1
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
2
|
Park S, Karatayeva N, Demin AA, Munashingha PR, Seo YS. The secondary-structured DNA-binding activity of Dna2 endonuclease/helicase is critical to cell growth under replication stress. FEBS J 2020; 288:1224-1242. [PMID: 32638513 PMCID: PMC7984218 DOI: 10.1111/febs.15475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
Dna2 can efficiently process 5' flaps containing DNA secondary structure using coordinated action of the three biochemical activities: the N-terminally encoded DNA-binding activity and the C-terminally encoded endonuclease and helicase activities. In this study, we investigated the cross talk among the three functional domains using a variety of dna2 mutant alleles and enzymes derived thereof. We found that disruption of the catalytic activities of Dna2 activated Dna2-dependent checkpoint, residing in the N-terminal domain. This checkpoint activity contributed to growth defects of dna2 catalytic mutants, revealing the presence of an intramolecular functional cross talk in Dna2. The N-terminal domain of Dna2 bound specifically to substrates that mimic DNA replication fork intermediates, including Holliday junctions. Using site-directed mutagenesis of the N-terminal domain of Dna2, we discovered that five consecutive basic amino acid residues were essential for the ability of Dna2 to bind hairpin DNA in vitro. Mutant cells expressing the dna2 allele containing all five basic residues substituted with alanine displayed three distinct phenotypes: (i) temperature-sensitive growth defects, (ii) bypass of S-phase arrest, and (iii) increased sensitivity to DNA-damaging agents. Taken together, our results indicate that the interplay between the N-terminal regulatory and C-terminal catalytic domains of Dna2 plays an important role in vivo, especially when cells are placed under replication stress.
Collapse
Affiliation(s)
- Soyeong Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Nargis Karatayeva
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Annie Albert Demin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Palinda Ruvan Munashingha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
3
|
Bernal M, Yang X, Lisby M, Mazón G. The FANCM family Mph1 helicase localizes to the mitochondria and contributes to mtDNA stability. DNA Repair (Amst) 2019; 82:102684. [DOI: 10.1016/j.dnarep.2019.102684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/24/2022]
|
4
|
Abstract
Dna2 is a nuclease and helicase that functions redundantly with other proteins in Okazaki fragment processing, double-strand break resection, and checkpoint kinase activation. Dna2 is an essential enzyme, required for yeast and mammalian cell viability. Here, we report that numerous mutations affecting the DNA damage checkpoint suppress dna2∆ lethality in Saccharomyces cerevisiaedna2∆ cells are also suppressed by deletion of helicases PIF1 and MPH1, and by deletion of POL32, a subunit of DNA polymerase δ. All dna2∆ cells are temperature sensitive, have telomere length defects, and low levels of telomeric 3' single-stranded DNA (ssDNA). Interestingly, Rfa1, a subunit of the major ssDNA binding protein RPA, and the telomere-specific ssDNA binding protein Cdc13, often colocalize in dna2∆ cells. This suggests that telomeric defects often occur in dna2∆ cells. There are several plausible explanations for why the most critical function of Dna2 is at telomeres. Telomeres modulate the DNA damage response at chromosome ends, inhibiting resection, ligation, and cell-cycle arrest. We suggest that Dna2 nuclease activity contributes to modulating the DNA damage response at telomeres by removing telomeric C-rich ssDNA and thus preventing checkpoint activation.
Collapse
|
5
|
Hoopes JI, Hughes AL, Hobson LA, Cortez LM, Brown AJ, Roberts SA. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass. Nucleic Acids Res 2017; 45:5243-5254. [PMID: 28334887 PMCID: PMC5605239 DOI: 10.1093/nar/gkx169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce.
