shanxi 710069, P.R. China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi Jiang
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
13
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
14
|
Jiang Z, Liu Z, Zou S, Ni J, Shen L, Zhou Y, Hua D, Wu S. Transcription factor c-jun regulates β3Gn-T8 expression in gastric cancer cell line SGC-7901. Oncol Rep 2016; 36:1353-60. [PMID: 27459970 DOI: 10.3892/or.2016.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation, a common feature of malignant alteration, is partly due to changes in the expression of glycosyltransferases, including β1,3-N-acetyl-glucosaminyltrans-ferase 8 (β3Gn‑T8), which synthesizes poly-N-acetyllactosamine (poly-LacNAc) chains on β1,6 branched N‑glycans. Although the role of β3Gn‑T8 in tumors has been reported, the regulation of β3Gn‑T8 expression, however, is still poorly understood. In the present study, we used three online bioinformatic software tools to identify multiple c‑jun binding sites in the promoter of the β3Gn‑T8 gene. Using luciferase reporter assay, chromatin immunoprecipitation (ChIP) analysis, RT‑PCR and western blot analysis, we revealed that c‑jun could bind to and activate the β3Gn‑T8 promoter, thus upregulating β3Gn‑T8 expression. This was also confirmed by changes in β3Gn‑T8 activity as demonstrated by flow cytometry, immunofluorescence and lectin blot analysis using LEA lectin. Moreover, expression of glycoprotein HG‑CD147, the substrate of β3Gn‑T8, was also regulated by c‑jun. In addition, c‑jun and β3Gn‑T8 were more highly expressed in the gastric cancer tissues when compared to these levels in the adjacent non‑tumor gastric tissues, and β3Gn‑T8 expression was positively correlated with c‑jun expression. These results suggest that c‑jun plays a significant role in regulating the expression of β3Gn‑T8 in the SGC‑7901 cell line and may be involved in the development of malignancy via the activity of β3Gn‑T8.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhenhua Liu
- Department of Inspection, Suzhou Health College, Suzhou, Jiangsu 215001, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dong Hua
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
15
|
Kellokumpu S, Hassinen A, Glumoff T. Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol Life Sci 2016; 73:305-25. [PMID: 26474840 PMCID: PMC7079781 DOI: 10.1007/s00018-015-2066-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most common and complex cellular modification of proteins and lipids. It is critical for multicellular life and its abrogation often leads to a devastating disease. Yet, the underlying mechanistic details of glycosylation in both health and disease remain unclear. Partly, this is due to the complexity and dynamicity of glycan modifications, and the fact that not all the players are taken into account. Since late 1960s, a vast number of studies have demonstrated that glycosyltransferases typically form homomeric and heteromeric complexes with each other in yeast, plant and animal cells. To propagate their acceptance, we will summarize here accumulated data for their prevalence and potential functional importance for glycosylation focusing mainly on their mutual interactions, the protein domains mediating these interactions, and enzymatic activity changes that occur upon complex formation. Finally, we will highlight the few existing 3D structures of these enzyme complexes to pinpoint their individual nature and to emphasize that their lack is the main obstacle for more detailed understanding of how these enzyme complexes interact and function in a eukaryotic cell.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| |
Collapse
|
16
|
Shen L, Yu M, Xu X, Gao L, Ni J, Luo Z, Wu S. Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int J Oncol 2014; 45:2560-8. [PMID: 25269761 DOI: 10.3892/ijo.2014.2672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation is known to be associated with cancer chemoresistance. β-1,3-N-acetyl-glucosaminyltransferase (β3GnT)8, which synthesizes polylactosamine on β1-6 branched N-glycans, is dramatically upregulated in colorectal cancer (CRC). 5-Fluorouracil (5-FU) resistance remains a major obstacle to the chemotherapy of CRC. However, little is known with regard to the correlation between 5‑FU resistance and the expression of β3GnT8 in CRC. In this study, a 5-FU‑resistant cell line (SW620/5-FU) was generated, and 50% inhibition concentration (IC50) of 5-FU was determined by MTT assay. Flow cytometry and lectin blot analysis were performed to detect the alteration of polylactosamine structures. Quantitative RT-‑PCR and western blot analysis were used to identify and evaluate candidate genes involved in the synthesis of polylactosamine in SW620/5-FU cells. We found polylactosamine chains were significantly increased in SW620/5-FU cells. Inhibition of the biosynthesis of polylactosamine by 3'-azidothymidine (AZT) was able to reduce 5-FU tolerance. Further studies showed that β3GnT8 expression was also upregulated in 5-FU‑resistant cancer cells, and knockdown of β3GnT8 by RNA interference reversed 5-FU resistance through, at least partly, by suppressing the formation of polylactosamine. In conclusion, the alteration of β3GnT8 in CRC cells correlates with tumor sensitivity to the chemotherapeutic drug and has significant implication for the development of new treatment strategies.
