1
|
Ganji M, Docter M, Le Grice SFJ, Abbondanzieri EA. DNA binding proteins explore multiple local configurations during docking via rapid rebinding. Nucleic Acids Res 2016; 44:8376-84. [PMID: 27471033 PMCID: PMC5041478 DOI: 10.1093/nar/gkw666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022] Open
Abstract
Finding the target site and associating in a specific orientation are essential tasks for DNA-binding proteins. In order to make the target search process as efficient as possible, proteins should not only rapidly diffuse to the target site but also dynamically explore multiple local configurations before diffusing away. Protein flipping is an example of this second process that has been observed previously, but the underlying mechanism of flipping remains unclear. Here, we probed the mechanism of protein flipping at the single molecule level, using HIV-1 reverse transcriptase (RT) as a model system. In order to test the effects of long-range attractive forces on flipping efficiency, we varied the salt concentration and macromolecular crowding conditions. As expected, increased salt concentrations weaken the binding of RT to DNA while increased crowding strengthens the binding. Moreover, when we analyzed the flipping kinetics, i.e. the rate and probability of flipping, at each condition we found that flipping was more efficient when RT bound more strongly. Our data are consistent with a view that DNA bound proteins undergo multiple rapid re-binding events, or short hops, that allow the protein to explore other configurations without completely dissociating from the DNA.
Collapse
Affiliation(s)
- Mahipal Ganji
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Margreet Docter
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elio A Abbondanzieri
- Kavli Institute of Nanoscience, Department of Bionanoscience, TU Delft, 2629HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Sharma KK, Przybilla F, Restle T, Boudier C, Godet J, Mély Y. Reverse Transcriptase in Action: FRET-Based Assay for Monitoring Flipping and Polymerase Activity in Real Time. Anal Chem 2015; 87:7690-7. [PMID: 26125954 DOI: 10.1021/acs.analchem.5b01126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reverse transcriptase (RT) of human immunodeficiency virus-1 (HIV-1) is a multifunctional enzyme that catalyzes the conversion of the single stranded viral RNA genome into double-stranded DNA, competent for host-cell integration. RT is endowed with RNA- and DNA-dependent DNA polymerase activity and DNA-directed RNA hydrolysis (RNase H activity). As a key enzyme of reverse transcription, RT is a key target of currently used highly active antiretroviral therapy (HAART), though RT inhibitors offer generally a poor resistance profile, urging new RT inhibitors to be developed. Using single molecule fluorescence approaches, it has been recently shown that RT binding orientation and dynamics on its substrate play a critical role in its activity. Currently, most in vitro RT activity assays, inherently end-point measurements, are based on the detection of reaction products by using radio-labeled or chemically modified nucleotides. Here, we propose a simple and continuous real-time Förster resonance energy transfer (FRET) based-assay for the direct measurement of RT's binding orientation and polymerase activity, with the use of conventional steady-state fluorescence spectroscopy. Under our working conditions, the change in binding orientation and the primer elongation step can be visualized separately on the basis of their opposite fluorescence changes and their different kinetics. The assay presented can easily discriminate non-nucleoside RT inhibitors from nucleoside RT inhibitors and determine reliably their potency. This one-step and one-pot assay constitutes an improved alternative to the currently used screening assays to disclose new anti-RT drugs and identify at the same time the class to which they belong.
Collapse
Affiliation(s)
- K K Sharma
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - F Przybilla
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - T Restle
- ‡Institute für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Schleswig-Holstein, Germany
| | - C Boudier
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - J Godet
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France.,§Département d'Information Médicale et de Biostatistiques, Hôpitaux Universitaires de Strasbourg, 1, pl de l'Hôpital, 67400 Strasbourg, France
| | - Y Mély
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
3
|
Zheng X, Mueller GA, DeRose EF, London RE. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Nucleic Acids Res 2012; 40:10543-53. [PMID: 22941642 PMCID: PMC3488238 DOI: 10.1093/nar/gks791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/14/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) contains a C-terminal ribonuclease H (RH) domain on its p66 subunit that can be expressed as a stable, although inactive protein. Recent studies of several RH enzymes demonstrate that substrate binding plays a major role in the creation of the active site. In the absence of substrate, the C-terminal helix E of the RT RNase H domain is dynamic, characterized by severe exchange broadening of its backbone amide resonances, so that the solution characterization of this region of the protein has been limited. Nuclear magnetic resonance studies of 13C-labeled RH as a function of experimental conditions reveal that the δ1 methyl resonance of Ile556, located in a short, random coil segment following helix E, experiences a large 13C shift corresponding to a conformational change of Ile556 that results from packing of helix E against the central β-sheet. This shift provides a useful basis for monitoring the effects of various ligands on active site formation. Additionally, we report that the RNase H complexes formed with one or both divalent ions can be individually observed and characterized using diamagnetic Zn2+ as a substitute for Mg2+. Ordering of helix E results specifically from the interaction with the lower affinity binding to the A divalent ion site.