Collapse
Affiliation(s)
- James I Hoopes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Amber L Hughes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Lauren A Hobson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Luis M Cortez
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics 2017; 206:829-842. [PMID: 28468907 DOI: 10.1534/genetics.116.198671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
Lagging strand synthesis is mechanistically far more complicated than leading strand synthesis because it involves multistep processes and requires considerably more enzymes and protein factors. Due to this complexity, multiple fail-safe factors are required to ensure successful replication of the lagging strand DNA. We attempted to identify novel factors that are required in the absence of the helicase activity of Dna2, an essential enzyme in Okazaki-fragment maturation. In this article, we identified Rim11, a GSK-3β-kinase homolog, as a multicopy suppressor of dna2 helicase-dead mutant (dna2-K1080E). Subsequent epistasis analysis revealed that Ume6 (a DNA binding protein, a downstream substrate of Rim11) also acted as a multicopy suppressor of the dna2 allele. We found that the interaction of Ume6 with the conserved histone deacetylase complex Sin3-Rpd3 and the catalytic activity of Rpd3 were indispensable for the observed suppression of the dna2 mutant. Moreover, multicopy suppression by Rim11/Ume6 requires the presence of sister-chromatid recombination mediated by Rad52/Rad59 proteins, but not vice versa. Interestingly, the overexpression of Rim11 or Ume6 also suppressed the MMS sensitivity of rad59Δ. We also showed that the lethality of dna2 helicase-dead mutant was attributed to checkpoint activation and that decreased levels of deoxynucleotide triphosphates (dNTPs) by overexpressing Sml1 (an inhibitor of ribonucleotide reductase) rescued the dna2 mutant. We also present evidence that indicates Rim11/Ume6 works independently but in parallel with that of checkpoint inhibition, dNTP regulation, and sister-chromatid recombination. In conclusion, our results establish Rim11, Ume6, the histone deacetylase complex Sin3-Rpd3 and Sml1 as new factors important in the events of faulty lagging strand synthesis.
Collapse
|
7
|
Dosage Mutator Genes in Saccharomyces cerevisiae: A Novel Mutator Mode-of-Action of the Mph1 DNA Helicase. Genetics 2016; 204:975-986. [PMID: 27585847 PMCID: PMC5105872 DOI: 10.1534/genetics.116.192211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/25/2016] [Indexed: 01/25/2023] Open
Abstract
Mutations that cause genome instability are considered important predisposing events that contribute to initiation and progression of cancer. Genome instability arises either due to defects in genes that cause an increased mutation rate (mutator phenotype), or defects in genes that cause chromosome instability (CIN). To extend the catalog of genome instability genes, we systematically explored the effects of gene overexpression on mutation rate, using a forward-mutation screen in budding yeast. We screened ∼5100 plasmids, each overexpressing a unique single gene, and characterized the five strongest mutators, MPH1 (mutator phenotype 1), RRM3, UBP12, PIF1, and DNA2 We show that, for MPH1, the yeast homolog of Fanconi Anemia complementation group M (FANCM), the overexpression mutator phenotype is distinct from that of mph1Δ. Moreover, while four of our top hits encode DNA helicases, the overexpression of 48 other DNA helicases did not cause a mutator phenotype, suggesting this is not a general property of helicases. For Mph1 overexpression, helicase activity was not required for the mutator phenotype; in contrast Mph1 DEAH-box function was required for hypermutation. Mutagenesis by MPH1 overexpression was independent of translesion synthesis (TLS), but was suppressed by overexpression of RAD27, a conserved flap endonuclease. We propose that binding of DNA flap structures by excess Mph1 may block Rad27 action, creating a mutator phenotype that phenocopies rad27Δ. We believe this represents a novel mutator mode-of-action and opens up new prospects to understand how upregulation of DNA repair proteins may contribute to mutagenesis.
Collapse
|
8
|
Sgs1 and Mph1 Helicases Enforce the Recombination Execution Checkpoint During DNA Double-Strand Break Repair in Saccharomyces cerevisiae. Genetics 2016; 203:667-75. [PMID: 27075725 DOI: 10.1534/genetics.115.184317] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause. Here we report that the simultaneous deletion of two 3'→5' helicases, Sgs1 and Mph1, largely abolishes the REC-mediated lag normally observed during the repair of large gaps and BIR substrates, which now get repaired nearly as rapidly and efficiently as GC substrates. Deletion of SGS1 and MPH1 also produces a nearly additive increase in the efficiency of both BIR and long gap repair; this increase is epistatic to that seen upon Rad51 overexpression. However, Rad51 overexpression fails to mimic the acceleration in repair kinetics that is produced by sgs1Δ mph1Δ double deletion.
Collapse
|
9
|
Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 2014; 289:15064-79. [PMID: 24711454 DOI: 10.1074/jbc.m114.548388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors.
