1
|
Valente P, Marte A, Franchi F, Sterlini B, Casagrande S, Corradi A, Baldelli P, Benfenati F. A Push-Pull Mechanism Between PRRT2 and β4-subunit Differentially Regulates Membrane Exposure and Biophysical Properties of NaV1.2 Sodium Channels. Mol Neurobiol 2023; 60:1281-1296. [PMID: 36441479 PMCID: PMC9899197 DOI: 10.1007/s12035-022-03112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein implicated in the control of neurotransmitter release and neural network stability. Accordingly, PRRT2 loss-of-function mutations associate with pleiotropic paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. PRRT2 is a negative modulator of the membrane exposure and biophysical properties of Na+ channels NaV1.2/NaV1.6 predominantly expressed in brain glutamatergic neurons. NaV channels form complexes with β-subunits that facilitate the membrane targeting and the activation of the α-subunits. The opposite effects of PRRT2 and β-subunits on NaV channels raises the question of whether PRRT2 and β-subunits interact or compete for common binding sites on the α-subunit, generating Na+ channel complexes with distinct functional properties. Using a heterologous expression system, we have observed that β-subunits and PRRT2 do not interact with each other and act as independent non-competitive modulators of NaV1.2 channel trafficking and biophysical properties. PRRT2 antagonizes the β4-induced increase in expression and functional activation of the transient and persistent NaV1.2 currents, without affecting resurgent current. The data indicate that β4-subunit and PRRT2 form a push-pull system that finely tunes the membrane expression and function of NaV channels and the intrinsic neuronal excitability.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132, Genova, Italy. .,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Antonella Marte
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Franchi
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
2
|
Karbat I, Reuveny E. Ion channel auxiliary subunit: does one size fit all? Cell 2021; 184:299-301. [PMID: 33482096 DOI: 10.1016/j.cell.2020.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ion channels can tailor their activity to the particular cellular context by incorporating auxiliary subunits that are channel-type specific. In this issue of Cell, Ávalos Prado et al. now find that a well-characterized voltage-gated K+ channel auxiliary subunit can also modulate the gating of Ca2+-activated Cl- channels.
Collapse
Affiliation(s)
- Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Kawai T, Hashimoto M, Eguchi N, Nishino JM, Jinno Y, Mori-Kreiner R, Aspåker M, Chiba D, Ohtsuka Y, Kawanabe A, Nishino AS, Okamura Y. Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels. J Biol Chem 2021; 296:100783. [PMID: 34000300 PMCID: PMC8192821 DOI: 10.1016/j.jbc.2021.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/09/2023] Open
Abstract
Voltage-gated sodium channels (Nav1s) are responsible for the initiation and propagation of action potentials in neurons, muscle, and endocrine cells. Many clinically used drugs such as local anesthetics and antiarrhythmics inhibit Nav1s, and a variety of inherited human disorders are caused by mutations in Nav1 genes. Nav1s consist of the main α subunit and several auxiliary β subunits. Detailed information on the structure–function relationships of Nav1 subunits has been obtained through heterologous expression experiments and analyses of protein structures. The basic properties of Nav1s, including their gating and ion permeation, were classically described in the squid giant axon and other invertebrates. However, heterologous functional expression of Nav1s from marine invertebrates has been unsuccessful. Ascidians belong to the Urochordata, a sister group of vertebrates, and the larval central nervous system of ascidians shows a similar plan to that of vertebrates. Here, we report the biophysical properties of ascidian Ciona Nav1 (CiNav1a) heterologously expressed in Xenopus oocytes. CiNav1a exhibited tetrodotoxin-insensitive sodium currents with rapid gating kinetics of activation and inactivation. Furthermore, consistent with the fact that the Ciona genome lacks orthologous genes to vertebrate β subunits, the human β1 subunit did not influence the gating properties when coexpressed with CiNav1a. Interestingly, CiNav1a contains an ankyrin-binding motif in the II–III linker, which can be targeted to the axon initial segment of mammalian cortical neurons. Our findings provide a platform to gain insight into the evolutionary and biophysical properties of Nav1s, which are important for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hashimoto
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | | | - Junko M Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan; Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki, Japan
| | - Yuka Jinno
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Risa Mori-Kreiner
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Daijiro Chiba
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yukio Ohtsuka
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsuo S Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan; Department of Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Hirosaki, Japan
| | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Japan.