Collapse
Affiliation(s)
| | | | | | - Robert E. London
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Chung S, Miller JT, Johnson BC, Hughes SH, Le Grice SFJ. Mutagenesis of human immunodeficiency virus reverse transcriptase p51 subunit defines residues contributing to vinylogous urea inhibition of ribonuclease H activity. J Biol Chem 2011; 287:4066-75. [PMID: 22105069 DOI: 10.1074/jbc.m111.314781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vinylogous urea, NSC727447, was proposed to allosterically inhibit ribonuclease H (RNase H) activity of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) by interacting with the thumb subdomain of its non-catalytic p51 subunit. Proximity of the p51 thumb to the p66 RNase H domain implied that inhibitor binding altered active site geometry, whereas protein footprinting suggested a contribution from α-helix I residues Cys-280 and Lys-281. To more thoroughly characterize the vinylogous urea binding site, horizontal alanine scanning mutagenesis between p51 residues Lys-275 and Thr-286 (comprising α-helix I and portions of the neighboring αH/αI and αI/αJ connecting loops) was combined with a limited vertical scan of Cys-280. A contribution from Cys-280 was strengthened by our observation that all substitutions at this position rendered selectively mutated, reconstituted p66/p51 heterodimers ∼45-fold less sensitive to inhibition. An ∼19-fold reduced IC(50) for p51 mutant T286A coupled with a 2-8-fold increased IC(50) when intervening residues were substituted supports our original proposal of p51 α-helix I as the vinylogous urea binding site. In contrast to these allosteric inhibitors, mutant enzymes retained equivalent sensitivity to the natural product α-hydroxytropolone inhibitor manicol, which x-ray crystallography has demonstrated functions by chelating divalent metal at the p66 RNase H active site. Finally, reduced DNA strand-transfer activity together with increased vinylogous urea sensitivity of p66/p51 heterodimers containing short p51 C-terminal deletions suggests an additional role for the p51 C terminus in nucleic acid binding that is compromised by inhibitor binding.
Collapse
Affiliation(s)
- Suhman Chung
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
5
|
Structural and binding analysis of pyrimidinol carboxylic acid and N-hydroxy quinazolinedione HIV-1 RNase H inhibitors. Antimicrob Agents Chemother 2011; 55:2905-15. [PMID: 21464257 PMCID: PMC3101433 DOI: 10.1128/aac.01594-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
HIV-1 RNase H breaks down the intermediate RNA-DNA hybrids during reverse transcription, requiring two divalent metal ions for activity. Pyrimidinol carboxylic acid and N-hydroxy quinazolinedione inhibitors were designed to coordinate the two metal ions in the active site of RNase H. High-resolution (1.4 Å to 2.1 Å) crystal structures were determined with the isolated RNase H domain and reverse transcriptase (RT), which permit accurate assessment of the metal and water environment at the active site. The geometry of the metal coordination suggests that the inhibitors mimic a substrate state prior to phosphodiester catalysis. Surface plasmon resonance studies confirm metal-dependent binding to RNase H and demonstrate that the inhibitors do not bind at the polymerase active site of RT. Additional evaluation of the RNase H site reveals an open protein surface with few additional interactions to optimize active-site inhibitors.