Collapse
Affiliation(s)
- Miju Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Chul-Hwan Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Annie Albert Demin
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Palinda Ruvan Munashingha
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tamir Amangyeld
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Buki Kwon
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tim Formosa
- the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Yeon-Soo Seo
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| |
Collapse
|
10
|
Karanja KK, Lee EH, Hendrickson EA, Campbell JL. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 2014; 13:1540-50. [PMID: 24626199 DOI: 10.4161/cc.28476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
FANCD2 is required for the repair of DNA damage by the FA (Fanconi anemia) pathway, and, consequently, FANCD2-deficient cells are sensitive to compounds such as cisplatin and formaldehyde that induce DNA:DNA and DNA:protein crosslinks, respectively. The DNA2 helicase/nuclease is required for RNA/DNA flap removal from Okazaki fragments during DNA replication and for the resection of DSBs (double-strand breaks) during HDR (homology-directed repair) of replication stress-induced damage. A knockdown of DNA2 renders normal cells as sensitive to cisplatin (in the absence of EXO1) and to formaldehyde (even in the presence of EXO1) as FANCD2(-/-) cells. Surprisingly, however, the depletion of DNA2 in FANCD2-deficient cells rescues the sensitivity of FANCD2(-/-) cells to cisplatin and formaldehyde. We previously showed that the resection activity of DNA2 acts downstream of FANCD2 to insure HDR of the DSBs arising when replication forks encounter ICL (interstrand crosslink) damage. The suppression of FANCD2(-/-) by DNA2 knockdowns suggests that DNA2 and FANCD2 also have antagonistic roles: in the absence of FANCD2, DNA2 somehow corrupts repair. To demonstrate that DNA2 is deleterious to crosslink repair, we used psoralen-induced ICL damage to trigger the repair of a site-specific crosslink in a GFP reporter and observed that "over-resection" can account for reduced repair. Our work demonstrates that excessive resection can lead to genome instability and shows that strict regulatory processes have evolved to inhibit resection nucleases. The suppression of FANCD2(-/-) phenotypes by DNA2 depletion may have implications for FA therapies and for the use of ICL-inducing agents in chemotherapy.
Collapse
Affiliation(s)
- Kenneth K Karanja
- Braun Laboratories; California Institute of Technology; Pasadena, CA USA
| | - Eu Han Lee
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Judith L Campbell
- Braun Laboratories; California Institute of Technology; Pasadena, CA USA
| |
Collapse
|
11
|
Roles of DNA helicases in the mediation and regulation of homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:185-202. [PMID: 23161012 DOI: 10.1007/978-1-4614-5037-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.
Collapse
|
12
|
Karanja KK, Cox SW, Duxin JP, Stewart SA, Campbell JL. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 2012; 11:3983-96. [PMID: 22987153 PMCID: PMC3507494 DOI: 10.4161/cc.22215] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, stalled replication forks and DSBs arise when the replication fork encounters ICLs (interstrand crosslinks), covalent protein/DNA intermediates or other discontinuities in the template. Recently, homologous recombination proteins have been shown to function in replication-coupled repair of ICLs in conjunction with the Fanconi anemia (FA) regulatory factors FANCD2-FANCI, and, conversely, the FA gene products have been shown to play roles in stalled replication fork rescue even in the absence of ICLs, suggesting a broader role for the FA network than previously appreciated. Here we show that DNA2 helicase/nuclease participates in resection during replication-coupled repair of ICLs and other replication fork stresses. DNA2 knockdowns are deficient in HDR (homology-directed repair) and the S phase checkpoint and exhibit genome instability and sensitivity to agents that cause replication stress. DNA2 is partially redundant with EXO1 in these roles. DNA2 interacts with FANCD2, and cisplatin induces FANCD2 ubiquitylation even in the absence of DNA2. DNA2 and EXO1 deficiency leads to ICL sensitivity but does not increase ICL sensitivity in the absence of FANCD2. This is the first demonstration of the redundancy of human resection nucleases in the HDR step in replication-coupled repair, and suggests that DNA2 may represent a new mediator of the interplay between HDR and the FA/BRCA pathway.