Collapse
Affiliation(s)
- Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xu Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
17
|
Storry JR, Condon J, Hult AK, Harrison A, Jørgensen R, Olsson ML. An age-dependent ABO discrepancy between mother and baby reveals a novelAweakallele. Transfusion 2014; 55:422-6. [DOI: 10.1111/trf.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Jill R. Storry
- Division of Hematology and Transfusion Medicine; Department of Laboratory Medicine; Lund University; Lund Sweden
- Clinical Immunology and Transfusion Medicine; Laboratory Medicine; Office of Medical Services; Lund Sweden
| | - Jennifer Condon
- Australian Red Cross Blood Service; Melbourne Victoria Australia
| | - Annika K. Hult
- Division of Hematology and Transfusion Medicine; Department of Laboratory Medicine; Lund University; Lund Sweden
- Clinical Immunology and Transfusion Medicine; Laboratory Medicine; Office of Medical Services; Lund Sweden
| | | | | | - Martin L. Olsson
- Division of Hematology and Transfusion Medicine; Department of Laboratory Medicine; Lund University; Lund Sweden
- Clinical Immunology and Transfusion Medicine; Laboratory Medicine; Office of Medical Services; Lund Sweden
| |
Collapse
|
18
|
Jiang Z, Hu S, Hua D, Ni J, Xu L, Ge Y, Zhou Y, Cheng Z, Wu S. β3GnT8 plays an important role in CD147 signal transduction as an upstream modulator of MMP production in tumor cells. Oncol Rep 2014; 32:1156-62. [PMID: 24970053 DOI: 10.3892/or.2014.3280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/02/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant carbohydration by related glycosyl-transferases plays an important role in the progression of cancer. This study focused on the ablity of β-1,3-N-acetyl-glucosaminyltransferase-8 (β3GnT8) to regulate MMP-2 expression through regulation of the CD147 signal transduction pathway in cancer cells. β3GnT8 catalyzes and then extends a polylactosamine chain specifically on β1-6-branched tetraantennary N-glycans. CD147 is a major carrier of β1-6-branched polylactosamine sugars on tumor cells, and the high glycoform of CD147 (HG-CD147) induces matrix metalloproteinase (MMP) production. In the present study, we analyzed β3GnT8 mRNA expression in 6 cancer cell lines (MCF-7, M231, LN229, U87, SGC-7901 and U251). We found that β3GnT8 expression in the LN229, SGC-7901 and U251 cell lines was higher than that in the other cell lines. Therefore, we established β3GnT8-knockdown cell lines derived from the LN229 and SGC-7901 cell lines to examine the level of polylactosamine and CD147 N-glycosylation. In addition, tunicamycin is widely used as an inhibitor of N-linked glycosylation. Hence, various concentrations of tunicamycin were used to treat the cells in order to study its influence on CD147 N-glycosylation and MMP-2 expression. In conclusion, we found that β3GnT8 regulated the level of N-glycans on CD147 and that N-glycosylation of CD147 has an important effect on MMP-2 expression. Our findings suggest that β3GnT8 affects the signal transduction pathway of MMP-2 by altering the N-glycan structure of CD147.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shuijun Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dong Hua
- The Fourth People's Hospital of Wuxi, The Original Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lan Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Ge
- Department of Immunology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhihong Cheng
- The Fourth People's Hospital of Wuxi, The Original Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
19
|
Clark ATR, Guimarães da Costa VML, Bandeira Costa L, Bezerra Cavalcanti CL, De Melo Rêgo MJB, Beltrão EIC. Differential expression patterns of N-acetylglucosaminyl transferases and polylactosamines in uterine lesions. Eur J Histochem 2014; 58:2334. [PMID: 24998922 PMCID: PMC4083322 DOI: 10.4081/ejh.2014.2334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/01/2022] Open
Abstract
Polylactosamine (polyLacNAc) is a fundamental structure in glycoconjugates and it is expressed in specific cells/tissues associated with the development and carcinogenesis. β1,3-N-acetylglucosaminyl transferases ((β3GnTs) play an important role in polyLacNAc synthesis, however the roles of these glycosyltransferases and their products in cancer progression are still unclear. In this sense, this work aimed to evaluate differential expression pattern of the N-acetylglucosaminyl transferases and polylactosamines in invasive and premalignant lesions of the uterus cervix. The expression of β3GnT2 and β3GnT3 were evaluated in normal (n=10) and uterine cervix lesions (n=120), both malignant [squamous carcinoma (SC)] and premalignant [cervical intraepithelial neoplasia (CIN), grades 1, 2 and 3] using immunohistochemistry. Besides, lectin histochemistry with Phytolacca americana lectin (PWM) and Wheat germ agglutinin (WGA) was also carried out to observe the presence of polyLacNAc chains and N-acetylglucosamine (GlcNAc), respectively. The β3GnT3 was expressed in almost all samples (99%) and β3GnT2 was higher expressed in disease samples mainly in CIN 3, when compared with normal (P=0.002), CIN 1 (P=0.009) and CIN 2 (P=0.03). The expression of polyLacNAc was higher is SC samples, when compared with normal (P=0.03), CIN 1 (P=0.02) and CIN 3 (P=0.004), and was observed only nuclear expression in nearly 50% of the SC samples, showing a statistically significant when compared with normal (P=0.01), CIN 1 (P=0.002), CIN 2 (P=0.007) and CIN 3 (P=0.04). Deferring from transferases and polyLacNAc chains, GlcNAc (WGA ligand) reveals a gradual staining pattern decrease with the increase of the lesion degree, being more expressed in CIN 1 lesions when compared with normal (P<0.0001), CIN 2 (P<0.0001), SC (P<0.0001) and CIN 3 (P=0.0003). Our data reveal that β3GnT2 and polyLacNAc may be involved in the progression of the pre-malignant lesions of the human uterine cervix. In addition, polyLacNAc expression only in the nucleus can be associated a poor prognostic in uterine lesions.
Collapse
|
20
|
Liu J, Shen L, Yang L, Hu S, Xu L, Wu S. High expression of β3GnT8 is associated with the metastatic potential of human glioma. Int J Mol Med 2014; 33:1459-68. [PMID: 24715095 PMCID: PMC4055349 DOI: 10.3892/ijmm.2014.1736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/31/2014] [Indexed: 11/06/2022] Open
Abstract
Changes in glycosylation due to specific alterations of glycosyltransferase activity have been shown in various tumor cells, including human glioma cells. β1,3-N‑acetylglucosaminyltransferase-8 (β3GnT8) catalyzes the formation of polylactosamine on β1-6 branched N-glycans. Upregulated expression of β3GnT8 was described in some tumors, but its precise role in regulating glioma invasion and metastasis remains unclear. In this study, we report on an investigation of the expression of β3GnT8 in human glioma by immunohistochemical analysis. Out of 42 glioma tissues, 37 (88.1%) showed positive β3GnT8 expression, which was significantly higher than that in normal brain tissues (P<0.001). Additionally, the level of β3GnT8 increased with increased pathological grade of gliomas. Silencing of β3GnT8 in U251 glioma cells attenuated the formation of polylactosamine, and decreased cell proliferation, migration and metastatic ability in vitro and in vivo. By contrast, the overexpression of β3GnT8 in U251 cells exhibited enhanced metastatic potential. A positive correlation between β3GnT8 and matrix metalloproteinase-2 (MMP-2) expression in U251 cells was also observed. The results demonstrated a critical role of β3GnT8 in the metastatic potential of glioma cells, indicating that manipulating β3GnT8 expression may have therapeutic potential for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lingyan Yang
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shuijun Hu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lan Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
21
|
Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, Wu S. Colon cancer cells treated with 5‑fluorouracil exhibit changes in polylactosamine‑type N‑glycans. Mol Med Rep 2014; 9:1697-702. [PMID: 24604396 DOI: 10.3892/mmr.2014.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
5-Fluorouracil (5-FU) is the major chemotherapeutic agent for the treatment of colorectal carcinoma, which were found to have N-glycans containing polylactosamine on the cancer cell surface. Alterations in the expression and structure of polylactosamine glycans are associated with cellular differentiation and oncogenesis. However, little is known with regard to the correlation between the levels of polylactosamine expressed in colon cancer cells and the anticancer effect of 5-FU. In the present study, SW620 cells were treated with the half maximal inhibitory concentration (IC50; determined by MTT-assay) of 5-FU. Hoechst 33258 staining and flow cytometric analysis indicated that 5-FU administration resulted in apoptosis in SW620 cells. An increased percentage of cells in S phase was also observed among the SW620 cells treated with 5-FU. Under the same experimental conditions, a decrease in the 5-FU‑induced inhibition of polylactosamine glycans was recorded. However, an increase in the activity of alkaline phosphatase was also observed. Furthermore, pretreatment of the SW620 cells with 5-FU inhibited the expression of β1,3-N-acetylglucosaminyltransferase-8 (β3Gn-T8) and cluster of differentiation (CD)147 in a time-dependent manner. Overall, changes in glycosylation were associated with the anticancer effect of 5-FU in the colon cancer cells. In conclusion, polylactosamine may be a useful target for the identification of substances with anticancer activity.