Collapse
|
6
|
Liu S, Harada BT, Miller JT, Le Grice SFJ, Zhuang X. Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 2010; 17:1453-60. [PMID: 21102446 PMCID: PMC3058889 DOI: 10.1038/nsmb.1937] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNA(3)(Lys) primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA-vRNA complexes, and the prominent pausing events are related to RT binding in a flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role of the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
7
|
Liu S, Abbondanzieri EA, Rausch JW, Grice SFJL, Zhuang X. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates. Science 2008; 322:1092-7. [PMID: 19008444 PMCID: PMC2717043 DOI: 10.1126/science.1163108] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reverse transcriptase (RT) of human immunodeficiency virus (HIV) catalyzes a series of reactions to convert single-stranded viral RNA into double-stranded DNA for host cell integration. This process requires a variety of enzymatic activities, including DNA polymerization, RNA cleavage, strand transfer, and strand displacement synthesis. We used single-molecule fluorescence resonance energy transfer to probe the interactions between RT and nucleic acid substrates in real time. RT was observed to slide on nucleic acid duplexes, rapidly shuttling between opposite termini of the duplex. Upon reaching the DNA 3' terminus, RT can spontaneously flip into a polymerization orientation. Sliding kinetics were regulated by cognate nucleotides and anti-HIV drugs, which stabilized and destabilized the polymerization mode, respectively. These long-range translocation activities facilitate multiple stages of the reverse transcription pathway, including normal DNA polymerization and strand displacement synthesis.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elio A. Abbondanzieri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jason W. Rausch
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SFJ, Zhuang X. Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 2008; 453:184-9. [PMID: 18464735 PMCID: PMC2655135 DOI: 10.1038/nature06941] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 03/20/2008] [Indexed: 11/09/2022]
Abstract
The reverse transcriptase of human immunodeficiency virus (HIV) catalyses a series of reactions to convert the single-stranded RNA genome of HIV into double-stranded DNA for host-cell integration. This task requires the reverse transcriptase to discriminate a variety of nucleic-acid substrates such that active sites of the enzyme are correctly positioned to support one of three catalytic functions: RNA-directed DNA synthesis, DNA-directed DNA synthesis and DNA-directed RNA hydrolysis. However, the mechanism by which substrates regulate reverse transcriptase activities remains unclear. Here we report distinct orientational dynamics of reverse transcriptase observed on different substrates with a single-molecule assay. The enzyme adopted opposite binding orientations on duplexes containing DNA or RNA primers, directing its DNA synthesis or RNA hydrolysis activity, respectively. On duplexes containing the unique polypurine RNA primers for plus-strand DNA synthesis, the enzyme can rapidly switch between the two orientations. The switching kinetics were regulated by cognate nucleotides and non-nucleoside reverse transcriptase inhibitors, a major class of anti-HIV drugs. These results indicate that the activities of reverse transcriptase are determined by its binding orientation on substrates.
Collapse
Affiliation(s)
- Elio A Abbondanzieri
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
9
|
Bohlayer WP, DeStefano JJ. Tighter binding of HIV reverse transcriptase to RNA-DNA versus DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA. Biochemistry 2006; 45:7628-38. [PMID: 16768458 PMCID: PMC2519887 DOI: 10.1021/bi051770w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Binding of HIV reverse transcriptase (RT) to unique substrates that positioned RNA-DNA or DNA-DNA near the polymerase or RNase H domains was measured. The substrates consisted of a 50 nucleotide template and DNA primers ranging from 23 to 43 nucleotides. Five different types of template strands were used: homogeneous (1) RNA or (2) DNA, (3) the first 20 5' nucleotides of DNA and the last 30 RNA, (4) the first 20 RNA and the last 30 DNA, and (5) 15 nucleotides of DNA followed by 5 RNA and then 30 DNA. The different length primers were designed to position RT over various regions of the template. Dissociation rate constants were determined for each of the substrates. Results showed that the severalfold tighter binding to RNA-DNA vs DNA-DNA was determined by binding in the polymerase domain and required only a short 5 base pair RNA-DNA hybrid region. Chimeric substrates with RNA-DNA positioned near the polymerase domain and DNA-DNA near the RNase H domain showed binding comparable to a complete RNA-DNA substrate, while those with the reverse orientation were comparable to DNA-DNA. Interestingly, the first configuration, though binding as tightly as RNA-DNA, could not be cleaved by RT RNase H activity, a finding that could perhaps be exploited in the development of nucleic acid-based inhibitors.
