1
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
3
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
4
|
Abstract
Computational protein design (CPD) has established itself as a leading field in basic and applied science with a strong coupling between the two. Proteins are computationally designed from the level of amino acids to the level of a functional protein complex. Design targets range from increased thermo- (or other) stability to specific requested reactions such as protein-protein binding, enzymatic reactions, or nanotechnology applications. The design scheme may encompass small regions of the proteins or the entire protein. In either case, the design may aim at the side-chains or at the full backbone conformation. Herein, the main framework for the process is outlined highlighting key elements in the CPD iterative cycle. These include the very definition of CPD, the diverse goals of CPD, components of the CPD protocol, methods for searching sequence and structure space, scoring functions, and augmenting the CPD with other optimization tools. Taken together, this chapter aims to introduce the framework of CPD.
Collapse
Affiliation(s)
- Ilan Samish
- Department of Plants and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel.
- Amai Proteins Ltd., Ashdod, Israel.
| |
Collapse
|
5
|
Druart K, Bigot J, Audit E, Simonson T. A Hybrid Monte Carlo Scheme for Multibackbone Protein Design. J Chem Theory Comput 2016; 12:6035-6048. [DOI: 10.1021/acs.jctc.6b00421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen Druart
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Bigot
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Edouard Audit
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Thomas Simonson
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules. J Mol Biol 2014; 426:4125-4138. [PMID: 25311857 PMCID: PMC4270444 DOI: 10.1016/j.jmb.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/21/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
To carry out their activities, biological macromolecules balance different physical traits, such as stability, interaction affinity, and selectivity. How such often opposing traits are encoded in a macromolecular system is critical to our understanding of evolutionary processes and ability to design new molecules with desired functions. We present a framework for constraining design simulations to balance different physical characteristics. Each trait is represented by the equilibrium fractional occupancy of the desired state relative to its alternatives, ranging from none to full occupancy, and the different traits are combined using Boolean operators to effect a "fuzzy"-logic language for encoding any combination of traits. In another paper, we presented a new combinatorial backbone design algorithm AbDesign where the fuzzy-logic framework was used to optimize protein backbones and sequences for both stability and binding affinity in antibody-design simulation. We now extend this framework and find that fuzzy-logic design simulations reproduce sequence and structure design principles seen in nature to underlie exquisite specificity on the one hand and multispecificity on the other hand. The fuzzy-logic language is broadly applicable and could help define the space of tolerated and beneficial mutations in natural biomolecular systems and design artificial molecules that encode complex characteristics.
Collapse
Affiliation(s)
- Shira Warszawski
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ravit Netzer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarel J Fleishman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Zhang J, Zheng F, Grigoryan G. Design and designability of protein-based assemblies. Curr Opin Struct Biol 2014; 27:79-86. [DOI: 10.1016/j.sbi.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
8
|
Gaillard T, Simonson T. Pairwise decomposition of an MMGBSA energy function for computational protein design. J Comput Chem 2014; 35:1371-87. [PMID: 24854675 DOI: 10.1002/jcc.23637] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 02/02/2023]
Abstract
Computational protein design (CPD) aims at predicting new proteins or modifying existing ones. The computational challenge is huge as it requires exploring an enormous sequence and conformation space. The difficulty can be reduced by considering a fixed backbone and a discrete set of sidechain conformations. Another common strategy consists in precalculating a pairwise energy matrix, from which the energy of any sequence/conformation can be quickly obtained. In this work, we examine the pairwise decomposition of protein MMGBSA energy functions from a general theoretical perspective, and an implementation proposed earlier for CPD. It includes a Generalized Born term, whose many-body character is overcome using an effective dielectric environment, and a Surface Area term, for which we present an improved pairwise decomposition. A detailed evaluation of the error introduced by the decomposition on the different energy components is performed. We show that the error remains reasonable, compared to other uncertainties.
Collapse
Affiliation(s)
- Thomas Gaillard
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128, Palaiseau, France
| | | |
Collapse
|
9
|
Sudarshan S, Kodathala SB, Mahadik AC, Mehta I, Beck BW. Protein-protein interface detection using the energy centrality relationship (ECR) characteristic of proteins. PLoS One 2014; 9:e97115. [PMID: 24830938 PMCID: PMC4022497 DOI: 10.1371/journal.pone.0097115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
Specific protein interactions are responsible for most biological functions. Distinguishing Functionally Linked Interfaces of Proteins (FLIPs), from Functionally uncorrelated Contacts (FunCs), is therefore important to characterizing these interactions. To achieve this goal, we have created a database of protein structures called FLIPdb, containing proteins belonging to various functional sub-categories. Here, we use geometric features coupled with Kortemme and Baker's computational alanine scanning method to calculate the energetic sensitivity of each amino acid at the interface to substitution, identify hotspots, and identify other factors that may contribute towards an interface being FLIP or FunC. Using Principal Component Analysis and K-means clustering on a training set of 160 interfaces, we could distinguish FLIPs from FunCs with an accuracy of 76%. When these methods were applied to two test sets of 18 and 170 interfaces, we achieved similar accuracies of 78% and 80%. We have identified that FLIP interfaces have a stronger central organizing tendency than FunCs, due, we suggest, to greater specificity. We also observe that certain functional sub-categories, such as enzymes, antibody-heavy-light, antibody-antigen, and enzyme-inhibitors form distinct sub-clusters. The antibody-antigen and enzyme-inhibitors interfaces have patterns of physical characteristics similar to those of FunCs, which is in agreement with the fact that the selection pressures of these interfaces is differently evolutionarily driven. As such, our ECR model also successfully describes the impact of evolution and natural selection on protein-protein interfaces. Finally, we indicate how our ECR method may be of use in reducing the false positive rate of docking calculations.