Collapse
Affiliation(s)
- Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
22
|
Ni J, Jiang Z, Shen L, Gao L, Yu M, Xu X, Zou S, Hua D, Wu S. β3GnT8 regulates the metastatic potential of colorectal carcinoma cells by altering the glycosylation of CD147. Oncol Rep 2014; 31:1795-801. [PMID: 24573103 DOI: 10.3892/or.2014.3042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/28/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation of cell surface glycoproteins is commonly associated with the invasion and metastasis of colorectal carcinomas, which can be attributed to the upregulated expression of glycosyltransferases. Therefore, elucidation of glycosyltransferases and their substrates may improve our understanding of their roles in tumor metastasis. β-1,3-N-acetylglucosaminyltransferase-8 (β3GnT8) is a key enzyme that catalyzes the formation of poly-N-acetyllactosamine (polylactosamine) chains on β1,6-branched N-glycans in vitro, which is also involved in tumor invasion. In the present study, we analyzed the expression of β3GnT8 and its product polylactosamine in four human colorectal carcinoma cell lines (LS-174T, SW620, SW480 and LoVo) with different metastatic potential. We found that the levels of β3GnT8 and polylactosamine chains were gradually increased in the colorectal cancer cell lines in a trend from low to high metastatic potential. Notably, a significantly positive relationship between β3GnT8 expression and HG-CD147 was noted in the colorectal cancer cell lines. To further investigate their relationships, exogenous β3GnT8 was introduced into the LS-174T cells, while expression of β3GnT8 was downregulated in the LoVo cells. The overexpression of β3GnT8 in LS-174T cells increased the level of HG-CD147. Conversely, downregulation of β3GnT8 expression in LoVo cells significantly decreased the expression of HG-CD147. HG-CD147 is a major carrier of β1,6-branched polylactosamine sugars; therefore, the regulation of β3GnT8 significantly altered the β1,6-branched polylactosamine structures on CD147. Hence, we suggest that β3GnT8 plays a key role in the metastasis of colorectal cancer cells by altering the β1,6-branched polylactosamine sugars of CD147.
Collapse
Affiliation(s)
- Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Gao
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xu Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shitao Zou
- The Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Dong Hua
- The Fourth Affiliated Hospital of Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
23
|
Chen CH, Wang SH, Liu CH, Wu YL, Wang WJ, Huang J, Hung JS, Lai IR, Liang JT, Huang MC. β-1,4-Galactosyltransferase III suppresses β1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer. Carcinogenesis 2014; 35:1258-66. [PMID: 24403309 DOI: 10.1093/carcin/bgu007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastasis often occurs in colorectal cancer (CRC) patients and is the main difficulty in cancer treatment. The upregulation of poly-N-acetyllactosamine-related glycosylation is found in CRC patients and is associated with progression and metastasis in cancer. β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for poly-N-acetyllactosamine synthesis, and therefore, we investigated its expression in CRC patients. We found that B4GALT3 negatively correlated with poorly differentiated histology (P < 0.001), advanced stages (P = 0.0052), regional lymph node metastasis (P = 0.0018) and distant metastasis (P = 0.0463) in CRC patients. B4GALT3 overexpression in CRC cells suppressed cell migration, invasion and adhesion, whereas B4GALT3 knockdown enhanced malignant cell phenotypes. The β1 integrin-blocking antibody reversed the B4GALT3-mediated increase in cell invasion. B4GALT3 expression altered glycosylation on the N-glycan of β1 integrin probably through changes in poly-N-acetyllactosamine expression. Furthermore, more activated β1 integrin along with the activation of its downstream signaling transduction were found in B4GALT3 knockdown cells, whereas overexpression of B4GALT3 suppressed the expression of active β1 integrin and inhibited its downstream signaling. Our results suggest that B4GALT3 is negatively associated with CRC metastasis and suppresses cell invasiveness through inhibiting activation of β1 integrin.