Collapse
Affiliation(s)
- Kenneth K Karanja
- Braun Laboratories, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Luke-Glaser S, Luke B. The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. PLoS One 2012; 7:e42028. [PMID: 22848695 PMCID: PMC3407055 DOI: 10.1371/journal.pone.0042028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability. In some rare instances telomeres engage in Break-Induced Replication (BIR), a type of HR, in order to maintain telomere length in the absence of the enzyme telomerase. Here we have investigated how the yeast helicase, Mph1, affects DNA repair at both DSBs and telomeres. We have found that overexpressed Mph1 strongly inhibits BIR at internal DSBs however allows it to proceed at telomeres. Furthermore, while overexpressed Mph1 potently inhibits NHEJ at telomeres it has no effect on NHEJ at DSBs within the chromosome. At telomeres Mph1 is able to promote telomere uncapping and the accumulation of ssDNA, which results in premature senescence in the absence of telomerase. We propose that Mph1 is able to direct repair towards HR (thereby inhibiting NHEJ) at telomeres by remodeling them into a nuclease-sensitive structure, which promotes the accumulation of a recombinogenic ssDNA intermediate. We thus put forward that Mph1 is a double-edge sword at the telomere, it prevents NHEJ, but promotes senescence in cells with dysfunctional telomeres by increasing the levels of ssDNA.
Collapse
Affiliation(s)
- Sarah Luke-Glaser
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
- * E-mail: (BL); (SLG)
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Heidelberg, Germany
- * E-mail: (BL); (SLG)
| |
Collapse
|
14
|
Shin YK, Amangyeld T, Nguyen TA, Munashingha PR, Seo YS. Human MUS81 complexes stimulate flap endonuclease 1. FEBS J 2012; 279:2412-30. [PMID: 22551069 DOI: 10.1111/j.1742-4658.2012.08620.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast heterodimeric Mus81-Mms4 complex possesses a structure-specific endonuclease activity that is critical for the restart of stalled replication forks and removal of toxic recombination intermediates. Previously, we reported that Mus81-Mms4 and Rad27 (yeast FEN1, another structure-specific endonuclease) showed mutual stimulation of nuclease activity. In this study, we investigated the interactions between human FEN1 and MUS81-EME1 or MUS81-EME2, the human homologs of the yeast Mus81-Mms4 complex. We found that both MUS81-EME1 and MUS81-EME2 increased the activity of FEN1, but FEN1 did not stimulate the activity of MUS81-EME1/EME2. The MUS81 subunit alone and its N-terminal half were able to bind to FEN1 and stimulate its endonuclease activity. A truncated FEN1 fragment lacking the C-terminal region that retained catalytic activity was not stimulated by MUS81. Michaelis-Menten kinetic analysis revealed that MUS81 increased the interaction between FEN1 and its substrates, resulting in increased turnover. We also showed that, after DNA damage in human cells, FEN1 co-localizes with MUS81. These findings indicate that the human proteins and yeast homologs act similarly, except that the human FEN1 does not stimulate the nuclease activities of MUS81-EME1 or MUS81-EME2. Thus, the mammalian MUS81 complexes and FEN1 collaborate to remove the various flap structures that arise during many DNA transactions, including Okazaki fragment processing.
Collapse
Affiliation(s)
- Yong-Keol Shin
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | | | | | |
Collapse
|
15
|
Kang YH, Munashingha PR, Lee CH, Nguyen TA, Seo YS. Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Res 2011; 40:2089-106. [PMID: 22090425 PMCID: PMC3300029 DOI: 10.1093/nar/gkr983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Saccharomyces cerevisiae Mph1 is a 3–5′ DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3′ to 5′ directionality, Mph1 displaced 3′-flap substrates in double-fixed or equilibrating flap substrates. Surprisingly, Mph1 displaced the 5′-flap strand more efficiently than the 3′ flap strand from double-flap substrates, which is not expected for a 3–5′ DNA helicase. For this to occur, Mph1 required a threshold size (>5 nt) of 5′ single-stranded DNA flap. Based on the unique substrate requirements of Mph1 defined in this study, we propose that the helicase/ATPase activity of Mph1 play roles in converting multiple-stranded DNA structures into structures cleavable by processing enzymes such as Fen1. We also found that the helicase activity of Mph1 was used to cause structural alterations required for restoration of replication forks stalled due to damaged template. The helicase properties of Mph1 reported here could explain how it resolves D-loop structure, and are in keeping with a model proposed for the error-free damage avoidance pathway.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Department of Biological Sciences, Center for DNA Replication and Genome Instability, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | | | | | | | | |
Collapse
|
16
|
Budd ME, Antoshechkin IA, Reis C, Wold BJ, Campbell JL. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint. Cell Cycle 2011; 10:1690-8. [PMID: 21508669 DOI: 10.4161/cc.10.10.15643] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27 (scFEN1) , encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27 (ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset.