| |
Collapse
|
4
|
Inhibitory effects of aloperine on voltage-gated Na + channels in rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1579-1588. [PMID: 33738513 DOI: 10.1007/s00210-021-02076-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/28/2021] [Indexed: 12/08/2022]
Abstract
Aloperine (ALO), a quinolizidine alkaloid extracted from Sophora alopecuroides L., modulates hypertension, ventricular remodeling, and myocardial ischemia. However, few studies have evaluated the effects of ALO on other cardiovascular parameters. Accordingly, in this study, we used a rat model of aconitine-induced ventricular arrhythmia to assess the effects of ALO. Notably, ALO pretreatment delayed the onset of ventricular premature and ventricular tachycardia and reduced the incidence of fatal ventricular fibrillation. Moreover, whole-cell patch-clamp assays in rats' ventricular myocyte showed that ALO (3, 10, and 30 μM) significantly reduced the peak sodium current density of voltage-gated Na+ channel currents (INa) in a concentration-dependent manner. The gating kinetics characteristics showed that the steady-state activation and recovery curve were shifted in positive direction along the voltage axis, respectively, and the steady-state inactivation curve was shifted in negative direction along the voltage axis, i.e., which was similar to the inhibitory effects of amiodarone. These results indicated that ALO had anti-arrhythmic effects, partly attributed to INa inhibition. ALO may act as a class I sodium channel anti-arrhythmia agent.
Collapse
|
5
|
Glass WG, Duncan AL, Biggin PC. Computational Investigation of Voltage-Gated Sodium Channel β3 Subunit Dynamics. Front Mol Biosci 2020; 7:40. [PMID: 32266288 PMCID: PMC7103644 DOI: 10.3389/fmolb.2020.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/19/2020] [Indexed: 01/23/2023] Open
Abstract
Voltage-gated sodium (Na v ) channels form the basis for the initiation of the action potential in excitable cells by allowing sodium ions to pass through the cell membrane. The Na v channel α subunit is known to function both with and without associated β subunits. There is increasing evidence that these β subunits have multiple roles that include not only influencing the voltage-dependent gating but also the ability to alter the spatial distribution of the pore-forming α subunit. Recent structural data has shown possible ways in which β1 subunits may interact with the α subunit. However, the position of the β1 subunit would not be compatible with a previous trimer structure of the β3 subunit. Furthermore, little is currently known about the dynamic behavior of the β subunits both as individual monomers and as higher order oligomers. Here, we use multiscale molecular dynamics simulations to assess the dynamics of the β3, and the closely related, β1 subunit. These findings reveal the spatio-temporal dynamics of β subunits and should provide a useful framework for interpreting future low-resolution experiments such as atomic force microscopy.
Collapse
Affiliation(s)
| | | | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Niibori Y, Lee SJ, Minassian BA, Hampson DR. Sexually Divergent Mortality and Partial Phenotypic Rescue After Gene Therapy in a Mouse Model of Dravet Syndrome. Hum Gene Ther 2020; 31:339-351. [PMID: 31830809 PMCID: PMC7087406 DOI: 10.1089/hum.2019.225] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental genetic disorder caused by mutations in the SCN1A gene encoding the α subunit of the NaV1.1 voltage-gated sodium channel that controls neuronal action potential firing. The high density of this mutated channel in GABAergic interneurons results in impaired inhibitory neurotransmission and subsequent excessive activation of excitatory neurons. The syndrome is associated with severe childhood epilepsy, autistic behaviors, and sudden unexpected death in epilepsy. Here, we compared the rescue effects of an adeno-associated viral (AAV) vector coding for the multifunctional β1 sodium channel auxiliary subunit (AAV-NaVβ1) with a control vector lacking a transgene. We hypothesized that overexpression of NaVβ1 would facilitate the function of residual voltage-gated channels and improve the DS phenotype in the Scn1a+/− mouse model of DS. AAV-NaVβ1 was injected into the cerebral spinal fluid of neonatal Scn1a+/− mice. In untreated control Scn1a+/− mice, females showed a higher degree of mortality than males. Compared with Scn1a+/− control mice, AAV-NaVβ1-treated Scn1a+/− mice displayed increased survival, an outcome that was more pronounced in females than males. In contrast, behavioral analysis revealed that male, but not female, Scn1a+/− mice displayed motor hyperactivity, and abnormal performance on tests of fear and anxiety and learning and memory. Male Scn1a+/− mice treated with AAV-NaVβ1 showed reduced spontaneous seizures and normalization of motor activity and performance on the elevated plus maze test. These findings demonstrate sex differences in mortality in untreated Scn1a+/− mice, an effect that may be related to a lower level of intrinsic inhibitory tone in female mice, and a normalization of aberrant behaviors in males after central nervous system administration of AAV-NaVβ1. The therapeutic efficacy of AAV-NaVβ1 in a mouse model of DS suggests a potential new long-lasting biological therapeutic avenue for the treatment of this catastrophic epilepsy.
Collapse
Affiliation(s)
- Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Shiron J Lee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Texas
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Nastou KC, Batskinis MA, Litou ZI, Hamodrakas SJ, Iconomidou VA. Analysis of Single-Nucleotide Polymorphisms in Human Voltage-Gated Ion Channels. J Proteome Res 2019; 18:2310-2320. [DOI: 10.1021/acs.jproteome.9b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katerina C. Nastou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Michail A. Batskinis
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| |
Collapse
|