Collapse
Affiliation(s)
- Chia-Hua Chen
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Shui-Hua Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiung-Hui Liu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Yi-Ling Wu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Wei-Jen Wang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | | | - Ji-Shiang Hung
- Department of Surgery and Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan and
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Department of Surgery and
| | | | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10041, Taiwan
| |
Collapse
|
24
|
Korekane H, Park JY, Matsumoto A, Nakajima K, Takamatsu S, Ohtsubo K, Miyamoto Y, Hanashima S, Kanekiyo K, Kitazume S, Yamaguchi Y, Matsuo I, Taniguchi N. Identification of ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N-acetylglucosaminyltransferase GnT-IX (GnT-Vb). J Biol Chem 2013; 288:27912-26. [PMID: 23960081 DOI: 10.1074/jbc.m113.474304] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies on a β1,6-N-acetylglucosaminyltransferase, GnT-IX (GnT-Vb), a homolog of GnT-V, indicated that the enzyme has a broad GlcNAc transfer activity toward N-linked and O-mannosyl glycan core structures and that its brain-specific gene expression is regulated by epigenetic histone modifications. In this study, we demonstrate the existence of an endogenous inhibitory factor for GnT-IX that functions as a key regulator for GnT-IX enzymatic activity in Neuro2a (N2a) cells. We purified this factor from N2a cells and found that it is identical to ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3), as evidenced by mass spectrometry and by the knockdown and overexpression of ENPP3 in cultured cells. Kinetic analyses revealed that the mechanism responsible for the inhibition of GnT-IX caused by ENPP3 is the ENPP3-mediated hydrolysis of the nucleotide sugar donor substrate, UDP-GlcNAc, with the resulting generation of UMP, a potent and competitive inhibitor of GnT-IX. Indeed, ENPP3 knockdown cells had significantly increased levels of intracellular nucleotide sugars and displayed changes in the total cellular glycosylation profile. In addition to chaperones or other known regulators of glycosyltransferases, the ENPP3-mediated hydrolysis of nucleotide sugars would have widespread and significant impacts on glycosyltransferase activities and would be responsible for altering the total cellular glycosylation profile and modulating cellular functions.
Collapse
Affiliation(s)
- Hiroaki Korekane
- From the Systems Glycobiology Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, and
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sugihara K, Shibata TK, Takata K, Kimura T, Kanayama N, Williams R, Hatakeyama S, Akama TO, Kuo CW, Khoo KH, Fukuda MN. Attenuation of fibroblast growth factor signaling by poly-N-acetyllactosamine type glycans. FEBS Lett 2013; 587:3195-201. [PMID: 23968720 DOI: 10.1016/j.febslet.2013.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors are expressed in a variety of mammalian tissues, playing a role in development and cell proliferation. While analyzing human sperm motility, we found that sperm treated with endo-β-galactosidase (EBG), which specifically hydrolyzes poly-N-acetyllactosamine type glycans (polyLacs), enhanced motility. Mass spectrometry analysis revealed that sperm-associated polyLacs are heavily fucosylated, consistent with Lewis Y antigen. Immunohistochemistry of epididymis using an anti-Lewis Y antibody before and after EBG treatment suggested that polyLacs carrying the Lewis Y epitope are synthesized in epididymal epithelia and secreted to seminal fluid. EBG-treated sperm elevated cAMP levels and calcium influx, indicating activation of fibroblast growth factor signaling. Seminal fluid polyLacs bound to FGFs in vitro, and impaired FGF-mediated signaling in HEK293T cells.
Collapse
Affiliation(s)
- Kazuhiro Sugihara
- Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Hamamatsu City, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Glycosyltransferase complexes improve glycolipid synthesis. FEBS Lett 2012; 586:2346-50. [PMID: 22687240 DOI: 10.1016/j.febslet.2012.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/11/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022]
Abstract
The synthesis of gangliosides GM3 and GD3 is carried out by the successive addition of sialic acid residues on lactosylceramide (LacCer) by the Golgi located sialyltransferases Sial-T1 and Sial-T2, respectively. CHO-K1 cells lack Sial-T2 and only express GM3. Here we show that the activity of Sial-T1 was near 2.5-fold higher in homogenates of CHO-K1 cells transfected to express Sial-T2 (CHO-K1(Sial-T2)) than in untransfected cells. The appearance of Sial-T1 enzyme or gene transcription activators or the stabilization of the Sial-T1 protein were discarded as possible causes of the activation. Sial-T2 lacking the catalytic domain failed to promote Sial-T1 activation. Since Gal-T1, Sial-T1 and Sial-T2 form a multienzyme complex, we propose that transformation of formed GM3 into GD3 and GT3 by Sial-T2 in the complex leaves Sial-T1 unoccupied, enabled for new rounds of LacCer utilization, which results in its apparent activation.