Collapse
Affiliation(s)
- Martin E Budd
- California Institute of Technology, Pasadena, CA USA
| | | | | | | | | |
Collapse
|
17
|
Kang MJ, Lee CH, Kang YH, Cho IT, Nguyen TA, Seo YS. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res 2010; 38:7611-25. [PMID: 20660481 PMCID: PMC2995070 DOI: 10.1093/nar/gkq651] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two endonucleases, Rad27 (yeast Fen1) and Dna2, jointly participate in the processing of Okazaki fragments in yeasts. Mus81–Mms4 is a structure-specific endonuclease that can resolve stalled replication forks as well as toxic recombination intermediates. In this study, we show that Mus81–Mms4 can suppress dna2 mutational defects by virtue of its functional and physical interaction with Rad27. Mus81–Mms4 stimulated Rad27 activity significantly, accounting for its ability to restore the growth defects caused by the dna2 mutation. Interestingly, Rad27 stimulated the rate of Mus81–Mms4 catalyzed cleavage of various substrates, including regressed replication fork substrates. The ability of Rad27 to stimulate Mus81–Mms4 did not depend on the catalytic activity of Rad27, but required the C-terminal 64 amino acid fragment of Rad27. This indicates that the stimulation was mediated by a specific protein–protein interaction between the two proteins. Our in vitro data indicate that Mus81–Mms4 and Rad27 act together during DNA replication and resolve various structures that can impede normal DNA replication. This conclusion was further strengthened by the fact that rad27 mus81 or rad27 mms4 double mutants were synergistically lethal. We discuss the significance of the interactions between Rad27, Dna2 and Mus81–Mms4 in context of DNA replication.
Collapse
Affiliation(s)
- Min-Jung Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
19
|
Abstract
FANCM and its relatives, Hef, Mph1 and Fml1, are DNA junction-specific helicases/translocases that target and process perturbed replication forks and intermediates of homologous recombination. They have variously been implicated in promoting the activation of the S-phase checkpoint, recruitment of the Fanconi Anemia Core Complex to sites of DNA damage, crossover avoidance during DNA double-strand break repair by homologous recombination, and the replicative bypass of DNA lesions by template switching. This review summarises our current understanding of the biochemical activities and biological functions of the FANCM family.
Collapse
Affiliation(s)
- Matthew C Whitby
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
20
|
Tay YD, Sidebotham JM, Wu L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Res 2010; 38:1889-901. [PMID: 20047969 PMCID: PMC2847250 DOI: 10.1093/nar/gkp1199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Δ sgs1Δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Δ sgs1Δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed.
Collapse
Affiliation(s)
- Ye Dee Tay
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
21
|
Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc Natl Acad Sci U S A 2009; 106:21252-7. [PMID: 19995966 DOI: 10.1073/pnas.0908258106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Delta and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Delta does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.
Collapse
|
22
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Cho IT, Kim DH, Kang YH, Lee CH, Amangyelid T, Nguyen TA, Hurwitz J, Seo YS. Human replication factor C stimulates flap endonuclease 1. J Biol Chem 2009; 284:10387-99. [PMID: 19208620 DOI: 10.1074/jbc.m808893200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is the enzyme responsible for specifically removing the flap structure produced during DNA replication, repair, and recombination. Here we report that the human replication factor C (RFC) complex stimulates the nuclease activity of human FEN1 in an ATP-independent manner. Although proliferating cell nuclear antigen is also known to stimulate FEN1, less RFC was required for comparable FEN1 stimulation. Kinetic analyses indicate that the mechanism by which RFC stimulates FEN1 is distinct from that by proliferating cell nuclear antigen. Heat-denatured RFC or its subunit retained, fully or partially, the ability to stimulate FEN1. Via systematic deletion analyses, we have defined three specific regions of RFC4 capable of stimulating FEN1. The region of RFC4 with the highest activity spans amino acids 170-194 and contains RFC box VII. Four amino acid residues (i.e. Tyr-182, Glu-188, Pro-189, and Ser-192) are especially important for FEN1 stimulatory activity. Thus, RFC, via several stimulatory motifs per molecule, potently activates FEN1. This function makes RFC a critical partner with FEN1 for the processing of eukaryotic Okazaki fragments.
Collapse
Affiliation(s)
- Il-Taeg Cho
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|