Collapse
Affiliation(s)
- Sanjana Sudarshan
- Department of Biology, Texas Woman's University, Denton, Texas, United States of America
| | - Sasi B. Kodathala
- Department of Biology, Texas Woman's University, Denton, Texas, United States of America
| | - Amruta C. Mahadik
- Department of Biology, Texas Woman's University, Denton, Texas, United States of America
| | - Isha Mehta
- Department of Biology, Texas Woman's University, Denton, Texas, United States of America
| | - Brian W. Beck
- Department of Biology, Texas Woman's University, Denton, Texas, United States of America
- Department of Mathematics and Computer Science, Texas Woman's University, Denton, Texas, United States of America
- Department of Chemistry and Biochemistry, Texas Woman's University, Denton, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Controlling enantioselectivity of esterase in asymmetric hydrolysis of aryl prochiral diesters by introducing aromatic interactions. Biotechnol Bioeng 2014; 111:1729-39. [DOI: 10.1002/bit.25249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/03/2014] [Accepted: 03/24/2014] [Indexed: 11/07/2022]
|
11
|
Borgo B, Havranek JJ. Motif-directed redesign of enzyme specificity. Protein Sci 2014; 23:312-20. [PMID: 24407908 PMCID: PMC3945839 DOI: 10.1002/pro.2417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 11/21/2022]
Abstract
Computational protein design relies on several approximations, including the use of fixed backbones and rotamers, to reduce protein design to a computationally tractable problem. However, allowing backbone and off-rotamer flexibility leads to more accurate designs and greater conformational diversity. Exhaustive sampling of this additional conformational space is challenging, and often impossible. Here, we report a computational method that utilizes a preselected library of native interactions to direct backbone flexibility to accommodate placement of these functional contacts. Using these native interaction modules, termed motifs, improves the likelihood that the interaction can be realized, provided that suitable backbone perturbations can be identified. Furthermore, it allows a directed search of the conformational space, reducing the sampling needed to find low energy conformations. We implemented the motif-based design algorithm in Rosetta, and tested the efficacy of this method by redesigning the substrate specificity of methionine aminopeptidase. In summary, native enzymes have evolved to catalyze a wide range of chemical reactions with extraordinary specificity. Computational enzyme design seeks to generate novel chemical activities by altering the target substrates of these existing enzymes. We have implemented a novel approach to redesign the specificity of an enzyme and demonstrated its effectiveness on a model system.
Collapse
Affiliation(s)
- Benjamin Borgo
- Program in Computational and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, 63110
| | | |
Collapse
|
12
|
|
13
|
Tiwari MK, Singh R, Singh RK, Kim IW, Lee JK. Computational approaches for rational design of proteins with novel functionalities. Comput Struct Biotechnol J 2012; 2:e201209002. [PMID: 24688643 PMCID: PMC3962203 DOI: 10.5936/csbj.201209002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022] Open
Abstract
Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes.
Collapse
Affiliation(s)
- Manish Kumar Tiwari
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea ; These authors contributed equally
| | - Ranjitha Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea ; These authors contributed equally
| | - Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea ; Institute of SK-KU Biomaterials, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea
| |
Collapse
|
14
|
Ho HK, Gange G, Kuiper MJ, Ramamohanarao K. BetaSearch: a new method for querying β-residue motifs. BMC Res Notes 2012; 5:391. [PMID: 22839199 PMCID: PMC3532365 DOI: 10.1186/1756-0500-5-391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Searching for structural motifs across known protein structures can be useful for identifying unrelated proteins with similar function and characterising secondary structures such as β-sheets. This is infeasible using conventional sequence alignment because linear protein sequences do not contain spatial information. β-residue motifs are β-sheet substructures that can be represented as graphs and queried using existing graph indexing methods, however, these approaches are designed for general graphs that do not incorporate the inherent structural constraints of β-sheets and require computationally-expensive filtering and verification procedures. 3D substructure search methods, on the other hand, allow β-residue motifs to be queried in a three-dimensional context but at significant computational costs. FINDINGS We developed a new method for querying β-residue motifs, called BetaSearch, which leverages the natural planar constraints of β-sheets by indexing them as 2D matrices, thus avoiding much of the computational complexities involved with structural and graph querying. BetaSearch exhibits faster filtering, verification, and overall query time than existing graph indexing approaches whilst producing comparable index sizes. Compared to 3D substructure search methods, BetaSearch achieves 33 and 240 times speedups over index-based and pairwise alignment-based approaches, respectively. Furthermore, we have presented case-studies to demonstrate its capability of motif matching in sequentially dissimilar proteins and described a method for using BetaSearch to predict β-strand pairing. CONCLUSIONS We have demonstrated that BetaSearch is a fast method for querying substructure motifs. The improvements in speed over existing approaches make it useful for efficiently performing high-volume exploratory querying of possible protein substructural motifs or conformations. BetaSearch was used to identify a nearly identical β-residue motif between an entirely synthetic (Top7) and a naturally-occurring protein (Charcot-Leyden crystal protein), as well as identifying structural similarities between biotin-binding domains of avidin, streptavidin and the lipocalin gamma subunit of human C8.
Collapse
Affiliation(s)
- Hui Kian Ho
- Department of Computing and Information Systems, The University of Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|