Collapse
|
27
|
Masud R, Shameer K, Dhar A, Ding K, Kullo IJ. Gene expression profiling of peripheral blood mononuclear cells in the setting of peripheral arterial disease. J Clin Bioinforma 2012; 2:6. [PMID: 22409835 PMCID: PMC3381689 DOI: 10.1186/2043-9113-2-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/12/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Peripheral arterial disease (PAD) is a relatively common manifestation of systemic atherosclerosis that leads to progressive narrowing of the lumen of leg arteries. Circulating monocytes are in contact with the arterial wall and can serve as reporters of vascular pathology in the setting of PAD. We performed gene expression analysis of peripheral blood mononuclear cells (PBMC) in patients with PAD and controls without PAD to identify differentially regulated genes. METHODS PAD was defined as an ankle brachial index (ABI) ≤0.9 (n = 19) while age and gender matched controls had an ABI > 1.0 (n = 18). Microarray analysis was performed using Affymetrix HG-U133 plus 2.0 gene chips and analyzed using GeneSpring GX 11.0. Gene expression data was normalized using Robust Multichip Analysis (RMA) normalization method, differential expression was defined as a fold change ≥1.5, followed by unpaired Mann-Whitney test (P < 0.05) and correction for multiple testing by Benjamini and Hochberg False Discovery Rate. Meta-analysis of differentially expressed genes was performed using an integrated bioinformatics pipeline with tools for enrichment analysis using Gene Ontology (GO) terms, pathway analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG), molecular event enrichment using Reactome annotations and network analysis using Ingenuity Pathway Analysis suite. Extensive biocuration was also performed to understand the functional context of genes. RESULTS We identified 87 genes differentially expressed in the setting of PAD; 40 genes were upregulated and 47 genes were downregulated. We employed an integrated bioinformatics pipeline coupled with literature curation to characterize the functional coherence of differentially regulated genes. CONCLUSION Notably, upregulated genes mediate immune response, inflammation, apoptosis, stress response, phosphorylation, hemostasis, platelet activation and platelet aggregation. Downregulated genes included several genes from the zinc finger family that are involved in transcriptional regulation. These results provide insights into molecular mechanisms relevant to the pathophysiology of PAD.
Collapse
Affiliation(s)
- Rizwan Masud
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Aparna Dhar
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Keyue Ding
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Iftikhar J Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| |
Collapse
|
28
|
Pasek M, Ramakrishnan B, Boeggeman E, Mercer N, Dulcey AE, Griffiths GL, Qasba PK. The N-acetyl-binding pocket of N-acetylglucosaminyltransferases also accommodates a sugar analog with a chemical handle at C2. Glycobiology 2011; 22:379-88. [PMID: 21868414 DOI: 10.1093/glycob/cwr110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In recent years, sugars with a unique chemical handle have been used to detect and elucidate the function of glycoconjugates. Such chemical handles have generally been part of an N-acetyl moiety of a sugar. We have previously developed several applications using the single mutant Y289L-β1,4-galactosyltransferase I (Y289L-β4Gal-T1) and the wild-type polypeptide-α-GalNAc-T enzymes with UDP-C2-keto-Gal. Here, we describe for the first time that the GlcNAc-transferring enzymes-R228K-Y289L-β4Gal-T1 mutant enzyme, the wild-type human β1,3-N-acetylglucosaminyltransferase-2 and human Maniac Fringe-can also transfer the GlcNAc analog C2-keto-Glc molecule from UDP-C2-keto-Glc to their respective acceptor substrates. Although the R228K-Y289L-β4Gal-T1 mutant enzyme transfers the donor sugar substrate GlcNAc or its analog C2-keto-Glc only to its natural acceptor substrate, GlcNAc, it does not transfer to its analog C2-keto-Glc. Thus, these observations suggest that the GlcNAc-transferring glycosyltransferases can generally accommodate a chemical handle in the N-acetyl-binding cavity of the donor sugar substrate, but not in the N-acetyl-binding cavity of the acceptor sugar.