Collapse
Affiliation(s)
- William P. Bohlayer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
10
|
Peletskaya EN, Boyer PL, Kogon AA, Clark P, Kroth H, Sayer JM, Jerina DM, Hughes SH. Cross-linking of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase to template-primer. J Virol 2001; 75:9435-45. [PMID: 11533206 PMCID: PMC114511 DOI: 10.1128/jvi.75.19.9435-9445.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cross-linking experiments were performed with human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) mutants with unique cysteine residues at several positions (positions 65, 67, 70, and 74) in the fingers subdomain of the p66 subunit. Two approaches were used--photoaffinity cross-linking and disulfide chemical cross-linking (using an oligonucleotide that contained an N(2)-modified dG with a reactive thiol group). In the former case, cross-linking can occur to any nucleotide in either DNA strand, and in the latter case, a specific cross-link is produced between the template and the enzyme. Neither the introduction of the unique cysteine residues into the fingers nor the modification of these residues with photocross-linking reagents caused a significant decrease in the enzymatic activities of RT. We were able to use this model system to investigate interactions between specific points on the fingers domain of RT and double-stranded DNA (dsDNA). Photoaffinity cross-linking of the template to the modified RTs with Cys residues in positions 65, 67, 70, and 74 of the fingers domain of the p66 subunit was relatively efficient. Azide-modified Cys residues produced 10 to 25% cross-linking, whereas diazirine modified residues produced 5 to 8% cross-linking. Disulfide cross-linking yields were up to 90%. All of the modified RTs preferentially photocross-linked to the 5' extended template strand of the dsDNA template-primer substrate. The preferred sites of interactions were on the extended template, 5 to 7 bases beyond the polymerase active site. HIV-1 RT is quite flexible. There are conformational changes associated with substrate binding. Cross-linking was used to detect intramolecular movements associated with binding of the incoming deoxynucleoside triphosphate (dNTP). Binding an incoming dNTP at the polymerase active site decreases the efficiency of cross-linking, but causes only modest changes in the preferred positions of cross-linking. This suggests that the interactions between the fingers of p66 and the extended template involve the "open" configuration of the enzyme with the fingers away from the active site rather than the closed configuration with the fingers in direct contact with the incoming dNTP. This experimental approach can be used to measure distances between any site on the surface of the protein and an interacting molecule.
Collapse
Affiliation(s)
- E N Peletskaya
- ABL-Basic Research Program, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
DeStefano JJ, Cristofaro JV, Derebail S, Bohlayer WP, Fitzgerald-Heath MJ. Physical mapping of HIV reverse transcriptase to the 5' end of RNA primers. J Biol Chem 2001; 276:32515-21. [PMID: 11441011 DOI: 10.1074/jbc.m103958200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic analysis of RNA cleavage products has suggested that human immunodeficiency virus (HIV) reverse transcriptase (RT) binds to the 5' end of RNAs that are recessed on a longer DNA template (RNA primers) yet binds to the 3' end of DNA primers. One concern is that RT molecules bound at the 3' end of RNA would not be easily detected because RT may not catalyze substantial RNA extension or cleavage when bound to the 3' end. We used physical mapping to show that RT binds preferentially to the 5' end of RNA primers. An HIV-RT that lacked RNase H activity (HIV-RT(E478Q)) was incubated with the RNA-DNA hybrid followed by the addition of Escherichia coli RNase H. RT protected a approximately 23-base region at the 5' end of the RNA and 4 additional bases on the DNA strand. This footprint correlated well with the crystal structure of HIV-RT. No protection of the RNA 3' end was observed, although when dNTPs were included, low levels of extension occurred, indicating that RT can bind this end. Wild-type HIV-RT cleaved the RNA and then extended a small portion of the cleaved fragments, suggesting that very small RNAs may be bound similar to DNA primers.
Collapse
Affiliation(s)
- J J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
12
|
Lavigne M, Polomack L, Buc H. Structures of complexes formed by HIV-1 reverse transcriptase at a termination site of DNA synthesis. J Biol Chem 2001; 276:31439-48. [PMID: 11402037 DOI: 10.1074/jbc.m102976200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study presents structural parameters associated with termination of human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase (RT) at Ter2, the major termination site located in the center of the HIV-1 genome. DNA footprinting studies of various elongation complexes formed by RT around wild type and mutant Ter2 sites have revealed two major structural transformations of these complexes when the enzyme gets closer to Ter2. First, the interactions between RT and the DNA duplex are less extended, although the global affinity of the enzyme for this duplex is only decreased by 2-fold. Second, there is an atypical positioning of the RT RNase H domain on the DNA duplex. We interpret our data as indicating that the A(n)T(m) motif located upstream of Ter2 prevents a classical positioning of the enzyme on the double-stranded part of the DNA duplex at some precise positions of elongation downstream of this motif. Instead, novel species of binary and/or ternary complexes, characterized by atypical footprints, are formed. The new rate-limiting step of the reaction, characterized in the preceding paper (Lavigne, M., Polomack, L., and Buc, H. (2001) J. Biol. Chem. 276, 31429-31438), would be a transition leading from these new species to a catalytically competent ternary complex.