Collapse
Affiliation(s)
- Marta Pasek
- Structural Glycobiology Section, Center for Cancer Research Nanobiology Program, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kouno T, Kizuka Y, Nakagawa N, Yoshihara T, Asano M, Oka S. Specific enzyme complex of beta-1,4-galactosyltransferase-II and glucuronyltransferase-P facilitates biosynthesis of N-linked human natural killer-1 (HNK-1) carbohydrate. J Biol Chem 2011; 286:31337-46. [PMID: 21771787 DOI: 10.1074/jbc.m111.233353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Expression of β1,3-N-acetylglucosaminyltransferases during differentiation of human acute myeloid leukemia cells. Mol Cell Biochem 2011; 358:131-9. [PMID: 21720768 DOI: 10.1007/s11010-011-0928-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 06/21/2011] [Indexed: 01/24/2023]
Abstract
The expressions of β1,3-N-acetylglucosamonyltransferase-2 and -8 (β3GnT-2, β3GnT-8),-the two main glycosyltransferases responsible for the synthesis of poly-N-acetyllactosamine (polyLacNAc) in glycans, and β3GnT-5 participating in the syntheses of sphingoglycolipids were studied in leukemia cell lines during differentiation using RT-PCR method. β3GnT-2 and β3GnT-8 distribute widely in six myeloid and monocytoid leukemia cell lines with different abundances, while β3GnT-4 was only present in NB4 cells. ATRA (all-trans retinoic acid) and dimethylsulfoxide (DMSO), which induce the differentiation of HL-60 and NB4 (two human acute myeloid leukemia cell lines) to myelocytic lineage, up-regulated these two enzymes with various degrees at 2 and 72 h of treatment. In HL-60 cells treated with ATRA, the increase of β3GnT-8 was more than β3GnT-2, while in NB4 cells treated with DMSO, the increase of β3GnT-2 was more than β3GnT-8. However, when HL-60 and NB4 were differentiated to monocytic lineage induced by phorbol 12-myristate 13-acetate the expressions of β3GnT-2 and β3GnT-8 showed no alterations or the increase of expressions was far less than those in myelocytic differentiation. By means of FITC-labeled tomato lectin affinity staining and flow-cytometry, it was found that the product of β3GnT-2 and -8, polyLacNAc was also increased on the cell surface of HL-60 and NB4 treated with ATRA or DMSO, but unchanged when treated with PMA. These results were in accordance with the up-regulation of the mRNAs of β3GnT-2 and -8. The expression of β3GnT-5, however, was not changed both in myelocytic and monocytic differentiations. The difference in the up-regulation of β3GnT-2 and -8, especially their products may become a useful index to discriminate the myelocytic and monocytic differentiation of leukemia cells.
Collapse
|
31
|
Regulation of MMP-2 expression and activity by β-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep 2010; 38:1541-50. [PMID: 20963502 DOI: 10.1007/s11033-010-0262-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/02/2010] [Indexed: 01/03/2023]
Abstract
β-1,3-N-acetylglucosaminyltransferase-8(β3Gn-T8) catalyzes the transfer of GlcNAc to the non-reducing terminus of the Galβ1-4GlcNAc of tetraantennary N-glycan in vitro. It has been reported to be involved in malignant tumors, but a comprehensive understanding of how the glycolsyltransferase correlates with the invasive potential of human gastric cancer is not currently available. Therefore, we investigated the ability and possible mechanism involved with β3Gn-T8 in modulating matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in AGS gastric cancer cells. Here, we found out that siRNA-mediated suppression of the β3Gn-T8 could directly reduce the MMP-2 expression and activity as observed in RT-PCR, western blot and gelatin zymography analysis. Meanwhile, TIMP-2 expression had been increased. Cell invasion assay using matrigel matrix-coated transwell inserts showed that the invasive property was greatly suppressed in β3Gn-T8 siRNA transfected cells. Furthermore, cells overexpressing β3Gn-T8 gene (when transfected with pEGFP-C1 plasmid) also expressed MMP-2 gene, but TIMP-2 expression had been inhibited. The invasive ability of these cells was also enhanced. Protein-protein interaction analysis using STRING database showed that β3Gn-T8 and MMP-2 may have related signal pathway. In summary, our results reveal a new mechanism by which β3Gn-T8 can regulate MMP-2 and TIMP-2. We suggest that β3Gn-T8 can be used as a novel therapeutic target for human gastric treatment.
Collapse
|
32
|
Jiang Z, Ge Y, Zhou J, Xu L, Wu SL. Subcellular localization and tumor distribution of human beta3-galactosyltransferase by beta3GalT7 antiserum. Hybridoma (Larchmt) 2010; 29:141-6. [PMID: 20443706 DOI: 10.1089/hyb.2009.0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A novel member of the human beta3-galactosyltransferase family, the beta3GalT7 gene (AY277592, EC2.4.1.-) was first isolated and cloned by our laboratory. To further study its functions, we constructed a prokaryotic expression system of beta3GalT7 and obtained anti-beta3GalT7 polyclonal antiserum by immunizing rabbit with purified beta3GalT7 protein. Using the antiserum, the expression of beta3GalT7 in various tissues and cell lines was analyzed by Western blot and immunochemical assays. Immunochemistry analysis showed the enzyme was expressed significantly higher in some tumor tissues than in normal tissues, indicating its biofunction in tumorogenesis. By immunofluorescence, the enzyme was observed highly accumulated in cytoplasm around nuclear membrane, implying that beta3GalT7 may play an important role in the assembly of galactose in RER and Golgi.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, The Institute of Biochemistry Engineering, Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
33
|
Huang HH, Stanley P. A testis-specific regulator of complex and hybrid N-glycan synthesis. ACTA ACUST UNITED AC 2010; 190:893-910. [PMID: 20805325 PMCID: PMC2935569 DOI: 10.1083/jcb.201004102] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GnT1IP inhibits GlcNAcT-1 to change N-glycosylation patterns on secretory proteins, potentially regulating germ cell adhesion to Sertoli cells during spermatogenesis. Database analyses identified 4933434I20Rik as a glycosyltransferase-like gene expressed mainly in testicular germ cells and regulated during spermatogenesis. Expression of a membrane-bound form of the protein resulted in a marked and specific reduction in N-acetylglucosaminyltransferase I (GlcNAcT-I) activity and complex and hybrid N-glycan synthesis. Thus, the novel activity was termed GlcNAcT-I inhibitory protein (GnT1IP). Membrane-bound GnT1IP localizes to the ER, the ER-Golgi intermediate compartment (ERGIC), and the cis-Golgi. Coexpression of membrane-anchored GnT1IP with GlcNAcT-I causes association of the two proteins, inactivation of GlcNAcT-I, and mislocalization of GlcNAcT-I from the medial-Golgi to earlier compartments. Therefore, GnT1IP is a regulator of GlcNAcT-I and complex and hybrid N-glycan production. Importantly, the formation of high mannose N-glycans resulting from inhibition of GlcNAcT-I by GnT1IP markedly increases the adhesion of CHO cells to TM4 Sertoli cells. Testicular germ cells might use GnT1IP to induce the expression of high mannose N-glycans on glycoproteins, thereby facilitating Sertoli–germ cell attachment at a particular stage of spermatogenesis.
Collapse
Affiliation(s)
- Hung-Hsiang Huang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | |
Collapse
|
34
|
Hult AK, Yazer MH, Jørgensen R, Hellberg Å, Hustinx H, Peyrard T, Palcic MM, Olsson ML. Weak A phenotypes associated with novel ABO alleles carrying the A2-related 1061C deletion and various missense substitutions. Transfusion 2010; 50:1471-86. [DOI: 10.1111/j.1537-2995.2010.02670.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hult AK, Olsson ML. Many genetically defined ABO subgroups exhibit characteristic flow cytometric patterns. Transfusion 2010; 50:308-23. [DOI: 10.1111/j.1537-2995.2009.02398.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Lee PL, Kohler JJ, Pfeffer SR. Association of beta-1,3-N-acetylglucosaminyltransferase 1 and beta-1,4-galactosyltransferase 1, trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis. Glycobiology 2009; 19:655-64. [PMID: 19261593 PMCID: PMC2682609 DOI: 10.1093/glycob/cwp035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/12/2009] [Accepted: 02/27/2009] [Indexed: 11/14/2022] Open
Abstract
Poly-N-acetyllactosamine (polyLacNAc) is a linear carbohydrate polymer composed of alternating N-acetylglucosamine and galactose residues involved in cellular functions ranging from differentiation to metastasis. PolyLacNAc also serves as a scaffold on which other oligosaccharides such as sialyl Lewis X are displayed. The polymerization of the alternating N-acetylglucosamine and galactose residues is catalyzed by the successive action of UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) and UDP-Gal:betaGlcNAc beta-1,4-galactosyltransferase, polypeptide 1 (B4GALT1), respectively. The functional association between these two glycosyltransferases led us to investigate whether the enzymes also associate physically. We show that B3GNT1 and B4GALT1 colocalize by immunofluorescence microscopy, interact by coimmunoprecipitation, and affect each other's subcellular localization when one of the two proteins is artificially retained in the endoplasmic reticulum. These results demonstrate that B3GNT1 and B4GALT1 physically associate in vitro and in cultured cells, providing insight into possible mechanisms for regulation of polyLacNAc production.
Collapse
Affiliation(s)
- Peter L Lee
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer J Kohler
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|