Collapse
Affiliation(s)
- M Lavigne
- Unité de Physicochimie des Macromolécules Biologiques, Institut Pasteur, CNRS URA 1773, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
13
|
Gorshkova II, Rausch JW, Le Grice SF, Crouch RJ. HIV-1 reverse transcriptase interaction with model RNA-DNA duplexes. Anal Biochem 2001; 291:198-206. [PMID: 11401293 DOI: 10.1006/abio.2001.5053] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 reverse transcriptase (HIV-1 RT) is a multifunctional enzyme responsible for converting viral RNA into preintegrative DNA during the early stages of viral infection. DNA polymerase and RNase H activities are required, and several conformationally distinct primer-templates must be accommodated by the enzyme during the process. Parameters of interaction between model substrates (ligands) and HIV-1 RT (wild type p66/p51 and the RNase H-deficient mutant p66(E478Q)/p51) (analytes) were estimated by surface plasmon resonance at 25 degrees C, pH 8.0. Binding of RT to the ligands is specific and can be analyzed using a conventional 1:1 binding algorithm. RNA-DNA hybrids with 5'-template overhangs of 6 and 12 nucleotides bind to RT approximately one order of magnitude stronger than the corresponding 36-mer with blunt ends due to slower dissociation. Immobilization of the latter through either the 5'-end of RNA or DNA strand does not change the equilibrium constant (K(D)) for wild-type RT but the values of kinetic constants of association and dissociation differ significantly. For the p66(E478Q)/p51 enzyme, orientation effects are notable even altering the K(D) value. Binding of the p66(E478Q)/p51 to any RNA-DNA hybrids is slightly stronger compared with wild type. Data can be interpreted in terms of the mechanism of reverse transcription.
Collapse
Affiliation(s)
- I I Gorshkova
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
14
|
Wisniewski M, Balakrishnan M, Palaniappan C, Fay PJ, Bambara RA. Unique progressive cleavage mechanism of HIV reverse transcriptase RNase H. Proc Natl Acad Sci U S A 2000; 97:11978-83. [PMID: 11035788 PMCID: PMC17280 DOI: 10.1073/pnas.210392297] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) degrades the plus strand viral RNA genome while synthesizing the minus strand of DNA. Many RNA fragments, including the polypurine tracts, remain annealed to the new DNA. Several RTs are believed to bind after synthesis to degrade all RNA fragments except the polypurine tracts by a polymerization-independent mode of RNase H activity. For this latter process, we found that RT positions the RNase H active site approximately 18 nt from the 5' end of the RNA, making the primary cut. The enzyme rebinds or slides toward the 5' end of the RNA to make a secondary cut creating two products 8-9 nt long. RT then binds the new 5' end of the RNA created by the first primary or the secondary cuts to make the next primary cut. In addition, we observed another type of RNase H cleavage specificity. RT aligns the RNase H active site to the 3' end of the RNA, cutting 5 residues in. We determined the relative rates of these cuts, defining their temporal order. Results show that the first primary cut is fastest, and the secondary and 5-nt cuts occur next at similar rates. The second primary cuts appear last. Based on these results, we present a model by which RT progressively cleaves RNA fragments.
Collapse
Affiliation(s)
- M Wisniewski
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Despite the success of protease and reverse transcriptase inhibitors, new drugs to suppress HIV-1 replication are still needed. Several other early events in the viral life cycle (stages before the viral genome is inserted into host cell DNA) are susceptible to drugs, including virus attachment to target cells, membrane fusion and post-entry events such as integration, accessory-gene function and assembly of viral particles. Among these, inhibitors of virus-cell fusion and integration are the most promising candidates.
Collapse
Affiliation(s)
- J P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|